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Local stability of cooperation 
in a continuous model of indirect 
reciprocity
Sanghun Lee1, Yohsuke Murase2 & Seung Ki Baek1*

Reputation is a powerful mechanism to enforce cooperation among unrelated individuals through 
indirect reciprocity, but it suffers from disagreement originating from private assessment, noise, 
and incomplete information. In this work, we investigate stability of cooperation in the donation 
game by regarding each player’s reputation and behaviour as continuous variables. Through 
perturbative calculation, we derive a condition that a social norm should satisfy to give penalties to 
its close variants, provided that everyone initially cooperates with a good reputation, and this result 
is supported by numerical simulation. A crucial factor of the condition is whether a well-reputed 
player’s donation to an ill-reputed co-player is appreciated by other members of the society, and 
the condition can be reduced to a threshold for the benefit-cost ratio of cooperation which depends 
on the reputational sensitivity to a donor’s behaviour as well as on the behavioural sensitivity to a 
recipient’s reputation. Our continuum formulation suggests how indirect reciprocity can work beyond 
the dichotomy between good and bad even in the presence of inhomogeneity, noise, and incomplete 
information.

Reputation was an absolutely essential asset in trade of the illiterate in the premodern era1, and it still plays a 
crucial role in markets and communities, making reputation management a central part of marketing and public 
relations. Also in a variety of social contexts starting from early childhood, we evaluate others based on third-
party interactions2 and adjust our own behaviour to earn good reputations from others3. In this regard, although 
some studies suggest the existence of social evaluation in species other than humans4, Homo sapiens seems to 
have unique capability to use information of other social members through rumour and gossip.

Evolutionary biologists argue that the ability of social evaluation helps us extend the range of cooperation 
beyond kinship by encouraging cooperators and punishing defectors in a social dilemma5–11. A classical example 
of a social dilemma is the donation game, in which a player’s cooperation benefits his or her co-player by an 
amount of b at the cost of c, where 0 < c < b . The following payoff matrix defines the game:

where we abbreviate cooperation and defection as C and D, respectively. As is clearly seen from this payoff matrix, 
choosing D is the rational choice for each player whereas mutual cooperation is better for both, hence a dilemma. 
The players can escape from mutual defection by the action of reciprocity if the game is repeated12–19, but the 
price is that they have to remember the past and repeat interaction with sufficiently high probability, which is 
sometimes unfeasible. The basic idea of indirect reciprocity is that even a single encounter between two persons 
can be enough if that experience is reliably transferred in the form of reputation to those who will interact with 
these players in future. In other words, the problem is how to store, transmit, and retrieve information on each 
others’s past behaviour in a distributed manner9,20. Experiments show that the notion of indirect reciprocity 
provides a useful explanation for cooperative human behaviour21,22.

For this mechanism to work, we need two rules as a social norm: One is an assessment rule to assign reputa-
tion to a player based on his or her action to another player. The other is a behavioural rule to prescribe an action 
between C and D, when players’ reputations are given. An early idea was a norm called Image Scoring, which 
judges the donor’s C and D as good and bad, respectively6. According to this norm, cooperation can thrive when
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where q means the probability of knowing someone’s reputation23. On the one hand, this condition seems natural 
because it parallels Hamilton’s rule for kin selection, and the only difference is that q has replaced genetic related-
ness. On the other hand, if one asks what is an essential prerequisite for a norm to promote cooperation, it is not 
answered by Eq. (2), and we need a broader perspective on the structure of social norms.

According to Kandori’s formalism24, Image Scoring is an example of ‘first-order’ assessment rules because its 
judgment depends only on the donor’s action. A ‘second-order’ assessment rule takes the recipient’s reputation 
into account, and a ‘third-order’ assessment rule additionally refers to the donor’s reputation. The number of 
possible third-order rules thus amounts to 223 = 256 . On the other hand, the number of actions rules is 222 = 16 
because a behavioural rule prescribes an action depending on the reputations of the donor and recipient. Among 
the 223+22 = 4096 combinations, we have the leading eight25,26, the eight pairs of an assessment rule α and a behav-
ioural rule β that make cooperative equilibrium evolutionarily stable against every mutant with β ′ �= β (Table 1).

The situation becomes complicated when reputations are not globally shared in the population: Misjudgement 
does occur in the presence of error, and some players may even have their own private rules of assessment31–34. 
Then, strict social norms such as ‘Judging’ and ‘Stern Judging’ completely fail to tell if other players are good or 
bad, although they successfully induce cooperation when reputation is always public information35,36. Communi-
cation rounds can be introduced to resolve disagreements10, or one may need empathy or prudence in judgment 
to alleviate the problem37,38, but these remedies imply the intrinsic instability of the reputation mechanism in 
its pure sense. We also point out that most of the existing models are based on an assumption that the dynamic 
variables are binary, although reputation is not really a simple dichotomy between good and bad, and some 
actions cannot be classified as either cooperation or defection39,40.

