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Interpretation of microarray data in cancer
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Microarray studies aim at identifying homogeneous subtypes of cancer patients, searching for differentially expressed genes in
tumours with different characteristics, or predicting the prognosis of patients. Using breast cancer as an example, we discuss the
hypotheses underlying these studies, their power, and the validity and the clinical usefulness of the findings.
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Microarrays have been described as a technology that will
revolutionise medicine with the ultimate goal to develop effective
treatments or cures for every human disease by 2050 (Ioannidis,
2005a). It has also been suggested that they could allow the testing
of new drugs in clinical trials including only a small number of
patients (Liu and Karuturi, 2004).

The main objectives of microarray studies are (1) to identify
homogeneous subtypes of a disease on the basis of gene
expression, or (2) to find genes that are differentially expressed
in tumours with different characteristics or (3) to develop a rule on
the basis of gene expression allowing the prediction of patient
prognosis or of the response to a particular treatment.

Using pioneering work on breast cancer as an example, we shall
review some of the problems in interpreting the results of these
three types of study and discuss the validity, the possibility of
overinterpretation, and the clinical usefulness of the findings.

OBJECTIVES OF MICROARRAY STUDIES

Identification of homogeneous subtypes of cancer

On the basis of microarray data, breast cancers have been divided
into several subgroups using cluster analysis (Perou et al, 2000). A
commonly used hierarchical clustering method starts by defining
a distance between two breast tumours as a function of the
difference in gene expression. One then regroups the two closest
tumours and proceeds by regrouping tumours to obtain a cluster
tree, which can be split into branches by selecting a cutoff distance.
There are many algorithms available for clusterisation, and for a
given algorithm there are many ways to define a cutoff distance.
Furthermore, even in the case of random noise, the technique
produces a cluster tree (Miller et al, 2002). It is thus very difficult
to know if what is observed is a characteristic of the sample
considered or would be reproducible in another similar collection
of tumours. Interpretation of such studies is an open-field and
experts agree that clusterisation is overused in the microarray field
(Allison et al, 2006).

The clustering of breast cancer tumours has identified the three
following main groups: oestrogen-receptor positive tumours
(luminal), oestrogen-receptor negative and Her2-positive tumours,
and oestrogen-receptor negative and Her2-negative tumours. It
has been proposed to subdivide these main groups into more
subtypes. The main groups happen to correspond to a well-known
clinical classification, but there is complete circularity in the
argument: one clusters tumours on the basis of gene expressions
and then ‘validates’ the clusterisation by superimposing known
classification. Some have considered that the clinical confirmation
of the main groups was sufficient to accept the hypothesis that
further subdivision will also lead to clinically meaningful
classifications. The interpretation of what is clinically meaningful
remains to be specified. An approach that exploits those clinical
characteristics from the beginning will be more efficient if one is
trying to identify groups of patients with homogeneous prognosis
or groups of patients who will benefit from a given treatment.

Finding genes that are differentially expressed in tumours
with different characteristics

The principle is to find the genes that are most differentially
expressed between two (or more) classes of tumours with different
characteristics: for instance, between tumours from 34 breast
cancer patients who developed a distant metastasis within 5 years
after surgery and tumours from 44 patients who did not (van’t
Veer et al, 2002). A statistic measuring the difference in gene
expression between the two types of tumours is selected. Genes are
then ranked according to this statistic, starting with the most
differentially expressed gene. A cutoff is selected leading to a list of
genes most differentially expressed. Van’t Veer selected the 70
genes with the highest correlation with a distant metastasis status
at 5 years.

Many false positive genes When one applies a statistical test for
each gene, the number of tests performed is equal to the number of
genes. If 10 000 genes are studied and none are really associated
with the characteristics under study, then, taking the usual 5%
limit for a significant P-value, one expects 5% of the genes, that is,
500 genes to appear as significantly associated with the character-
istics, all being false positives. One solution to reduce the risk of
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false positives is to select more stringent rules to define statistical
significance. For instance, Benjamini and Hochberg (1995) suggest
to rank the genes according to the P-values, starting with the most
significant, and to compare the ith P-value pi to 5%� i/n, where i
is the rank in the list and n is the total number of genes. Under
some hypotheses, this limits to 5% on average the proportion of
false positives among the genes declared significant, that is, the
false discovery rate (FDR) is 5%. The FDR in a microarray study
comparing two groups depends on (1) the proportion of truly
differentially expressed genes, (2) the distribution of the true
differences, (3) the variability of the gene expression and (4) the
sample size.

