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Abstract
Several benefits can be acquired through physical exercise. Different classes of biomolecules are responsible for the cross-
talk between distant organs. The secretome of skeletal muscles, and more widely the field of organokines, is ever-expanding. 
“Exerkine” has emerged as the umbrella term covering any humoral factors secreted into circulation by tissues in response 
to exercise. This review aims at describing the most interesting exerkines discovered in the last 3 years, which are paving 
the way for both physiological novel insights and potential medical strategies. The five exerkines identified all play a signifi-
cant role in the healthy effect of exercise. Specifically: miR-1192, released by muscles and myocardium into circulation, by 
modulating cardioprotective effect in trained mice; miR-342-5p, located into exosomes from vascular endothelial cells, also a 
cardioprotective miRNA in trained young humans; apelin, released by muscles into circulation, involved in anti-inflammatory 
pathways and muscle regenerative capacity in rats; GDF-15, released into circulation from yet unknown source, whose 
effects can be observed on multiple organs in young men after a single bout of exercise; oxytocin, released by myoblasts and 
myotubes, with autocrine and paracrine functions in myotubes. The systemic transport by vesicles and the crosstalk between 
distant organs deserve a deep investigation. Sources, targets, transport mechanisms, biological roles, population samples, 
frequency, intensity, time and type of exercise should be considered for the characterization of existing and novel exerkines. 
The “exercise is medicine” framework should include exerkines in favor of novel insights for public health.
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Abbreviations
AMPK	� Adenosine monophosphate-activated protein 

kinase
ANGPTLs	� Angiopoietin-like proteins
BDNF	� Brain derived neurotrophic factor
EV	� Extracellular vesicles
FGF	� Fibroblast growth factor
FSTL	� Follistatin-like protein
GDF	� Growth differentiation factor
GTP	� Guanosine triphosphate
HSP	� Heat shock protein
IGF	� Insulin-like growth factor
IL	� Interleukin
miRNA	� Micro-ribonucleic acid
TNF	� Tumor necrosis factor

Background

Physical exercise is associated with a large number of ben-
eficial effects. Exercise-related adaptations include, among 
the others, cardiovascular, nervous, metabolic, locomotor, 
immune, and respiratory system [1]. Physical exercise repre-
sents a powerful tool, doable with few or no side effects and 
produces a multitude of benefits at the same time.

Exercise and exerkines

But how does the exercise adaptation work? During exercise 
there is a crosstalk among many organs and cells, mediated 
by many biomolecules secreted in response to exercise. In 
the early 2000s, the concept of myokine was introduced to 
describe cytokines released by muscle to exert autocrine, 
paracrine and endocrine effects [2, 3]. Since then, the role 
of skeletal muscle as the largest secretory organ has been 
defined, with a growing body of evidence on the muscle-
organ cross-talk and with the identification of specific 
myokines [3]. The secretome of exercising skeletal muscle 
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has the power to act through endocrine signaling media-
tors, spreading specific effects on muscular tissue itself and 
on epithelial, connective and nervous tissues. As Hoffman 
and Weigert [4] pointed out, both myofibers and satel-
lite cells, fibroblasts, immune cells, endothelial cells, and 
extracellular matrix contribute to the muscle secretome, 
whose effects, in addition to muscle themselves, range from 
inflammatory, and immune system, to bones and brain. Even 
better, exercise-related muscle factors may have effects on 
almost all cell types and organs [4]. However, several bio-
molecules are released from non-muscle tissues as acute or 
chronic response to physical exercise. Therefore, the term 
“exerkines” now is used to describe those humoral factors 
(peptides, metabolites and RNAs) secreted into circulation 
by any organ in response to acute exercise or exercise train-
ing [5]. Exerkines can be directly secreted into circulation 
or can be transported by extracellular vehicles (EVs) such 
as exosomes. Molecular targets and receptors for exerkines 
are found throughout the body, including skeletal muscle, 
fat, liver, pancreas, bone, heart, immune, and brain cells.