In this work, we thus wish to investigate indirect reciprocity by taking reputations and actions as continuous 
variables. By doing so, we can naturally deal with the continuous dynamics between the existing norm and its 
close variants by means of analytic tools. We also expect that this formulation can be used to address the problems 
of error and incompleteness: The idea is that perception error will effectively replace a binary reputation by a 
probabilistic mixture between good and bad, just as a binary action can be replaced by a probabilistic mixture 
of cooperation and defection in the presence of implementation error. Although the number of possible social 
norms expands to infinity, we will restrict ourselves to local-stability analysis by assuming that mutants appear 
from a small neighbourhood of the existing social norm.

Analysis
Let us imagine a large population and denote the number of players as N. The basic setting is that a random pair 
of players are picked up to play the donation game [Eq. (1)]. In our model, the player chosen as a donor decides 
the degree of cooperation to the co-player between zero and one, which mean full defection and full coopera-
tion, respectively, based on their reputations. Let mij denote player j’s reputation from the viewpoint of player 
i. The player i also has a behavioural rule βi(mii ,mij) , which determines how much he or she will do as a donor 
to j. Note that all of mij , αi , and βi for any i and j take real values inside the unit interval. Player k is observing 
the interaction between i and j, and it has its own assessment rule αk(mki ,βi ,mkj) . With observation probability 
q > 0 , the reputation that k assigns to i will be updated on average as follows:

where the superscripts have been used as time indices. Equation (3) is to be analysed in this section. Before 
proceeding, let us note two points: First, as a deterministic equation, Eq. (3) does not include error explicitly. If 
the probability of error is low, Eq. (3) will nevertheless describe the dynamics for most of the time, and the main 
effect of error will be to perturb the output of α or β by a small amount at a point in time, say, t = 0 . Second, from 
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Table 1.   Leading eight. Cooperation and defection are denoted as C and D, respectively, and a player’s 
reputation is either good (1) or bad (0). By αuXv , we mean the reputation assigned to a player who did 
X ∈ {C,D} with reputation u to another player with reputation v. The behavioural rule βuv prescribes what a 
player should do between C and D when he or she has reputation u and the co-player has reputation v. We note 
that L1 has been known as Contrite Tit-for-Tat in the context of direct reciprocity27–30.

Rule α1C1 α1D1 α1C0 α1D0 α0C1 α0D1 α0C0 α0D0 β11 β10 β01 β00

L1 1 0 1 1 1 0 1 0 C D C C

L2 (Consistent Standing) 1 0 0 1 1 0 1 0 C D C C

L3 (Simple Standing) 1 0 1 1 1 0 1 1 C D C D

L4 1 0 1 1 1 0 0 1 C D C D

L5 1 0 0 1 1 0 1 1 C D C D

L6 (Stern Judging) 1 0 0 1 1 0 0 1 C D C D

L7 (Staying) 1 0 1 1 1 0 0 0 C D C D

L8 (Judging) 1 0 0 1 1 0 0 0 C D C D
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a mathematical point of view, it is preferable to treat both diagonal and off-diagonal elements on an equal footing 
as in Eq. (3), which implies that one has to observe even the self-reputation mii probabilistically. If that sounds 
unrealistic, we may alternatively assume that donors and recipients update their self-reputations with probability 
one. However, it is a reasonable guess that the difference between these two settings becomes marginal when N 
is large enough, and this guess is indeed verified by numerical calculation (not shown).

Throughout this work, α and β are assumed to be C 2-differentiable. In addition, we will focus on the cases 
where the system has a fixed point characterized by 

 because otherwise the norm would not sustain cooperation among well-reputed players from the start. As con-
crete examples of α and β , let us extend the leading eight to deal with continuous variables by applying the trilin-
ear (bilinear) interpolation to α ( β ) in Table 1. If we consider L3 (Simple Standing), for instance, it is described by 

 
If we define Aξ ≡ ∂α/∂ξ |(1,1,1) and B� ≡ ∂β/∂�|(1,1) with ξ ∈ {x, y, z} and � ∈ {x, y} , all the leading eight have 

Ay = By = 1 , together with Ax = Bx = 0 , and these are related with the basic properties of the leading eight to 
be nice, retaliatory, apologetic, and forgiving26.

Below, we will examine two aspects of stability: The first is recovery of full cooperation from disagreement in 
a homogeneous population where everyone uses the same α and β36. Starting from mij = 1 for every i and j, the 
dynamics of Eq. (3) will be investigated within the framework of linear-stability analysis. The second aspect is the 
stability against mutant norms, for which we have to check the long-term payoff difference between the resident 
and mutant norms in a stationary state. We again start this analysis from a nearly homogeneous population in 
which only one individual considers using a slightly different norm. Although private assignment of reputation 
is allowed, the point is that it will remain unrealised if no one has a reason to deviate from the prevailing norm, 
considering that such deviation will only decrease his or her own payoff. In this sense, the homogeneity serves 
as a self-consistent assumption in the second part of the stability analysis.

