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Abstract

This study evaluates the changes occurring in the X-ray energy of a linear accelerator

(LINAC) using a Daily QA3 detector system. This is accomplished by comparing the Daily

QA3 results against those obtained using a water phantom. The X-energy levels of a LINAC

were monitored over a duration of 1 month using the Daily QA3 system. Moreover, to

account for the uncertainty, the reproducibility of the Daily QA3 ionization-chamber results

was assessed by performing repeated measurements (12 per day). Subsequently, the

energy-monitoring results were compared with the energy-change results calculated using

the water-phantom percentage depth dose (PDD) ratio. As observed, the 6- and 10-MV

beams experienced average daily energy-level changes of (-0.30 ± 0.32)% and (0.05 ±
0.38)%, respectively, during repeated measurements. The corresponding energy changes

equaled (-0.30 ± 0.55)% and (-0.05 ± 0.48)%, respectively, when considering the measure-

ment uncertainty. The Daily QA3 measurements performed at 6 MV demonstrated a varia-

tion of (2.15 ± 0.81)% (i.e., up to 3%). Meanwhile, the corresponding measurements

performed using a water phantom demonstrated an increase in the PDD ratio from 0.577 to

0.580 (i.e., approximately 0.5%). At 10 MV, the energy variation in the Daily QA3 measure-

ments equaled (-0.41 ± 0.82)% (i.e., within 1.5%), whereas the corresponding water phan-

tom PDD ratio remained constant at 0.626. These results reveal that the Daily QA3 system

can be used to monitor small energy changes occurring within radiotherapy machines. This

demonstrates its potential for use as a secondary system for monitoring energy changes as

part of the daily quality-assurance workflow.

Introduction

Quality assurance (QA) is performed to that the machine used in clinical performs as expected.

The QA radiotherapy machines is performed to confirm that the characteristics of the

commissioned machines are identical to those of the tested prototype [1]. Periodic QA can be

performed on a daily, weekly, monthly, or annual basis, and the machine status can be updated

by comparing the measured and analyzed results against available guidelines. Guidelines for
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the specific acceptability criteria and tolerance levels used in the QA procedure have been sug-

gested by the TG-40 and TG-142 task groups [2, 3]. Several studies have been performed to

develop methods for the accurate and reliable evaluation of periodic measurements, and

numerous vendors provide the required hardware and software systems. The users (medical

physicists) develop and apply their own QA systems specific to their hospital and the systems

employed therein. Alternatively, they might consider using vendor-supplied systems. In gen-

eral, periodically deployed QA systems possess inherent measurement and setup uncertainties

that must be reflected in their analysis results. As noted above, the daily QA has the highest fre-

quency, and therefore, it can be used to evaluate radiotherapy machines prior to using them in

practice.

The daily QA procedure involves mechanical inspection and a safety-related evaluation of

the functional operational ability of the radiotherapy machine along with an evaluation of the

X-energy constancy from a dosimetry perspective [2]. Several systems are used to perform

daily QA in clinical radiotherapy [4–9]. These include the Daily QA3 system (Sun Nuclear

Corporation; Melbourne, USA), which can be used to measure the dose output, flatness, sym-

metry, energy and radiation output, and light-field size. Using the Daily QA3 system, the daily

QA results can be reviewed and assessed against the tolerance levels in the guidelines. Among

the items measured by Daily QA3, monthly QA is recommended by TG-40 and TG-142 rather

than daily QA for energy constancy (beam quality). Conventionally, energy constancy (i.e.,

beam quality) is evaluated by measuring the ratio of the percentage depth dose (PDD) at two

different depths in a water phantom [2, 3]. Although this approach reveals the occurrence of

significant changes in beam energy, its implementation for a multienergy machine is time-

consuming with a low sensitivity to changes in beam energy [10].