Sample size The sample size is the only parameter of the design
of a study that is under the experimenter’s control. Pawitan et al
(2005) studied the theoretical relation between the FDR and the
sample size in a realistic situation with 200 genes truly
differentially expressed between two groups (twofold change in
expression) among 20 000 genes. They selected the 200 genes most
differentially expressed between the two groups. With five patients
per group, they obtained an FDR of 91%, which means that 182 of
the 200 genes selected were false positives. If one wants to reduce
the proportion of false positive to the usual 5% level, one needs 56
patients per group. When the number of truly differentially
expressed genes is smaller or when the fold changes are smaller, a
larger sample size is needed.

Instability of gene lists We reanalysed the data from the study by
van’t Veer et al (2002) by drawing repeatedly at random a sample
of 78 patients out of the total population of 97 patients (Michiels
et al, 2005). For each sample, we calculated a ‘gene signature’
defined as the 50 genes most correlated with the prognosis (Box 1).
We repeated this procedure 500 times and counted how many
times a gene was part of those 500 signatures. Among the 70 genes
from the published signature, 14 were included in more than half
of the 500 replications, 10 genes not in the published signature
were also in more than half of the replications. Furthermore, 564
different genes were included in at least one signature. Thus, the
molecular signature is not unique and strongly depends on the
selection of patients. We observed that every set of patients led to
a different list of genes in the signature. The reason is that there
are many genes with more or less the same correlation with the
outcome; therefore, the list of the most correlated genes changes
drastically when a different patient set is used.

Validation by RT–PCR of list of genes identified by microar-
ray DNA microarrays are not the only available technique for
identifying genes with different levels of expression in tumours
with different characteristics. For instance, quantitative reverse
transcriptase PCR is considered as a reference method to measure
the mRNA expression of genes. Many authors including us
(Koscielny et al, 2005) have verified that the expression of genes
measured by microarrays do correlate with the expression of the
same genes measured by quantitative RT–PCR. However, this is
the least one can expect, otherwise one of the two measurement
techniques would be unreliable. Selecting from microarray data the
most differentially expressed genes between tumours with different
characteristics, and then re-measuring the expression of these
genes on the same tumours by RT–PCR does not validate the list
of genes as associated with the specific tumour characteristic. This
pseudovalidation has been described by Allison et al (2006) ‘as a
highly questionable practice that stems more from tradition than
careful thought’.

Development of a prediction rule based on gene expression

The aim of this type of study is to find an equation combining the
expression of a number of genes, to predict a clinical outcome. In
van’t Veer’s study, a prediction rule for prognosis based on the
expression of the 70 genes was determined from data on 78 node
negative breast cancer patients and then evaluated on another 19
patients.

Choice of prediction rule Many complicated prediction rules have
been suggested in the microarray literature. The result has been
adequately described by Allison et al (2006) as a statistical tower of
Babel. For the time being, we consider that the priority is to
understand the limitations of the methods in use, rather than to
develop complex statistical methods.

Some microarray analysis packages present systematically the
results of several classification methods for a single data set. It is
then very tempting to publish only the best looking result, leading
to a biased evaluation of the performance of the prediction rule
(Ioannidis, 2005b). In principle, there is no biological or
mathematical reason why one particular classification method
should be better than another for the prediction of the outcome of
cancer patients based on microarray data and there are many
possible solutions in the multidimensional gene expression space.

Box 1 A critical view of microarray vocabulary

Prognostic marker: a biological marker which is associated with a specific outcome, for instance a gene which is overexpressed (marker positive values) in patients who
will develop metastases and not in patients remaining free of metastasis (marker negative values). The measurement of the expression of this gene allows the
prediction of the risk of metastasis.

Predictive marker: expression used either to designate a prognostic marker, or to designate a marker predicting the usefulness of a given treatment. In that second case,
the benefit of the treatment is greater for the patients say with positive marker values, or even restricted to these patients. To establish this result, the changes in the
treatment effect with the marker values must be studied in the setting of a controlled clinical trial in order to compare the benefit of the treatment with positive or
negative marker values. If one wants to select a treatment for a group of patients on the basis of gene expression markers, these must have been demonstrated
predictive of the effect of this treatment.