The first exerkine that was by lucky chance discovered, 
belonging to the class of myokines, was interleukin 6 (IL-6), 
which rapidly increases in the blood after physical activ-
ity. Later, other myokines such as musclin, IL-15, apelin,a 
secreted protein acidic and rich in cysteine, myonectin, 
fibroblast growth factor 21 (FGF-21), decorin and irisin 
have been discovered to be differently modulated in circula-
tion in response to exercise. Some of these (i.e., IL-6, IL-7, 
myostatin) exert their effects directly on muscle tissues and 
are involved in the control of muscle mass, proliferation and 
muscle repair. Others, such as irisin and myonectin, appear 
to have systemic effects by playing a critical role in the 
modulation of the metabolic system, exercising their effect 
on liver, the adipose system, pancreas, and in the modula-
tion of the immune system. On the contrary, the osteogenic 
factors insulin-like growth factor-1 (IGF-1), FGF-2 and 
Follistatin-related protein 1 released after exercise, improve 
endothelial function of vascular system, with a significant 
relevance of physical activity in cardiovascular disease. 
Recent studies are looking at the possible pharmacological 
use of myokines targets, as well as physical activity, to coun-
teract the progression and consequences of diseases such 
as cancer cachexia [6], diabetes, heart failure and chronic 
obstructive pulmonary disease [7].

Besides the myokines, over the last 30 years, there has 
been much evidence on a “relative-new class” of genes 
called micro RNAs (miRNAs). miRNAs are non-codifying 
small RNAs that have emerged as powerful agents that 
control the expression of gene pool and lead to post-tran-
scriptional regulation [8]. These miRNAs are released from 
several types of cells across the body, directly on the body 
fluids stream or vesiculated through nano-vesicles, acting as 
important intercellular communicators. Several studies have 

reported the association of changes in circulating miRNAs 
levels in many diseases (appearing as promising clinical bio-
markers) but also as consequences of physiological adapta-
tion to a stimulus, for example during exercise.

In fact, miRNAs have been found to be differently 
expressed after physical activity both in humans and ani-
mals. A large amount of miRNAs modulate the exercise-
related cardiovascular adaptations [9]. Others regulate mus-
cular hypertrophy and regeneration (e.g., miR-1, miR-27a/b, 
miR-29, miR-146a, miR-133 miR-206, miR-675–3/5p) [10]. 
Circulating miRNAs are involved in “anabolic resistance” 
[11], angiogenesis, neuronal regeneration and metabolism 
[9]. The observations of miRNAs as exercise-related factors 
have important implications for the understanding of how to 
maintain health throughout the lifespan.

Many of the biomolecules differentially modulated dur-
ing exercise are included in the “organokines” class. Orga-
nokines, as messenger peptides interacting with each other, 
provide crosstalk between tissues via autocrine, paracrine 
or endocrine action [12]. This framework deals with the 
network among exercise, gut and immune system, with the 
ever-expanding universe of gut microbiota [13]. In addi-
tion to muscle, two other sources of organokines have been 
extensively studied: adipose system and liver. Saeidi et al. 
[14] recently pointed out the role of adipokines in medi-
ating the beneficial effect of physical activity facing with 
overweight and obesity. They reviewed several adipokines, 
highlighting the role of TNF-α, IL-6, adiponectin, visfatin, 
omentin-1 and leptin. Ennequin et al. [15] largely reviewed 
the exercise-induced liver secretome, observing that it con-
sists primarily in IL-6, FGF-21, Fetuin-A, ANGPTL4, and 
Fst. They argue that these hepatokines may act as a conduit 
for acute and chronic adaptation to exercise and may par-
ticipate in inter-organ crosstalk. The plethora of exercise-
induced hepatokines could be extended to HSP-72, IGF-1 
and IGFBP1, as pointed out by the review of Weigert et al. 
[16].