Several approaches [5, 10–12] for evaluating beam quality via monitoring of changes in the

beam flatness have been proposed as alternatives to the water-phantom-based method. Fur-

ther, these approaches have been demonstrated to be more sensitive compared to methods

that evaluate the beam quality at two depths [10, 11, 13]. Moreover, compared to conventional

methods, these approaches reduce the time required to monitor energy fluctuations in multie-

nergy machines. The Daily QA3 system uses the change in flatness as a measure of the beam

quality [14], and it can easily monitor energy fluctuations in multienergy machines as a part of

the daily QA workflow. However, the analysis results obtained using the Daily QA system

reflect the operating condition of the radiotherapy machine being analyzed, thereby influenc-

ing the operator’s decision regarding its usage. Thus, it is important for users to understand

the energy-measurement approach employed in the Daily QA3 system as well as its associated

uncertainty with respect to energy change. Further, users must be aware of its sensitivity com-

pared to that of conventional measurement methods.

In this study, the X-energy levels produced by a radiotherapy machine were monitored

using the Daily QA3 system over a duration of 1 month. The observed uncertainties in the

results were evaluated to assess the reproducibility of the Daily QA3 measurements. Subse-

quently, the Daily QA3 energy-monitoring results were compared with the energy (beam-

quality) changes observed using the water phantom. The main objective of this study is to mea-

sure the extent to which the Daily QA3 system is sensitive to energy fluctuations within X-

energy beams. The results obtained in this study accomplish this objective.

Methodology

Irradiation condition of Daily QA3 and monitoring of changes in X-energy

All the measurements were performed using an Elekta Infinity linear accelerator (LINAC)

(Elekta, Stockholm, Sweden) at two X-energy levels (6 and 10 MV). In Daily QA3, 13
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ionization chambers (ICs) can be inserted to monitor the output, flatness, symmetry, and energy

of radiotherapy machine beams. In this study, 12 diodes were used to measure and evaluate the

size of the irradiation field [14]. The results measured by Daily QA3 are transferred to the ATLAS

QA server and can be monitored via the network at any location. To perform daily QA using

Daily QA3, a field size of 20 cm × 20 cm was delivered at a source-to-surface distance of 100 cm,

resulting in the delivery of 100 MU. The PDD ratios (PDD20/PDD10) for X-energy and output

were then calibrated using a water phantom and the Daily QA3 baseline was redetermined based

on the water phantom results. The observed trend in the relative energy change measured by the

Daily QA3 system was monitored using the Atlas QA program (illustrated in Fig 1).

The Daily QA3 manual prescribes the following relationship to calculate the relative energy

change (DE) for a given flatness.

Flatness ð%Þ ¼ slope� DE þ intercept ð1Þ

In Eq (1), the slope is constant and has a vendor-provided value; when ΔE is zero, the inter-

cept corresponds to the flatness value [14]. The manual provides a further definition of the flat-

ness [14] expressed as

Flatness ð%Þ ¼
Average Corner IC signal

Center IC signal
� 100; ð2Þ

where the numerator and denominator of the fraction denote the average of the signals mea-

sured at the four curved ICs located at the device corners and the signal measured in the IC

located at the center of the Daily QA3 system, respectively. Both the signals are measured

daily. In this study, DE � dDE was defined in terms of the average and standard deviation of

the relative energy changes measured using Daily QA3 over the course of the monitoring

period (January 5–February 15, 2020). During this time, the X-energy of the radiotherapy

machine was measured 28 times for daily QA.

Calculation of X-energy changes via repeated measurements considering

Daily QA3 uncertainty

Fig 1 depicts the graphic user interface (GUI) of the Atlas QA program, which users can use to

monitor the energy changes recorded by the Daily QA3 system. More specifically, users can

directly monitor signals from each of the four curved ICs located at the device corners as well

as the parallel-plate IC located at the center of the device (illustrated in Fig 2).

To assess the uncertainty in the energy monitoring measurements obtained by Daily QA3,

in this study, we evaluated the reproducibility of the five IC signals used for measuring energy

Fig 1. LINAC results obtained using Daily QA3 system viewed on Atlas QA graphic user interface.