Individualised treatment: is considered as the ultimate goal of microarray studies. The hypothesis that cancer treatment can be individualised cannot be tested. If one
assumes that patients vary truly randomly in their response to a drug, individual response cannot be predicted (Senn, 2004).

Signature: searching for ‘the signature’ predicting the risk of distant metastasis within 5 years after diagnosis implies that there is a unique molecular fingerprint for this
risk. This is an extremely strong assumption.

Validation: a study designed to confirm the results of a previous study, in order to reduce the play of chance and the potential for biases (Ransohoff, 2004, 2005).
Common mistakes with validation studies have been:

K To include part of the initial sample of patients in the validation study
K To include other type of patients in the validation study than in the initial sample
K To use another measurement technique (rt –PCR vs microarray)
K To change the prediction rule by adapting it to the new sample of patients through changing the list of genes, or the equation, or the cutoff

Interpretation of microarray data in cancer

S Michiels et al

1156

British Journal of Cancer (2007) 96(8), 1155 – 1158 & 2007 Cancer Research UK



To avoid that pitfall the classification method used should be
selected a priori, and defined in the protocol (McShane et al, 2005).
The description of a classification method should include the
method used to define the number of genes to be selected as well as
the type of equation used to combine their expressions.

Evaluation of the performance of the classification rule Having
defined a prediction rule, the next step is to evaluate its
performance; and this is most often evaluated by the proportion
of misclassified patients. If this evaluation is conducted on the very
data used to define the rule, one gets overoptimistic results, as the
rule is optimised for this particular sample called the training set.
The solution is to study an independent sample called the test set.

To avoid having to find an independent sample, a common
practice is to split the original sample. This can be done once or
several times using a resampling technique. The most popular
resampling technique is the leave-one-out cross-validation method
(Simon, 2003), but one could also leave-many-out and do this
repeatedly (Michiels et al, 2005).

Each time patients are left out, the entire procedure of selecting
the genes and constructing the prediction rule has to be repeated
from the beginning, otherwise the proportion of misclassified
patients would be underestimated (Simon, 2003). Consequently,
the prediction rule is different each time and therefore not the
same as the prediction rule developed on the entire sample whose
performance one actually wants to evaluate. The instability is even
worse in small sample settings (Braga-Neto and Dougherty, 2004).
Thus, splitting the original sample in many ways is a first step in
the right direction, but is not an independent validation, which is
the only way to evaluate the performances of the prediction rule
developed from the entire sample.

Replication in an independent population Providing evidence
that a prediction rule works satisfactorily on patients other than
those used to define the rule is an external validation (Altman and
Royston, 2000). Some basic scientific rules need to be applied:

� The inclusion criteria must be the same as in the study defining
the prediction. (After a first validation using the same criteria as
in the original study, it may be interesting to test the prediction
rule in a population defined with broader criteria, to study the
validity of the results in an extended population)

� The clinical end point must be the same.
� The prediction rule used to classify must be the rule defined in

the initial study and it should be described in the protocol of the
validation study. The description includes
* the list of genes selected,
* the method used to measure their expression,
* the equation and
* the cutoff used to classify a new patient in the high-vs low-

risk group

The 70-gene signature in van’t Veer et al (2002) study predicting
the metastasis status 5 years after the diagnosis in node-negative
breast cancers has been validated several times.

Van de Vijver et al (2002) studied a consecutive series of 295
patients, including both node-positive patients and node-negative
patients, whereas 61 out of the 151 node-negative patients were
already in the first study (Ransohoff, 2004). The clinical end point
was slightly different since in the first study all patients had been
followed-up for 5 years, which was not the case in van de Vijver’s
study. The prediction rule was almost the same but the cutoff
values were different for the 61 patients in the original study and
for the other patients. If one evaluates the performance of the
prediction rule using only the 180 patients who (a) were not in the
original study and (b) had a known metastasis status at 5 years,
one obtains a sensitivity, or probability that a patient who will
relapse is classified as high-risk, of 93% (95% CI: 81–99%) which

is good and a specificity, or probability that a patient who will not
relapse is classified as low risk, of 53% (44–61%) which is poor.