Recovery from disagreement.  To understand the time evolution of disagreement in a homogeneous 
population with common α and β , let us rewrite Eq. (3):

where αk = α and and βi = β in this homogeneous population. Initially, everyone starts with a good reputation, 
which can be perturbed by error. To see whether the magnitude of the perturbation grows with time, we set 
mt

ki ≡ 1− εtki and expand the above equation to the first order of ε as follows:

or, equivalently,

which leads to
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if time is regarded as a continuous variable. This is a linear-algebraic system with an N2 × N2 matrix. In principle, 
we can find the stability at the origin as well as the speed of convergence toward it by calculating the eigenvalues. 
By attempting this calculation from N = 2 to 5 with a symbolic-algebra system41, we see the following pattern 
in the eigenvalue structure:

where each superscript on the left-hand side means multiplicity of the corresponding eigenvalue. Based on this 
observation, we conjecture that this pattern is valid for general N. A sufficient condition for recovery to take 
place in this first-order calculation is that the largest eigenvalue is negative. The largest eigenvalue is the last one, 
�

(1)
4  , because all the derivatives are non-negative. In other words, the first-order perturbation analysis gives a 

sufficient condition for local recovery as

Suppression of mutants.  To analyse the effect of a mutant norm, we will look at the long-time behaviour 
in Eq. (3). That is, for given sets of rules {αi} and {βi} , we assume that the image matrix {mij} will converge to a 
stationary state as t → ∞ , satisfying

Note that q only affects the speed of convergence to stationarity: It is an irrelevant parameter as far as we work 
with a stationary state, which is in contrast with Eq. (2), where q appears as an essential condition for indirect 
reciprocity. In the donation game with benefit b and cost c [Eq. (1)], player j’s expected payoff can be computed as

For the sake of simplicity, let us assume that every person with index 1 to N − 1 has the same rules and equal 
reputation, so that player i = 1 is representative for all of them in the resident population. Now, the situation is 
effectively reduced to a two-body problem between players 0 and 1. By assumption, the system initially starts from 
a fully cooperative state where everyone has good reputation, i.e., m11 = β(1, 1) = α(1, 1, 1) = 1 . The rules used 
by the resident population will be denoted by α ≡ α1 and β ≡ β1 without the subscripts. Now, the focal player 0 
attempts a slightly different norm, defined by α0(x, y, z) = α(x, y, z)− δ(x, y, z) and β0(x, y) = β(x, y)− η(x, y) 
with |δ| ≪ 1 and |η| ≪ 1 . Let us assume that the introduction of δ and η causes small changes in the image matrix: 
Only the elements related to the focal player will be affected because the residents can still give m11 = 1 to each 
other when the mutant occupies a negligible fraction of the population, i.e., N ≫ 1 . Therefore, if mutation leads 
to m00 = 1− ε00 , m01 = 1− ε01 , and m10 = 1− ε10 with εij ≪ 1 , by expanding Eq. (18) to the linear order of 
perturbation (see Methods), we obtain

where δ1 ≡ δ(1, 1, 1) ≥ 0 and η1 ≡ η(1, 1) ≥ 0 , provided that

We can now calculate the focal player 0’s payoff as follows:

(13)�
(N2−2N+1)
1 =q

(

−1+ Ax −
1

N − 1
Az

)

(14)�
(N−1)
2 =q(−1+ Ax + Az)

(15)�
(N−1)
3 =q

(

−1+ Ax −
1

N − 1
Az + AyBx −

1

N − 1
AyBy

)

(16)�
(1)
4 =q(−1+ Ax + Az + AyBx + AyBy),

(17)Q ≡ −1+ Ax + Az + Ay(Bx + By) < 0.

(18)mki =
1

N − 1

∑

j �=i

αk
[

mki ,βi(mii ,mij),mkj

]

.

(19)πj =
1

N − 1



b
�

i �=j

βi(mii ,mij)− c
�

i �=j

βj(mjj ,mji)



.

(20)ε00 =
(1− Ax + AyBy)δ1 + (1− Ax − Az)Ayη1

(1− Ax − Az)(1− Ax − AyBx)

(21)ε01 =
δ1

1− Ax − Az

(22)ε10 =
(Bx + By)δ1 + (1− Ax − Az)η1

(1− Ax − Az)(1− Ax − AyBx)
Ay ,

(23)Ax + Az <1

(24)Ax + AyBx <1.



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:14225  | https://doi.org/10.1038/s41598-021-93598-7

www.nature.com/scientificreports/

If we plug Eqs. (20), (21), and (22) here, the payoff change �π0 ≡ π0 − (b− c) is given as

and we require this quantity to be negative for any small positive δ1 and η1 . Here, it is worth stressing that the signs 
of δ1 and η1 are determined because we start from a fully cooperative state with mij = 1 : For other states where δ 
and η can take either sign, the first-order terms should vanish so that the second-order terms can determine the 
sign of �π0 . In this respect, the payoff analysis is greatly simplified by choosing the specific initial state. Because 
of Eqs. (23) and (24), the negativity of Eq. (28) is reduced to the following inequality:

which, together with Eqs. (23) and (24), characterizes a condition for a social norm to stabilize cooperation 
against local mutants, as an alternative to Eq. (2). This result is intuitively plausible because cooperation will be 
unstable if one does not lose reputation by decreasing the degree of cooperation (i.e., Ay ≈ 0 ) or if no punish-
ment is imposed on an ill-reputed player (i.e., By ≈ 0).