https://doi.org/10.1371/journal.pone.0246845.g001
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change through repeated measurements. To evaluate the reproducibility of the Daily QA3

measurements, the baseline was newly determined and measured 12 times per day. And it was

analyzed using a CV (coefficient of variation) to evaluate the reproducibility of the five ICs

inserted into the Daily QA3

To evaluate the reproducibility of repeated measurements of energy change, given the

uncertainties in the measurements produced by the five Daily QA3 ICs, we adapted Eq 2 to

define the average of the flatness variation (fð%Þ) in consideration of the error propagati for

each IC:

fð%Þ ¼
Average Corner IC signal ðcÞ
Center IC signal ðCcenterÞ

¼
x � dx

xcenter � dxcenter
� 100

¼
x

xcenter
�

x
xcenter

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dx
x

� �2

þ
dxcenter
xcenter

� �2
s

� 100;

ð3Þ

where Ccenter denotes the sum of the average (xcenter) and standard-deviation (δxcenter) values

of the signals obtained from the central IC via repeated measurements performed on each day.

The value of c can be obtained from the average (xi) and standard-deviation (δxi) values of

each set of repeated corner IC signals as follows.

Average Corner IC signal ðcÞ ¼
1

n
Pn

i¼1
xi � dxi ðn ¼ 4Þ

¼
1

4
ðx1 þ x2 þ x3 þ x4Þ �

1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2

1
þ dx2

2
þ dx2

3
þ dx2

4

p

¼ x � dx

ð4Þ

Using the value of fð%Þ determined via repeated measurements, DE can be evaluated as

DE � u� ¼
fð%Þ þ intercept

slope
; ð5Þ

Fig 2. Atlas QA GUI showing locations and raw signals produced by ICs in Daily QA3 system.

https://doi.org/10.1371/journal.pone.0246845.g002
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where DE ± u� denotes the average energy change, given the uncertainties within the Daily

QA3 IC measurements. In Eq (5), the slope is constant, and the intercept corresponds to the

flatness value when ΔE equals zero.

Fig 3 depicts the concept applied in this study. As already stated, in this study, energy

changes occurring in the radiotherapy machine were monitored for a month. The measure-

ment results were influenced by the following factors—(1) variations in the setup (uncertainty

set-up) of the Daily QA3 system during the monitoring period; (2) uncertainties within the

Daily QA3 system with regard to energy-change monitoring (uncertainty detector system); and

(3) changes in the energy levels produced by the radiotherapy machine (DEmachine). The effects

of the first and second factors were minimized by having the Daily QA3 system setup cross-

verified by qualified medical professionals (QMPs) throughout the monitoring duration. Fur-

ther, energy changes were repeatedly measured under identical irradiation conditions.

Analysis of beam quality using water phantom

In this study, before monitoring the X-energy changes using the Daily QA3 system, the PDD

ratio of the X-energy was calibrated using a water phantom having a field size of 10 cm × 10

cm and at an SSD of 100 cm. A farmer-type chamber (PTW; TN30013) was used to perform

the beam-quality measurements. The PDD ratio was repeatedly measured by two QMPs before

and after the Daily QA3 monitoring, and the results obtained were compared with the energy

changes recorded by the Daily QA3 system via the trend analysis performed over the monitor-

ing period.

Results

Monitoring energy changes using Daily QA3

Fig 4 depicts day-to-day variations in the measured X-energy values using Daily QA3. As

observed, the energy changes at 10 MV are within ±1.5% of the baseline (100%) with an

Fig 3. Overall concept for monitoring X-energy variation using Daily QA3 system.

https://doi.org/10.1371/journal.pone.0246845.g003
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average energy change (DE � dDE10 MV) of (-0.11 ± 0.62)%. In contrast, the energy change at 6

MV is within ±3% with a higher DE � dDE6 MV of (1.56 ± 1.16)%.

During the monitoring period, the observed energy changes at 10 MV followed a trend sim-

ilar to that of the changes observed at 6 MV up to the tenth measurement, beyond which the

energy change at 6 MV demonstrated a gradual increase. Dividing the 6 MV changes into two

groups yielded a DE � dDEbefore6MV value of (0.15 ± 0.74)% (n = 10) up to the tenth measure-

ment, i.e., a value similar to DE � dDE10 MV = (-0.11 ± 0.62)% (n = 29) over the entire period.

Subsequent to the tenth measurement, DE � dDEafter6MV equaled (2.30 ± 0.35)% (n = 19).