Cross‑talk across systems and organs

Understanding the role of exerkines does not mean to just 
focus on the effects of the single molecule on a specific path-
way but also on the analysis of the effects of the same sys-
tem over organs (Fig. 1). In this complicate ever-expanding 
universe, over the years a special focus has been posed on 
the effects of exercise to nervous system; in particular, the 
correlation between post-exertional fatigue and cytokines 
has been studied. The central nervous system is extremely 
sensitive to specific cytokines like IL-1, IL-6, and TNF [17]. 
The brain-derived neurotrophic factor (BDNF) has been the 
most extensively studied factor; e.g., Liu and Nusslock [18] 
reviewed the role of BDNF in exercise-related neurogenesis. 
Several other exerkines can affect brain health, such as the 
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myokines irisin and cathepsin B, the bone-derived hormone 
osteocalcin, the adipokines leptin and adiponectin, the hepa-
tokines FGF-21 and IGF-1 [19]. Among these, IGF-1 has 
been extensively studied as neurotrophic factor, in response 
to aerobic and resistance exercises, explicating its function 
not only on the central nervous system but on the peripheral 
system as well [20].

Provided these considerations, one of the main ques-
tions regarding the transport mechanism still stands. Many 
studies analyzed how these molecules can affect each other 
and interact with systems and sub-systems, focusing on the 
exerkines’ transport. It has been hypothesized that many 
exerkines may be contained into extracellular vesicles (EVs) 
to exert their endocrine-like communication [21]. EVs are 
small endogenous membrane vesicles secreted by most 
cell types. It has been observed that they play an important 
role in mediating cell-to-cell communication and crosstalk 
between organs via the transmission of a variety of signaling 
molecules including proteins, mRNAs, cytokines, metabo-
lites, many of which are differently modulated during exer-
cise, as previously described. Although the biogenesis and 
transport of exercise-related EVs is still unclear, the intra-
cellular increase of calcium is associated with the release 
from cells [22]. Therefore, a rapid increase in EVs trafficking 
during exercise has been suggested to be an important path-
ways for inter-tissue cross-talk [23]. Over the last 30 years, 
the investigation has tried to explain the role of extracel-
lular vesicle in exercise-mediated cross-talk with a particu-
lar focus on skeletal muscle: it was demonstrated that EVs 

release is mediated by calcium concentration in cells. During 
the exercise, due the massive release of calcium from the 
sarcoplasmic reticulum, after motoneuronal stimulation on 
skeletal muscle fibers, most of the EVs are released from 
muscle cells [24]. On the other hand, the EVs cargo change 
in relation of the physical activities, also depending on the 
kind of exercise (i.e., aerobic vs anaerobic) [25]. Further-
more, the uniqueness of a pool of exosomal miRNAs follow-
ing acute exercise has been demonstrated [26]. Whitham and 
colleagues [22] found an increase of more than 300 proteins 
in the circulation, many of them released by EVs, identify-
ing 35 new possible myokines, also found in myotubes cell 
conditioned medium.

The possibility of investigating the topic of exerkines in 
human, rather than animal models, assumes a crucial role in 
the theoretical understanding and applicative perspectives. 
As for the population sample, most studies dealt with elderly. 
As a matter of fact, aging is marked by a plethora of bio-
logical pathways, such as sarcopenia, i.e., the loss of muscle 
mass and function with age. Within this framework, physical 
activity represents a key point in the multifaceted approach 
to deal with this public issue, which crucially impairs the 
quality of life of elderly [27]. Barbalho et al. [28] recently 
pointed out the role of myokines as protagonists in mediat-
ing the beneficial effects of physical exercise against sarco-
penia. The molecular and neural plasticity in response to 
physical exercise in elderly rises the role of exerkines in 
mediating the exercise-related neuroprotection, especially 
in case of aerobic exercise [29].