Two remarks are in order: First, whether mutation occurs to a single individual or to a fraction of the popu-
lation does not alter the final result in this first-order calculation. Suppose that the population is divided into 
two groups with fractions p and 1− p , respectively. One group has α and β , and the other group has α + δ and 
β + η . Then, the payoff difference between two players, each from a different group, is still the same as Eq. (28) 
(see Methods). Therefore, if an advantageous mutation occurs with p ≪ 1 , the mutants are always better off 
than the resident until they take over the whole population, i.e., p → 1 . In this sense, our condition determines 
not only the initial invasion but also the fixation of a mutant norm, as long as it is a close variant of the resident 
one. Second, one could ask what happens if a mutant differs only in the slopes while keeping δ1 = η1 = 0 . 
Equation (28) does not answer this question because it is based on an assumption that the ∂δ/∂ξ |(1,1,1)εij and 
∂η/∂�|(1,1)εij , where ξ ∈ {x, y, z} and � ∈ {x, y} , are all negligibly small in the first-order calculation. However, 
even if the derivatives are taken into consideration, we find that δ1 or η1 must still be positive to make a finite 
payoff change. In other words, the basic form of Eq. (28) is still useful, although the coefficients include correc-
tion terms. The performance of such a ‘slope mutant’ will be checked numerically at the end of the next section.

Results
In this section, we will numerically check the continuous-reputation system in the presence of inhomogeneity, 
noise, and incomplete information. More specifically, the simulation code should allow each player i to adopt a 
different set of αi and βi to simulate an inhomogeneous population. The outputs of αi and βi can be affected by 
random-number generation to simulate a noisy environment where misperception and misimplementation occur, 
and every interaction between a pair of players will update only some part of the reputation system, parametrized 
by the observation probability q, because information is incomplete.

Our numerical simulation code is based on a publicly available one36 but has been modified to handle con-
tinuous variables. To simulate the dynamics of a society of N players, we work with an N × N  image matrix 
{mij} whose elements are all set to be ones at the beginning. Every player starts with zero payoff, i.e., πi = 0 
initially. In each round, we randomly pick up two players, say, i and j, so that i is the donor and j is the recipi-
ent of the donation game [Eq. (1)], which has b = 2 and c = 1 unless otherwise noted. Each other member of 
the population, say, k, independently observes the interaction with probability q and updates mki according to 
his or her own assessment rule αk . Although the above analyses are generally applicable to any norms defined 
by α and β as long as Eq. (4) is true, we would like to focus on Simple Standing as a representative example of 
successful norms. Misperception may occur with probability e, whereby mki becomes a random number drawn 
from the unit interval. Implementation error is also simulated in a similar way by setting the output of β to a 
random number between zero (defection) and one (cooperation) with probability γ . This process is repeated for 
M rounds, during which every player’s payoff is accumulated. Equation (18) suggests that q will only affect the 
convergence rate toward a stationary state. For this reason, we will fix this parameter at q = 0.4 throughout the 
simulation unless otherwise mentioned. Note also that we have deliberately made this parameter low enough 
to violate the inequality in Eq. (2).

To see the effect of Q on recovery [Eq. (17)], we have tested three norms one by one in a homogene-
ous population with e = γ = 0 (Fig. 1). All these norms have α(1, 1, 1) = 1 and β(1, 1) = 1 in common but 
their local slopes are different to make Q positive, zero, or negative. The first norm under consideration has 
(Ax ,Ay ,Az) = (0.2, 0.9, 0.1) and (Bx ,By) = (0.2, 0.8) , which together make Q > 0 . If some members of the 
population initially have slightly imperfect reputations, they fail to recover under such a norm. If Q < 0 , on the 
other hand, the recovery process indeed takes place with a finite time scale. Although Simple Standing violates 
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Eq. (17) by having Q = 0 , our simulation shows that it gets reputation recovered with the aid of higher-order 
terms, and it is a slow process with a diverging time scale. Among the leading eight, L1, L3 (Simple Standing), 
L4, and L7 (Staying) fall into this category of Q = 0 , whereas the other four, i.e., L2 (Consistent Standing), L5, 
L6 (Stern Judging), and L8 (Judging), have positive Q. The difference between these two groups is whether 
Az = α1C1 − α1C0 = 1− α1C0 is zero or one: If a well-reputed player has to risk his or her own reputation in 
helping an ill-reputed co-player, i.e., α1C0 = 0 , it means Az = 1 and Q > 0 , so we can conclude that the initial 
state of mki ≈ 1 will not be recovered. According to an earlier study on the leading eight36, the latter four with 
Q > 0 have long recovery time from a single disagreement in reputation. Although it is not derived from a con-
tinuum formulation, the result is qualitatively consistent with ours.

As for the effect of mutation in assessment rules, let us consider the following scenario: One half of the popu-
lation have adopted Simple Standing [Eq. (5)], whereas the other half are “mutants” using a different assessment 
rule αSS − δ with

where δ1 is a small number, say, δ1 = 0.02 in numerical calculation. Such a half-and-half configuration is being 
used because the payoff difference [Eq. (28)] is unaffected by the fraction of mutants, p (see Methods). Figure 2a 
shows that the level of cooperation is still high if e ≪ 1 , and the cooperation rate of Simple Standing in the con-
tinuous form converges to 100% in a monomorphic population (not shown). Furthermore, we see that mutants 
are worse off than the players of Simple Standing, i.e., π0 < π1 , as expected.