Fig 5 depicts the observed variations in relative energy against the baseline based on the

beam energy measured over a single day. The average energy change at 6 MV (DE � dDE6MV)

equaled (-0.30 ± 0.32)% (n = 12), whereas at 10 MV, ðDE � dDE10 MVÞ it equaled (0.05 ± 0.38)%

Fig 4. X-energy variation measured using Daily QA3 over the monitoring period ("cross point" indicates

transition of the 6-MV energy trend).

https://doi.org/10.1371/journal.pone.0246845.g004

Fig 5. Variation of X-energy with energy level measured using Daily QA3 over the course of one day.

https://doi.org/10.1371/journal.pone.0246845.g005

PLOS ONE Evaluation of beam constancy using Daily QA3

PLOS ONE | https://doi.org/10.1371/journal.pone.0246845 February 17, 2021 6 / 14

https://doi.org/10.1371/journal.pone.0246845.g004
https://doi.org/10.1371/journal.pone.0246845.g005
https://doi.org/10.1371/journal.pone.0246845


(n = 12). Repeated measurements of the energy changes occurring under identical conditions

revealed the 10 MV beam to be less sensitive to changes in energy compared to the 6-MV beam,

and the standard deviation (dDE) at both the energy levels remained within ±0.4%.

Fig 6(A) describes the correlation between the energy changes measured by the Daily QA3

system and the flatness (%) calculated from the IC signal using Eq (2). The relationship corre-

sponding to the 6-MV beam over the entire monitoring period is given by Y = -0.27 X + 106.4

(R2 = 1). To evaluate the reproducibility of the monitoring results, the baseline was repeatedly

adjusted, thereby modifying the above relationship to Y = -0.27 X + 105.9 (R2 = 1) (Fig 6(a-1)).

Fig 6(B) depicts the result obtained for the 10-MV beam, for which the initial relationship Y =

-0.27 X + 104.5 (R2 = 1) was obtained over the monitoring period. Through repeated measure-

ments, this was subsequently corrected to Y = -0.27 X + 105.08 (R2 = 0.99) (Fig 6(b-1)). In

both the cases, the adjustment of the baseline in the Daily QA3 system did not modify the

slope, and the intercept Y0 could be determined using five raw IC signals obtained at the

instant of baseline determination using Eq (1).

Energy-change monitoring with uncertainties in five Daily QA3 IC signals

To evaluate the reproducibility of the results obtained using the Daily QA3 ICs, changes in

each IC signal at both the energy levels (6 and 10 MV) were repeatedly monitored for a single

day. The ratio of each signal (Si) to the average signal (Saverage) was calculated to evaluate the

changes occurring in the individual IC signals over the measurement duration. For the 6 MV

beam, the observed IC signal strengths demonstrated the distribution of C3> C1 >

C4> Center with the largest change occurring in C3. Similarly, for the 10-MV beam, the IC

signal in C3 experienced the largest change. However, the IC signals in this case were observed

to be less sensitive compared to the case involving the 6 MV beam. Furthermore, all the signals

demonstrated an X-energy variation range of ±0.5% (illustrated in Fig 7).

Fig 8 depicts the changes in the signal energy produced by each IC signal over the entire

monitoring period. To monitor these changes, the Daily QA3 system baseline was determined

each day, and the ratio of each new signal (Si) to the newly determined baseline signal (Sbaseline)
was re-evaluated. For both the beam energy levels, the observed changes in the IC signal

remained within ±1%. Moreover, the variations in the central IC signal for the 6 MV beam

exceeded those observed in other IC signals.

Further, in this study, the raw signals and fð%Þ values of the IC signals were evaluated for

both the beam-energy levels. Subsequently, the values of the average, standard deviation, and

coefficient of variation (CV) of each IC output over the experiment duration were analyzed.

The fð%Þ values were calculated using Eqs (3) and (4) considering the uncertainty propagation

for each IC raw signal. For the 6 and 10 MV beams, fð%Þ equaled (105.97 ± 0.15)% and

(105.09 ± 0.13)%, respectively. For all the IC signals obtained when the beam-energy level

equaled 6 MV, the CV remained within 0.25%. For the 10 MV beam, all the CV remained

within 0.15% (Table 1).