Fig. 1   Overview of the exerkines’ system: different types of physical exercise stimulate biological tissues to release a plethora of cytokines and 
other molecules which, circulating into blood stream or stuffed into extracellular vesicles, reach biological targets to produce specific effects
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Aim of this review

Given these premises, the present review points out the most 
recent and promising advancements in the topic of organ-
derived exercise factors, acting on the organ itself or cross-
talking with other organs. We designed a critical and concise 
review on a chronological basis, starting from the historical 
context and reporting the most promising evidence arbitrar-
ily since 2016 in the following sections. The authors aimed 
to review the novel advancements into the field of exerkines, 
summarizing those molecules which have the potential to be 
included along with the most robust evidence of exerkines, 
providing fascinating insights for future research in next 
years.

Recent advancements in exerkines' world

It has been extensively demonstrated that exercise training 
is a valuable strategy to stay healthy and counteract many 
diseases. However, the mechanisms underlying the protec-
tive effects of exercise are still unclear. One of the mecha-
nisms that have been proposed to be responsible for exercise-
induced protection, including the different expression of this 
training-related mediators, is based on exerkines. Despite 
the difficulty in revealing the complex mechanism hidden 
behind these events, in the last 3 years, different studies have 
brought to light new molecules classifiable under the term of 
exerkines (Table 1, Fig. 2). We will describe the main find-
ings for what concerns “novel exerkines” below.

miR‑1192

Starting with the most recent, we begin describing Wang 
et al.s’ work [30]. They found out that 4-week swimming 
training exerted a protective effect against myocardial infarc-
tion in mice. From analysis of plasma, they found ten dif-
ferentially expressed miRNAs. Among them, miR-1192 was 
increased after exercise and it exerted significant protective 
effect against hypoxia in cultured neonatal cardiomyocyte 
via targeting Caspase 3. In order to evaluate the effective 
protective capacity of miR-1192, in the same work, they 
evaluated the effect of injection of agomiR-1192, exert-
ing similar cardioprotective action, while inhibition of that 
miRNA abolished the cardioprotective effect of exercise in 
myocardial infarction. Riding the wave of previous stud-
ies, that have shown the exercise-related cardioprotective 
effect of other miRNAs, such as miR-1, miR-17-3p, miR-
29a, miR-29c, miR-214, and miR-222 [31], miR-1192 can 
be considered a novel exerkine to be taken into account for 
cardiac protection. Besides heart, miR-1192 is expressed in 
muscle tissue, where it inhibits the myogenic potential, with 
a mechanism suppressed by the Human antigen R (HuR) to 
helps undifferentiated muscle cells to enter myogenesis [32]. 
Therefore, the possible beneficial effect of miR-1192 should 
be considered only targeting heart tissue.

miR‑342‑5p

In 2019, Hou et al. [33] investigated the cardioprotective 
effects of long-term exercise (team-based rowing training 

Table 1   Recent advancements in the findings about exerkines

miR micro-RNA, GDF growth differentiation factor, Jnk2 c-Jun N-terminal kinase 2, APJ orphan G protein–coupled apelin receptor, GFRAL 
glial-derived neurotrophic factor receptor α-like, OXT oxytocin

Study Exerkine Condition Source Transport Effect Target

Wang et al. [30] miR-1192 4-week of swim 
training, in mices

Muscles and myo-
cardium?

Circulation Cardioprotective Caspase3

Hou et al. [33] miR-342-5p Rowing training 
for over 1-year, in 
19–22-years old 
students

Vascular endothelial 
cells

Exosomes Cardioprotective Capsase9 and Jnk2

Vinel et al. [44] Apelin Daily 30-min bout 
of endurance exer-
cise, 6 days/week, 
28 days, in rats

Muscles Intracellular, circula-
tion

Mitochondriogen-
esis, autophagy, 
and anti-inflamma-
tory pathways in 
myofibers, muscle 
regenerative 
capacity

APJ receptor

Kleinert et al. [47] GDF-15 60-min endurance 
exercise bout, in 
27-years old men

Not the muscles Circulation Multiple organ 
stimulation

GFRAL receptor

Berio et al. [54] Oxytocin Muscle cell line 
C2C12

Myoblasts and 
myotubes

Autocrine and parac-
rine?