From a theoretical viewpoint, an important question is how quickly the mutants’ payoff difference 
�π0 ≡ π0 − π1 becomes negative: Although we have argued that the inequality will be true for Simple Stand-
ing, the calculation is based on several assumptions. In particular, one could say that Eq. (3) corresponds to 
M ∝ N2 because it seems to assume that everyone meets every other player with a weighting factor of 1/(N − 1) . 
If M ∝ N2 , however, it would pose a serious obstacle to applying such a norm to the society where the number of 
interactions will grow linearly with N. Fortunately, the inset of Fig. 2a shows that M ∝ N indeed suffices to make 
�π0 negative. One could also point out that the payoff difference should be �π0 = −δ1 according to Eq. (28), 
whereas the result in Fig. 2a has smaller magnitude. A part of the reason is that Eq. (28) does not take percep-
tion error into account, so the numerical value recovers the predicted order of magnitude as e → 0 . In addition, 
Eq. (28) is based on a first-order approximation, and a higher-order calculation reproduces the observed value 
with greater precision (see Methods).

An important prediction of our analysis is the threshold of b/c to make a local mutant worse off than the 
resident population [Eq. (29)]. In Fig. 2b, we directly check Eq. (29) by measuring payoffs in equilibrium in a 
population of size N = 50 . A variant of Simple Standing is chosen as the resident norm, which occupies p = 0.5 
of the population with α(1, 1, 1) = β(1, 1) = 1 and Ax = Az = Bx = 0 . The only difference from Simple Standing 
is that Ay = By = 0.9 , and the reason of this variation is that the first-order perturbation for the leading eight 
develops spurious singularity when p is finite (see Methods). When perception is free from error, i.e., e = 0 , 
the results do not depend on the observation probability q, as expected from stationarity [Eq. (18)], and the 
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Q>0
Q=0 (Simple Standing)

Q<0

Figure 1.   Recovery from disagreement when M rounds have elapsed in a population of size N = 50 
with common α and β . Initially, we randomly pick up 20% of the image-matrix elements and change 
them to 0.9, whereas the rest of them remain as 1’s, and the simulation has been repeated over 103 
independent samples without error, i.e., e = γ = 0 . In this log-log plot, the vertical axis shows the 
average difference from the state of perfect reputation, represented by the average of εki ≡ 1−mki . We 
have tested three norms, which all have α(1, 1, 1) = 1 and β(1, 1) = 1 but differ in their local slopes 
there: The first norm has (Ax ,Ay ,Az) = (0.2, 0.9, 0.1) and (Bx ,By) = (0.2, 0.8) , which together yield 
Q ≡ −1+ Ax + Az + Ay(Bx + By) > 0 [Eq. (17)]. The next one is Simple Standing with (Ax ,Ay ,Az) = (1, 0, 1) 
and (Bx ,By) = (0, 1) , which has Q = 0 . The last one for Q < 0 is a variant of Simple Standing with 
(Ax ,Ay ,Az) = (0, 0.9, 0) and (Bx ,By) = (0, 0.9).
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threshold value is consistent with the first- and second-order calculations [the arrows in Fig. 2b]. When e > 0 , on 
the other hand, the threshold is pushed upward, implying that cooperation becomes harder to stabilize because 
of the perception error. In addition, we now see that incomplete information with q < 1 can shift the threshold 
further with the aid of positive e. We have also changed the value of γ , but it does not not change the average 
behaviour in the above results. Overall, the point of Fig. 2b is that our analysis does capture the correct picture.

Finally, we can numerically check the effect of a ‘slope mutant’, which has α(1, 1, 1) = 1 as a fixed point and 
the same behavioural rule as Simple Standing but differs in the slopes Ax , Ay and Az . To be more specific, let us 
assume that a mutant norm occupies 10% of the population whereas the rest of them are using Simple Stand-
ing. The values of α(x, y, z) at the vertices of the three-dimensional unit hypercube are randomly drawn from 
the unit interval, except for α(1, 1, 1) = 1 . Then, the trilinear interpolation is used to construct the continuous 
assessment rule. According to our simulation (Fig. 3), the performance of the mutant norm is strongly cor-
related with its Q-value [Eq. (17)]. Recall that the expression of Q has been derived in the context of recovery 
from small disagreement in a homogeneous population. Figure 3 nevertheless suggests that it can also serve as 

Figure 2.   Stationary states of a population with N = 50 players, reached from an initial condition with mij = 1 
for every i and j. In each case, the mutant norm differs from the resident one by δ1 = 0.02 and occupies one 
half of the population ( p = 0.5 ). The game is defined by Eq. (1) with b = 2 and c = 1 . (a) Average payoffs 
over 5×104 samples when the resident norm is Simple Standing. Everyone can observe each interaction with 
probability q = 0.4 , and perception error and implementation error occur with probabilities e = 0.1 and 
γ = 0.1 , respectively. Inset: Convergence of payoff difference �π0 ≡ π0 − π1 as M increases. If M ∝ gN with 
a sufficiently large constant g � O(10) , the mutants will obtain less payoffs than Simple Standing, making 
�π0 < 0 . This result has no significant dependence on N. (b) Payoff advantage of mutants with respect to the 
resident as a function of b/c, averaged over 5× 104 samples per each, when M = 104 . The resident norm, a 
variant of Simple Standing, has α(1, 1, 1) = β(1, 1) = 1 and Ax = Az = Bx = 0 but Ay = By = 0.9 as in Fig. 1. 
Implementation error occurs with probability γ = 0.1 , and the results are qualitatively the same for any small 
γ . The stars on the horizontal line indicate the predicted threshold values obtained from the first-order and 
second-order calculations, respectively. In both of these panels, the shaded areas represent error bars.