Two methods were used to measure the energy variations obtained via repeated Daily QA3

measurements—(1) analysis of the average and standard deviation (DE � dDE) of the relative

energy difference calculated from Atlas QA, as illustrated in Fig 1; (2) calculating the values of

DE ±u� with respect to the uncertainty for each raw IC signal via fð%Þ (illustrated in Fig 2).

For the 6 MV beam, the values of DE � dDE6MV and DE � u�
6MV (which considers uncertainty

propagation) equaled (-0.30 ± 0.32)% and (-0.30 ± 0.55)%, respectively. For the 10 MV beam, the

corresponding values of DE � dDE10MV and DE � u�
10MV equaled (-0.05 ± 0.38)% and

(-0.05 ± 0.48)%, respectively. As observed, at both the beam-energy levels, the application of the
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method considering the raw IC signal resulted in an increased uncertainty. Fig 9 depicts a com-

parison of these results with the energy-variation results obtained during the monitoring process.

Post-QA3 beam-quality measurement using water phantom

In the Daily QA3 measurements performed for the 6 MV beam, the observed variation in the

energy level demonstrated a gradual increase beyond the tenth measurement before stabilizing

at a constant elevated value (Fig 4). Therefore, the variations in the measured energy values for

Fig 6. Correlations between energy change and flatness for (a) 6 MV and (b) 10 MV beams.

https://doi.org/10.1371/journal.pone.0246845.g006
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the 6 MV beam were split into two groups at the tenth measurement interval. For comparison,

the energy changes observed for the 10 MV beam were also divided into two groups compris-

ing 10 measurement intervals each. The PDD ratios before and after monitoring were subse-

quently measured using a water phantom and compared with the Daily QA3 energies

obtained for both the 6 and 10 MV beams. As observed, for the 6-MV beam, the PDD ratio

before and after monitoring equaled 0.577 and 0.58, respectively (i.e., an increase of 0.003 or

approximately 0.5%). For the 10 MV beam, the PDD ratio equaled 0.626 before and after mon-

itoring. The average and standard-deviation values of the measurements are listed in Table 2.

Discussion and conclusions

According to the guidelines set forth by the TG-142 task group, energy constancy should not

be evaluated on a daily but monthly basis instead [3]. Most daily measurement devices, how-

ever, could be used to measure X-energy constancy, and the QMPs can review the daily mea-

surements based on the monthly QA results [15]. For such measurements, it is necessary for

medical physicist to understand the mechanism of energy measurement in daily QA systems.

This study evaluated the use of the commercial Daily QA3 system for daily energy

measurements.

Several studies [1, 10, 12] have been performed to develop a robust method for energy-

change monitoring using beam flatness as a governing parameter. There exists a reason for

considering the changes in beam flatness for energy-change monitoring. The fixed shape and

size of the flattering filter is optimized for specific beam energy. Therefore, changes in energy

are inevitably correlated to the beam flatness. Accordingly, the proposed method is based on

energy-change monitoring. Previous investigations were performed by artificially altering the

beam energy using the bending magnet current (BMI) of the radiotherapy unit, and the

Fig 7. Changes in IC signals during repeated measurements performed in one day for (a) 6 MV and (b) 10 MV beams.

https://doi.org/10.1371/journal.pone.0246845.g007
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correlation between the energy change and flatness was subsequently evaluated. Hossain et al.

[12] evaluated the change in flatness by artificially changing the BMI in the range of ±20%.

Their results revealed a linear relationship between the flatness change and BMI within a spe-

cific BMI range (-10–5% at a depth of 1.5 cm). In addition, the user manual supplied by the

Daily QA3 manufacturer [14] states that the Daily QA3 system can be used to deduce the

Fig 8. IC signal variations over the entire monitoring period for (a) 6 MV and (b) 10 MV beams.

https://doi.org/10.1371/journal.pone.0246845.g008

Table 1. Summary of IC signal changes during repeated measurements from an uncertainty perspective.