Hormonal regula-
tion, skeletal mus-
cle metabolism?

OXT receptor
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for over 1 year) against myocardial ischemia/reperfusion 
injury. Particularly, they discovered that physical activity 
increased the release of exosomes in plasma both in animals 
and humans. Analyzing the exosomes cargo, they found a 
differently expressed 12 miRNAs, among which miR-342-5p 
was not only significantly increased but also exerting pro-
found cardioprotective effects both in vitro and in vivo. 
However, the role of miR-342-5p seems controversial. On 
the detrimental side of the coin, serum miR-342-5p has been 
suggested as a biomarker for adverse cardiovascular events 
[34, 35]. Indeed, miR-342-5p may promote cell proliferation, 
migration and invasion of vascular smooth muscle cells, via 
the Akt signaling pathway [36]. On the bright side, miR-
342-5p modulates the cardioprotective effect by inhibiting 
cardiomyocyte apoptotic signal mediated by Caspase 9 and 
c-Jun N-terminal kinase 2 (Jnk2) and enhances survival 
signaling (p-Akt) in the ischemic heart [33]. Therefore, 
the role of miR-342-5p to the cardiovascular system may 

be conversely exerted depending on the transport system, 
whether `ly circulating or stuffed into vesicles.

Apelin

Apelin is a peptide of 13–36 amino acids that was identified 
in 1998 [37]: it is an endogenous ligand for apelin receptor 
(orphan G protein–coupled APJ receptor), widely expressed 
in various organs such as skeletal muscle, heart, lung, kid-
ney, liver, adipose system, gastrointestinal tract, brain, adre-
nal glands, endothelium, and human plasma. Depending 
on the target, apelin can exert distinct functions, such as 
control of blood pressure, stimulation of cardiac contractil-
ity, regulation of water and food intake, adipocyte differen-
tiation, and bone formation. In skeletal muscles, the apelin 
receptor present on muscle stem cells promotes in vitro and 
in vivo proliferation and differentiation taking part in mus-
cle regeneration. Apelin targets muscle cells during aging, 
both in human and rodents: it acts on muscle metabolism by 

Fig. 2   Graphical description of the five novel exerkines' framework. 
The source of release of miR-1192 is still under debate; miR-342-5p 
is released by vascular endothelial cells and stuffed into circulating 
vesicles; apelin is released by adipose and muscle cells; oxytocin 
is released by posterior pituitary gland and muscle cells, and likely 
acts through autocrine and paracrine processes; GDF-15 is released 