Recently Buyse et al (2006) confirmed these results on 307
node-negative breast cancer patients with a good sensitivity of 90%
(78– 95%) and a poor specificity of 42% (36–48%).

Another validation was conducted on 96 patients violating all
rules: measuring gene expression by RT–PCR instead of micro-
array, using 60 genes instead of 70, a different equation and a
different cutoff (Espinosa et al, 2005).

Paik et al (2004) developed a 21-gene prediction rule for the
prognosis of node-negative, oestrogen receptor-positive breast
cancer patients treated with the hormonal treatment tamoxifen.
A large training set was used that included patients from the
tamoxifen-only arm of the NSABP-20 trial comparing tamoxifen to
tamoxifen plus chemotherapy. The prognostic value of this rule
was confirmed on a population of patients from the tamoxifen arm
of another NSABP trial (B-14). Recently, Paik et al (2006)
attempted to show that this rule could also predict the benefit
from chemotherapy. They used data from the two arms of the
NSABP-20 trial, observed that the prediction rule was a better
predictor of recurrence-free survival in the tamoxifen-only arm as
compared to the tamoxifen plus chemotherapy arm, and
interpreted this result as a demonstration that the rule ‘predicts
the magnitude of chemotherapy benefit’. However, a more obvious
interpretation is that a prediction is optimal for the patients in the
training set used for its construction (Ioannidis, 2006).

Clinical use of the results At the present time, the prognosis of
node-negative breast cancer is known to depend on the age of the
patient, on the size of the tumour, its pathological grade and the
presence or absence of hormonal receptors in the tumour. It is
important to verify that the gene signature adds to these
prognostic factors (Simon, 2005). Many of the different published
gene signatures predicting distant-metastasis free survival in
breast cancer (van’t Veer et al, 2002; Paik et al, 2004) have been
found to be significantly correlated with tumour grade (Fan et al,
2006). One must therefore study whether these signatures add
prognostic information to the grade. It is not sufficient to perform
a multivariate regression analysis, for instance a Cox’s regression,
comparing the effects of the clinical prognostic factors and of the
signature (as in van de Vijver et al, 2002 or in Wang et al, 2005),
and to show that the gene signature is ‘more significant’ than the
clinical factors in this model. What is required is to compare the
predictive accuracy of the two multivariate models with and
without the gene signature. It has been shown on the 234 patients
from van de Vijver et al (2002) who were not in the first study that
the gene signature added a moderate but not significant
improvement in predictive accuracy when added to the prognostic
factors: age, nodal involvement, oestrogen receptor status and
tumour grade (Dunkler et al, 2007).

CONCLUSION

The search for molecular gene signatures is based on the
assumption that a clear distinction between tumours that will
relapse and those that will not is possible using gene expression.
The results of one of the first prognostic microarray studies in
breast cancer (van’t Veer et al, 2002) were considered as proof of
this concept. Indeed, some authors thought that gene expression
profiles would allow one to predict, with 90% accuracy, whether
the tumour will remain localised or whether the patient will
experience metastases and disease relapse (Bernards and Weinberg,
2002) and that the metastatic capacity of breast tumours is an inherent
feature of the primary tumour (van’t Veer and Weigelt, 2003).

Unfortunately, the actual performance of prediction rules using
gene expressions is not as good as initially published, and the lists
of genes are highly unstable (Michiels et al, 2005). So far, most
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prediction rules using gene expression have not provided a
substantially and significantly improved prognostic classification
when compared to conventional prognostic factors (Eden et al,
2004; Dunkler et al, 2007). These results could be interpreted as
disproving the initial assumption.

In conclusion, we appreciate the efforts of the above-cited
pioneering work in breast cancer. However the prognostic value of
the gene signatures identified seems to have been oversold, maybe
because of the enormous investments and because of the high
expectations in a new technology. The results are correct in so far

as the published combinations of genes do have some prognostic
value. However, many other gene combinations would be as good
and so far none have been shown to add much to the clinical
information that is routinely available. The example of breast
cancer illustrates a problem that is central to the interpretation of
microarray data. The hypothesis underlying each study should be
stated clearly and the primary objective of a study should aim at its
rejection. Studies with a solid experimental design and larger
sample sizes are required before gene expression profiling can be
used in the clinic to predict outcome.
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