Corner IC Ccenter Caverage ðcÞ fð%Þ
C1 C2 C3 C4

6 MV IC signal (xi±δxi)% 107.03 ±0.24 106.26 ±0.20 106.34 ±0.27 105.99 ±0.24 100.41 ±0.10 106.41 ±0.10 105.97 ±0.15

CV (%) 0.22 0.19 0.25 0.22 0.09

10 MV IC signal (xi±δxi)% 105.67 ±0.09 105.01 ±0.26 105.40 ±0.15 105.68 ±0.16 100.37 ±0.12 105.48 ±0.06 105.09 ±0.13

CV (%) 0.08 0.10 0.14 0.09 0.12

https://doi.org/10.1371/journal.pone.0246845.t001
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relationship between the energy change and flatness for beam energy levels in the range of 6

and 15 MV. Moreover, it is assumed that the artificial BMI change is equivalent to the change

in X-energy. The relationship between change of energy and flatness is a linear relationship

(R2 > 0.95) within ±3% of energy change. The relationships obtained in accordance with the

operating manual were evaluated using five detectors located at depths of 1 cm each in the

Daily QA3 system. The SSD was fixed at 100 cm. Binny et al. [16] inserted a physical wedge

into the beam to artificially alter the flatness, and the resulting energy changes were evaluated

using a Daily QA3 [16]. They determined the Daily QA3 system to have a tolerance of ±3%.

The results reported by Hossain et al. [12] confirm that the change in flatness depends on the

measurement depth. Therefore, in this study, the results of the flatness measurements per-

formed repeatedly at the depth of 1 cm were compared with those performed at the depths of 5

and 10 cm under identical conditions. The measurements performed at the shallow (1 cm)

depth were more sensitive than 5 cm and 10 cm depth. As observed, the difference between

the measured flatness values as a function of the measurement depth was smaller in the case

involving high beam energy (10 MV). The measured flatness at 10 cm depth equaled

Fig 9. Uncertainties associated with monitored energy changes for (a) 6 MV and (b) 10 MV beams.

https://doi.org/10.1371/journal.pone.0246845.g009

Table 2. Comparison between changes in the energy measured using Daily QA3 system and water phantom PDD ratios.

Beam-energy level Changes in energy Daily QA3 (ΔE � δΔE)% PDD ratio (Average ±S.D)%

6 MV Before 10th interval 0.15 ± 0.74% 0.577 ± 0.0005

After 10th interval 2.30 ± 0.35% 0.580 ± 0.0005

Difference (after -before) 2.15 ± 0.81% 0.003 ± 0.0007

10 MV Before 10th interval 0.18 ± 0.66% 0.626 ± 0.0005

After 10th interval -0.24 ± 0.58% 0.626 ± 0.0005

Difference (after -before) -0.41 ± 0.88% 0.000 ± 0.0007

https://doi.org/10.1371/journal.pone.0246845.t002
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approximately 1 for both the 6 and 10 MV beams. This confirms that the five IC raw signals

obtained from the Daily QA3 system are identical. The depth at which the flatness measure-

ments are performed affects the value of the slope in Eq (1), and the relationship provided by

the manufacturer has limited applicability depending on the measurement condition. Accord-

ingly, it is important for medical physicist to understand the sensitivity of the flatness change

when monitoring energy changes using the Daily QA3 system. Moreover, Gao et al. [1] pro-

posed the off-axis ratio-based (OAR) metrics to be used in cases involving a flattening-filter-

free (FFF) beam. However, the scope of this study is limited to monitoring energy changes in

the 6 and 10 MV FF beams only using the Daily QA3 system. In future, we intend to evaluate

the uncertainty associated with energy-change monitoring of FFF beams using the same

system.

In their suggested correlation between the energy change and PDD ratio, Gao et al. [1]

demonstrated that changing the BMI by ±10% alters the PDD ratio by ±1.5%. Hossain et al.

[12] demonstrated that changing the BMI by 10% or more produces a change of 2% in the

beam quality. Moreover, they confirmed that changes in the PDD ratio at 10 MV are less sensi-

tive compared to those at 6 MV. Peng et al. [17] monitored the daily QA of an image-guided

radiotherapy system using the Daily QA3. The Daily QA3 system has also been used to per-

formed daily QA in proton therapy and photon radiotherapy [18, 19].

A major limitation of this study is that we did not artificially alter the beam energy using

the BMI. Instead, the energy changes measured using the Daily QA3 system were monitored

over a specific period, and post-monitoring changes in beam quality were evaluated using a

water phantom.