from heart and likely from other sources, but not from muscles. Both 
miR-1192, apelin and GDF-15 are transported by blood stream. The 
main target of both miR-1192 and miR-342-5p is heart, the one of 
both apelin and oxytocin is muscle, while the target of GDF-15 is still 
unclear
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activating an AMPK-dependent mitochondria biogenesis, 
it promotes autophagy and decreases inflammation. Mus-
cle apelin expression decreases with age, suggesting that 
it may play a role in sarcopenia. However, the physiologi-
cal role of apelinergic system can be shifted to pathologi-
cal processes under altered microenvironmental conditions 
[38]. The important role of apelin in energy metabolism, as 
an additional player to other adipokines, and the changes 
related to metabolic diseases [39], as well as to cardiovas-
cular pathophysiology [40] has been pointed out. Moreo-
ver, apelin has been shown to be expressed in cancer tissue 
[41]. As an adipokine, apelin could promote the vascular 
network development in adipocytes niche, upregulated by 
hypoxia [38]. Initially studied only as an adipokine [42], 
apelin has been shown to be released by other tissues, such 
as muscle. In 2012 it was positively linked to self-reported 
physical activity in diabetic patients, independently by age, 
sex and BMI [43]. However, in 2018 Vinel and colleagues 
identified for the first time the relation between apelin and 
physical exercise (specifically, moderate-intensity protocols) 
[44]. In vivo, apelin production by myofibers is stimulated 
by exercise-associated muscle contraction and for this reason 
could be used a biomarker for the definition of define suc-
cessful exercise’s strategies in the elderly to reduce aging. 
Inflammation can suppress the beneficial pathways associ-
ated with muscle apelin and its receptor [44]. Recently, it has 
been demonstrated that apelin drives the fetal brown adipose 
system and offspring metabolic health in mice, in response 
to maternal exercise [45]. Therefore, apelin may represent 
an additional player in the cross-talk between skeletal mus-
cle and brown-beige adipocytes, along with other factors 
such as irisin [46]. The use of agonists and antagonists has 
been therefore discussed, mainly about metabolic diseases 
[39] and cancer [38]. Apelin, and apelin peptides, have also 
been suggested as interesting biomarkers of cardiovascular 
pathologies [38].

GDF‑15

Also in 2018, Kleinert et al. provided the evidence to support 
the growth differentiation factor 15 (GDF-15) as an exerkine 
[47]. They tested young healthy males with a single bout of 
endurance exercise, reporting an increase in plasma level 
of GDF-15 during exercise and in the recovery phase. They 
also demonstrated that skeletal muscle was not the source 
of production. In this vein, evidence exists for GDF-15 as 
a cardiokine [48]. As a matter of fact, GDFs act through 
the GDNF family receptor alpha-like (GFRAL) receptor 
[49]. In 2020, Conte and colleagues [50] found a positive 
correlation between plasma level of GDF-15 with age, and 
an inverse correlation with active lifestyle. These authors 

demonstrated a remarkable increase in plasma GDF-15 after 
a strenuous bout of endurance exercise. Considering that 
GDF-15 is responsive to mitochondrial stress, the authors 
argued for the role of this exerkine as a marker of injury, e.g., 
to kidney. All in all, GDF-15 is a stress-responsive cytokine, 
with an articulate pattern of beneficial and harmful func-
tions [48]. The causal association of GDF-15 with some 
cardiovascular diseases (e.g., coronary artery disease and 
myocardial infarction), whereas no relationship with others 
(e.g., ischemic stroke and heart failure), has recently raised 
the promising role of GDF-15 as a potential biomarker or 
therapeutic target [51]. Evidence of GDF-15 as a beneficial 
mediator of metabolic improvement after a 12-weeks aerobic 
exercise protocol in older adults may also give account of 
its role as a possible therapeutic target [52]. Evidence exists 
about GDF-15 in mediating the adipose tissue lipolysis trig-
gered by skeletal muscle contraction [53], raising the role of 
this exerkine into bioenergetics.

Oxytocin

In 2017, starting from evidence about the presence of oxy-
tocin receptors in skeletal muscles and basing their assump-
tions on their findings, Berio and colleagues suggested 
oxytocin may work in an autocrine and paracrine way to 
regulate muscle metabolism [54]. This evidence is added 
to the exercised-induced increase in circulating vasopressin 
and supports the role of skeletal muscle in secreting neuro-
hypophyseal hormones [55]. Oxytocin has been pointed out 
as a cardioprotective molecule, acting by reducing inflam-
mation, promoting angiogenesis, and improving metabolic 
function of cardiomyocytes [56]. Alizadeh and colleagues 
demonstrated that oxytocin acts as a mediator of anti‐tumor 
effects of interval exercise training in a mouse model of 
breast cancer [57]. In this regard, altered expression of oxy-
tocin and its receptor have been specifically linked to various 
cancers, leading to a likely role of oxytocin system in the 
neural regulation of carcinogenesis, and therefore opening 
the way for oxytocin as a possible novel biomarker and/or 
key for developing preventative and therapeutic strategies 
[58]. Oxytocin is also an age-specific factor important for 
muscle tissue regeneration and homeostasis, and may there-
fore be studied as a therapeutic target to postpone the onset 
of sarcopenia [59].