-0.1

 0

 0.1

-1  0  1  2

∆π
0

Q

Figure 3.   Payoff difference between the resident population using Simple Standing and its ‘slope mutant’, 
which has the same β and α(1, 1, 1) = 1 but different slopes Ax and Ay and Az . Each point denotes a 
randomly generated mutant through the trilinear interpolation among α(1, 1, 1) = 1 and seven random 
values α(0, 0, 0),α(0, 0, 1), . . . ,α(1, 1, 0) within the unit interval. The mutant norm occupies 10% of the whole 
population whose size is N = 100 . The horizontal axis shows the mutant’s Q-value [Eq. (17)], and the vertical 
axis means its payoff difference �π0 with respect to the resident norm after a sufficiently long time, e.g., 
M/N ∼ O(103) . As before, the game is defined with b = 2 and c = 1 , and the observation probability is q = 0.4 . 
Perception error and implementation error occur with probabilities e = 0.1 and γ = 0.1 , respectively.
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a useful indicator to tell if a minority of ‘slope mutants’ will be competitive with the resident norm, even when 
the difference between their assessment rules is not necessarily small.

Summary and discussion
In summary, we have studied indirect reciprocity with private, noisy, and incomplete information by extend-
ing the binary variables for reputation and behaviour to continuous ones. The extension to continuum is an 
idealization because it would impose an excessive cognitive burden to keep track of others’ reputations without 
discretization; nonetheless, this abstraction allows us to overcome the fact that the sharp dichotomy between 
good and bad is often found insufficient in reporting an assessment42–44. In particular, this formulation makes it 
possible to check the role of sensitivity to new information in judging others and adjusting our own behaviour. 
That is, according to Eq. (29), the benefit-cost ratio of cooperation should increase for stabilizing the cooperative 
initial state, if reputation is insensitive to observed behaviour (low Ay ) or if the level of cooperation is insensi-
tive to the recipient’s reputation (low By ). At the same time, in contrast to the well-known condition for indirect 
reciprocity akin to Hamilton’s rule [Eq. (2)], we have observed that incompleteness of information, controlled 
by q < 1 , mainly affects the convergence toward a stationary state without altering the overall conclusion. This 
approach sheds light on difference among the leading eight in their recovery speeds from a single disagreement. 
Our analysis has identified the key factor α1C0 in Table 1, i.e., how to assign reputation to a well-reputed donor 
who chooses C against an ill-reputed recipient: If this choice is regarded as good according to α1C0 = 1 , making 
the assessment function α(x, y, z) insensitive to z, the recovery can take place smoothly. As a result, we conclude 
that α should respond to the donor’s defection ( Ay > 0 ) but not necessarily to the players’ reputations (e.g., 
Ax = Az = 0 ). A recent study also argues that helping an ill-reputed player should be regarded as good to main-
tain stable cooperation45. Such understanding of indirect reciprocity in terms of sensitivity is important because, 
as is usual, information processing through reputation has a trade-off between robustness and sensitivity: One 
could underestimate new information and fail to adapt, or, one could overestimate it and fail to distinguish noise 
from the signal. In practice, the best way of assessment seems to be updating little by little upon arrival of new 
information46, and such a possibility is already incorporated in this continuum formulation.

It should be emphasized that our analysis has focused on local perturbation to the existing norm. Therefore, 
our inequalities cannot be interpreted as a condition for evolutionary stability against every possible mutant. 
Moreover, although �π0 is found independent of p in our analysis, one should keep in mind that it results from 
a first-order theory so that higher-order corrections generally show dependence on p. If a mutant is sufficiently 
different from the resident, then the first-order theory fails and the payoff difference may well depend on p. For 
instance, if we think of a population consisting of L1 and L8 (Table 1), we see that L1 is better off only when 
it comprises the majority of the population (not shown). Having said that, our local analysis can nevertheless 
provide a necessary condition which will hold for stronger notions of stability as well. We also believe that this 
locality assumption is usually plausible in reality, considering that a social norm is a complex construct that 
combines expectation and action in a mutually reinforcing manner and thus resists change but small ones47. 
An empirical analysis shows that even orthographic and lexical norms change so slowly that it takes centuries 
unless intervened by a formal institution48. Another restriction in our analytic approach is that the mutation is 
assumed to have positive δ1 so that the mutant is not fully content with the initial cooperative state. If two norms 
have δ1 = 0 in common and differ only by slopes at the initial state, the first-order perturbation does not give a 
definite answer as to their dynamics. Having positive δ1 can be interpreted from a myopic player’s point of view 
as follows: A selfish player in a cooperating population may feel tempted to devalue others’ cooperation and 
reduce his or her own cost of cooperation toward them. If our condition is met, however, such behaviour will 
eventually be punished by the social norm.