As illustrated in Fig 6, the slopes of the respective equations remain constant irrespective of

the beam-energy level owing to the use of the equation provided by the Daily QA3 manufac-

turer. Moreover, the Daily QA3 user manual [14] provides the results obtained when evaluat-

ing the flatness based on an induced artificial change in energy. In this case, the slopes of the

equations corresponding to beam-energy levels of 6 MV and 10 MV equal -0.30 and -0.28,

respectively. Additionally, the manual states that other values of the slope slightly exceeding

-0.27 might be observed depending on the selected beam-energy level. To evaluate the depen-

dence of the slope value on the observed energy change, we calculated the energy changes for

different slope values. As observed, when the manufacturer’s suggested slope value of 0.27 was

altered within a range of ±0.03 (i.e., from -0.24 to -0.30), the resulting average energy change

lied in the range of (-0.025 ± 0.002)% to (2.926 ± 0.236)%. The corresponding error lies in the

range of ±0.236%. The other variable in Eq (1) is the intercept (Y0). Its value is dependent on

the baseline, the re-evaluation of which must only be considered after confirming the beam

quality using the water phantom.

As described in Tables 1 and 2, despite the uncertainties associated with the respective IC

signals, repeated reproducibility evaluations of the results obtained using the Daily QA3 sys-

tem under fixed operating conditions revealed no significant differences in the energy-change

standard deviations. This indicates that the observed differences in the reproducibility of the

IC results have only a minor contribution toward the observed energy variation. For the 10

MV beam, the differences between the values of dDE obtained during the monitoring period

(0.62%) and the uncertainty reflecting values of u� (0.48) obtained during the repeated mea-

surement process remained within 0.2%.

As illustrated in Fig 6, for the 6 MV beam, the monitored dDE equaled 1.16%, or approxi-

mately twice the value of u� (0.55%), thereby reflecting the uncertainty associated with

repeated measurements. This confirms that energy variations occurring in the 6 MV LINAC

beam were detected by the Daily QA3 system, and the observed variations increased gradually

PLOS ONE Evaluation of beam constancy using Daily QA3

PLOS ONE | https://doi.org/10.1371/journal.pone.0246845 February 17, 2021 12 / 14

https://doi.org/10.1371/journal.pone.0246845


after the tenth measurement. The splitting of the results of the 6 MV beam energy changes

into two groups at the tenth measurement interval produced pre- and post-splitting standard

deviations of dDEbefore6MV = 0.74% and dDEafter6MV = 0.35%, respectively. Accordingly, the

energy change DEbefore6MV demonstrates an increase of 1.5% relative to the baseline case. For

the 6-MV beam, the observed differences between dDEafter6MV ð0:35%Þ, dDEbefore6MV ð0:74%Þ,

and u�(0.55%) remained within ±0.2% (Fig 9).

Considering the monthly PDD consistency stands at 2% [2], variations in the energy of a

radiotherapy machine could be caused by several factors. Although such variations do not

occur frequently in radiotherapy machines, they might affect the dose distribution delivered to

a patient. Using a second measurement device, the QMPs can monitor the energy constancy as

part of the daily QA procedure. However, it is necessary to understand the uncertainties asso-

ciated with the measurement device.

The daily QA3 measurements performed in this study reveal that the energy of the 6 MV

LINAC beam varies by 2.15 ± 0.81% (within 3%), whereas the corresponding water-phantom

PDD ratio changes from 0.577 to 0.580—an increase of 0.003 (0.5%)—during the monitoring

process. For the 10 MV beam, the corresponding PDD ratio (0.626 ± 0.0005) remains constant

throughout the monitoring duration, whereas the Daily QA3 measurements reveal an energy

variation of -0.41 ± 0.88% (within 1.5%). Overall, the findings of this study reveal the Daily

QA3 system to have a small measurement uncertainty. Thus, the said system could be used for

high-sensitivity monitoring of small energy changes in radiotherapy machines. This demon-

strates the usefulness of the Daily QA3 as a secondary system for monitoring energy fluctua-

tions in radiotherapy machines.
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