Future directions

Intriguing perspectives based on this new world of insights 
offered by exerkines are becoming of interest to scholars, 
pharmacologists, and practitioners. In particular, the “exer-
cise of medicine” paradigm should deeply consider the 
exerkines’ signaling. The expanding myokinome and, more 
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widely, the organokinome urge the definition of theoretical 
and applicative models. Within the plethora of interesting 
topics, the systemic transport by vesicles and the crosstalk 
between distant organs, even the most difficult to target, as 
brain, assume a key role. Novel physiological systems are 
occurring in the world of exerkines.

For example, a topic of interest is the purinergic signal-
ing. Mancinelli and colleagues advocated for a major focus 
on guanosine-based purines acting on excitable tissues [60]. 
On this vein, Pietrangelo et al. [61] recently pointed out the 
role of guanosine-based molecules in the muscle regen-
eration system. To be specific, free GTP may be released 
after a muscle damage to stimulate the proliferative boost 
of muscle stem cells and consequently stimulate the release 
of exosomes stuffed with guanosine-based molecules. 
These molecules may be successively transferred to distant 
organs to exert-specific effects [61]. The chance of purines 
to enter the brain through the blood–brain barrier, linked 
to the requirements of purine supply for neuroprotection 
[62], triggers novel perspectives in the field of muscle-brain 
cross-talk.

In the world of exerkines, the focus is still primarily on 
myokines, hepatokines [3], and adipokines [14], but novel 
insights may come from the investigation of alternative 
sources of production. Dealing with the world of orga-
nokines, many factors interplay in order to regulate homeo-
stasis and pathophysiological pathways (for an overview, see 
[12]). As a result, a comprehensive understanding of organ 
crosstalk exercise related will shed a new light for the defini-
tion of the mechanistic insights and for the formulation of 
specific preventive or therapeutic plans. Indeed, organokines 
and cargo systems are pivotal players into the scientific field 
of “network physiology” [63], as they account for the inter-
connection of physiological systems and sub-systems.

For these purposes, we highlight the necessity to describe 
the sources, targets, transport mechanisms, biological roles, 
and population samples. The type of exercise should always 
be defined. There is evidence to suggest that endurance 
behaves as a more powerful stimulus for the release of 
exerkines, at least to promote metabolic health and neuro-
protection [21, 29]. It has also been proposed that exerkines 
could be the mechanism behind the cross-transfer of motor 
functions in elderly [64]. The interplay of several exerkines 
in mediating the acute and chronic effects of physical activ-
ity/exercise, and the diverse factors affecting the pathways 
of action need to be addressed extensively. Big dataset and 
large research consortia, such as the promising MoTrPAC 
[65], are needed in order to provide original and robust 
insights. Historical and novel exerkines may emerge as inter-
esting biomarkers, preventative or therapeutic agents, to be 

early implemented; considering the complexity and dyna-
micity of the mechanisms involved, a patient-oriented evi-
dence that matters (POEM) [66] would be strongly adopted 
to deal with this possible implementation.

As a matter of fact, the oxidative, inflammatory and neu-
rotrophic mediators vary as a function of exercise type [67]. 
Thus, defining the FITT (frequency, intensity, time and type) 
paradigm of exercise training is needed to achieve consen-
sus about exerkine regulation [14]. Practitioners will there-
fore be able to “sew” specific “dresses” for individuals in 
exerkine-based manner. Exerkines and exosomes may pro-
vide novel insights about mechanisms behind the pathophys-
iological and physiological pathways related to the exercise-
related benefits, and should be taken into account to define 
new evidence-based “weapons” in favor of public health.
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