“Maturity of mind is the capacity to endure uncertainty,” says a maxim. Although one lesson of the life is that 
we have to accept the grey area between good and bad, reputation is still something that can be easily driven to 
extremes, and what is worse is that it often goes in a different direction for each observer. Despite the theoretical 
achievement of indirect reciprocity, its real difficulties are thus manifested in the problem of private assessment, 
noise, and incomplete information. Our finding suggests that we can get a better grip on indirect reciprocity 
by preparing reputational and behavioural scales with finer gradations, which may be thought of as a form of 
systematic deliberation to protect each other’s reputation from rash judgement.

Methods
Linear‑order corrections.  Equation (18) in the large-N limit is written as follows:

(31)m00 =
1

N − 1

∑

j �=0

α0[m00,β0(m00,m0j),m0j] = α0[m00,β0(m00,m01),m01]

(32)m01 =
1

N − 1

∑

j �=1

α0[m01,β1(m11,m1j),m0j] ≈ α0[m01,β1(m11,m11),m01]

(33)m10 =
1

N − 1

∑

j �=0

α1[m10,β0(m00,m0j),m1j] = α1[m10,β0(m00,m01),m11]



9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:14225  | https://doi.org/10.1038/s41598-021-93598-7

www.nature.com/scientificreports/

With m00 = 1− ε00 , m01 = 1− ε01 , and m10 = 1− ε10 , Eq. (32) becomes

where αξ ≡ ∂α/∂ξ |(1,1,1) and δ1 ≡ δ(1, 1, 1) . Thus, we have

Likewise,

where β� ≡ ∂β/∂�|(1,1) and η1 ≡ η(1, 1) . Using this expression, we obtain from Eq. (33) the following:

which means

To get a closed-form expression for this, we need ε00 in addition to ε01 [Eq. (37)]. Thus, from Eq. (31), we derive

which gives

where we have used Eq. (37). By substituting Eq. (48) into Eq. (43), we can write ε10 explicitly.

Finite fraction of mutants.  If a mutant norm occupies a finite fraction p, Eqs. (31) to (34) are generalized 
to

where p̄ ≡ 1− p . Through linearisation, the above equations are rewritten as

(34)m11 =
1

N − 1

∑

j �=1

α1[m11,β1(m11,m1j),m1j] ≈ α1[m11,β1(m11,m11),m11].

(35)1− ε01 =α0(1− ε01, 1, 1− ε01) = α(1− ε01, 1, 1− ε01)− δ(1− ε01, 1, 1− ε01)

(36)≈α(1, 1, 1)− Axε01 − Azε01 − δ(1, 1, 1) = 1− Axε01 − Azε01 − δ1,

(37)ε01 ≈ (1− Ax − Az)
−1δ1.

(38)β0(1− ε00, 1− ε01) =β(1− ε00, 1− ε01)− η(1− ε00, 1− ε01)

(39)≈1− Bxε00 − Byε01 − η1,

(40)1− ε10 =α
(

1− ε10, 1− Bxε00 − Byε01 − η1, 1
)

(41)≈1− Axε10 − Ay

(

Bxε00 + Byε01 + η1
)

,

(42)ε10 =
Ay

1− Ax
(Bxε00 + Byε01 + η1)

(43)=
Ay

1− Ax

[

Bxε00 + By(1− Ax − Az)
−1δ1 + η1

]

.

(44)1− ε00 ≈α[1− ε00,β0(1− ε00, 1− ε01), 1− ε01]− δ1

(45)≈α
(

1− ε00, 1− Bxε00 − Byε01 − η1, 1− ε01
)

− δ1

(46)≈1− Axε00 − Ay

(

Bxε00 + Byε01 + η1
)

− Azε01 − δ1,

(47)ε00 =
1

1− Ax − AyBx

[

(AyBy + Az)ε01 + Ayη1 + δ1
]

(48)=
1

1− Ax − AyBx

[

AyBy + Az

1− Ax − Az
δ1 + Ayη1 + δ1

]

,

(49)m00 =pα0[m00,β0(m00,m00),m00] + p̄α0[m00,β0(m00,m01),m01]

(50)m01 =pα0[m01,β1(m11,m10),m00] + p̄α0[m01,β1(m11,m11),m01]

(51)m10 =pα1[m10,β0(m00,m00),m10] + p̄α1[m10,β0(m00,m01),m11]

(52)m11 =pα1[m11,β1(m11,m10),m10] + p̄α1[m11,β1(m11,m11),m11],

(53)
1− ε00 ≈p[1− Axε00 − Ay(Bxε00 + Byε00 + η1)− Azε00 − δ1]

+ p̄[1− Axε00 − Ay(Bxε00 + Byε01 + η1)− Azε01 − δ1]



10

Vol:.(1234567890)

Scientific Reports |        (2021) 11:14225  | https://doi.org/10.1038/s41598-021-93598-7

www.nature.com/scientificreports/

After some algebra, we find

from which one can reproduce the previous results [Eqs. (20) to (22)] by taking the limit of p → 0 . The denomi-
nators seem to require another inequality in addition to Eqs. (23) and (24), that is,

which is equivalent to Eq. (17). Recall that the continuous versions of the leading eight always have Ay = By = 1 
and Ax = Bx = 0 in common, which means that they all violate this inequality. However, in practice, no singu-
larity arises for Simple Standing if higher-order corrections are included, and even the second-order calculation 
agrees moderately well with numerical results.

The payoff earned by a mutant is calculated as

whereas a resident player earns

If we plug Eqs. (57) to (60) here, the payoff difference �π0 = π0 − π1 becomes identical to Eq. (28) with no 
dependence on p.

Second‑order corrections.  We assume that δ , η , as well as their partial derivatives, and εij ’s are small 
parameters of the same order of magnitude. The second-order perturbation for β1 can thus be written as follows:

(54)
1− ε01 ≈p[1− Axε01 − Ay(Bxε11 + Byε10)− Azε00 − δ1]

+ p̄[1− Axε01 − Ay(Bxε11 + Byε11)− Azε01 − δ1]

(55)
1− ε10 ≈p[1− Axε10 − Ay(Bxε00 + Byε00 + η1)− Azε10]

+ p̄[1− Axε10 − Ay(Bxε00 + Byε01 + η1)− Azε11]

(56)
1− ε11 ≈p[1− Axε11 − Ay(Bxε11 + Byε10)− Azε10]

+ p̄[1− Axε11 − Ay(Bxε11 + Byε11)− Azε11].

(57)

ε00 =
δ1
{

Ax
2 + Ax(AyBx + Az − 2)− p̄Ay

2BxBy − p̄Ay
2By

2 + Az[Ay(pBx − p̄By)− 1] − AyBx + 1
}

(1− Ax − Az)(1− Ax − AyBx)(1− Ax − AyBx − AyBy − Az)

+
Ayη1(1− Ax − Az)(1− Ax − AyBx − p̄AyBy − p̄Az)

(1− Ax − Az)(1− Ax − AyBx)(1− Ax − AyBx − AyBy − Az)

(58)

ε01 =
Ayη1p(1− Ax − Az)(AyBy + Az)

(1− Ax − Az)(1− Ax − AyBx)(1− Ax − AyBx − AyBy − Az)

+
δ1
[

Ax
2 + Ax(2AyBx + AyBy + Az − 2)+ Ay

2Bx
2 + Ay

2BxByp+ Ay
2BxBy + Ay

2By
2p
]

(1− Ax − Az)(1− Ax − AyBx)(1− Ax − AyBx − AyBy − Az)

+
δ1
{

Az[Ay(pBx + Bx + pBy)− 1] − 2AyBx − AyBy + 1
}

(1− Ax − Az)(1− Ax − AyBx)(1− Ax − AyBx − AyBy − Az)

(59)ε10 =
Ay(1− Ax − AyBx − p̄AyBy − p̄Az)[η1(1− Ax − Az)+ (Bx + By)δ1]

(1− Ax − Az)(1− Ax − AyBx)(1− Ax − AyBx − AyBy − Az)

(60)ε11 =
Ayp(AyBy + Az)(η1(1− Ax − Az)+ (Bx + By)δ1)

(1− Ax − Az)(1− Ax − AyBx)(1− Ax − AyBx − AyBy − Az)
,

(61)Ax + Az + Ay(Bx + By) < 1,

(62)
π0 =b[pβ0(m00,m00)+ (1− p)β1(m11,m10)]

− c[pβ0(m00,m00)+ (1− p)β0(m00,m01)]

(63)
≈b[p(1− Bxε00 − Byε00 − η1)+ (1− p)(1− Bxε11 − Byε10)]

− c[p(1− Bxε00 − Byε00 − η1)+ (1− p)[1− Bxε00 − Byε01 − η1]],

(64)
π1 =b[pβ0(m00,m01)+ (1− p)β1(m11,m11)]

− c[pβ1(m11,m10)+ (1− p)β1(m11,m11)]

(65)
≈b[p(1− Bxε00 − Byε01 − η1)+ (1− p)(1− Bxε11 − Byε11)]

− c[p(1− Bxε11 − Byε10)+ (1− p)(1− Bxε11 − Byε11)].

(66)β1(m11,m1j) =β(1− ε11, 1− ε1j)
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Here, we write κ1 ≡ κ
(1)
1 + κ

(2)
1  , where κ(1)1 ≡ Bxε11 + Byε1j and κ(2)1 ≡ −

(

1
2
Bxxε

2
11 + Bxyε11ε1j +

1
2
Byyε

2
1j

)

 are 
first- and second-order corrections, respectively, and Bµν ≡ ∂2β/∂µ∂ν

∣

∣

(1,1)
 . Likewise,

where κ0 ≡ κ
(1)
0 + κ

(2)
0  with κ(1)0 ≡ Bxε00 + Byε0j + η1 and κ(2)0 ≡ −

(

1
2
Bxxε

2
00 + Bxyε00ε0j +

1
2
Byyε

2
0j

)

−(ηxε00 + ηyε0j).
The second-order perturbation for α1 is also straightforward:

 where Aµν ≡ ∂2α/∂µ∂ν
∣

∣

(1,1,1)
 , and similarly,

Data availability
The source code for this study is available at https://​github.​com/​yohm/​sim_​game_​conti​nuous_​reput​ation.
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