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Abstract: Portlandite, as a most soluble cement hydration reaction product, affects mechanical and
durability properties of cementitious materials. In the present work, an atomistic kinetic Monte Carlo
(KMC) upscaling approach is implemented in MATLAB code in order to investigate the dissolution
time and morphology changes of a hexagonal platelet portlandite crystal. First, the atomistic rate
constants of individual Ca dissolution events are computed by a transition state theory equation
based on inputs of the computed activation energies (∆G*) obtained through the metadynamics
computational method (Part 1 of paper). Four different facets (100 or 100, 010 or 010, 110 or 110, and
001 or 001) are considered, resulting in a total of 16 different atomistic event scenarios. Results of
the upscaled KMC simulations demonstrate that dissolution process initially takes place from edges,
sides, and facets of 010 or 010 of the crystal morphology. The steady-state dissolution rate for the
most reactive facets (010 or 010) was computed to be 1.0443 mol/(s cm2); however, 0.0032 mol/(s cm2)
for 110 or 110, 2.672 × 10−7 mol/(s cm2) for 001 or 001, and 0.31 × 10−16 mol/(s cm2) for 100 or 100
were represented in a decreasing order for less reactive facets. Obtained upscaled dissolution rates
between each facet resulted in a huge (16 orders of magnitude) difference, reflecting the importance
of crystallographic orientation of the exposed facets.

Keywords: portlandite; calcium hydroxide; atomistic kinetic Monte Carlo; upscaling approach;
dissolution rate

1. Introduction

To upscale atomistic simulations of mineral phases dissolution/precipitation towards
much larger timescales and microscopic crystal sizes, kinetic Monte Carlo (KMC) simu-
lations are applied using Molecular dynamics (MD) results from the Part 1 portlandite
case study [1]. The principal idea of a KMC simulation is in bridging the timescale gap by
coarse-graining the time evolution and focusing on discrete rare events using Markovian
state-to-state dynamics [2]. With the application of such a promising upscaling tool, system
dynamics at long timescales can be predicted by performing only short MD simulations [3].
At the atomistic scale, the interfacial properties are reflecting the chemical composition,
type of bonds, crystallographic orientation of the exposed facets, impurities incorporated
in the crystal, and lattice defects. At the mesoscopic level, the (pore) solution properties
involve the nature of the solvent and its composition (i.e., saturation level), ionic strength,
temperature, hydrodynamic conditions and other parameters. Piana et al. [4] carried out
a 3D microscopic KMC simulation of a growing urea crystal in which the rate constants
for corners and edge crystal sites were approximated by data from islands/steps on facets.
Chen et al. [5] demonstrated the approach on NaCl crystal, by calculating the dissolution
rate constants from ab initio MD simulations. Only NaCl (100) facets with different site
types (e.g., edges and corners) were sufficient to perform a KMC simulation for the whole
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crystal due to crystal symmetry, high aqueous solubility and the absence of intramolecular
degrees of freedom within the lattice. For more complex compounds, a simplified approach
to efficiently determine the dissolution rates on the basis of crystal structure is proposed by
Elts et al. [3].

The dissolution of calcium-silicate minerals is a fundamental process in cement hydra-
tion science, controlled by the intricate interplay of atomic crystal dissolution mechanisms
such as spontaneous removal of numerous crystal sites that are activated at different en-
ergies. Moreover, at the mesoscopic scale, it also may depend on the saturation level of a
pore solution, as well as the formation of facet complexes. However, to reveal the underly-
ing origin of facets only would require upscaling of the atomistic modeling approaches.
Initially, this is to be achieved at far-from-equilibrium conditions, which have only recently
begun to be explored. This will enable atomistic prediction of the dissolution rate as a
function of individual (atomistic) activation energies, as it arises only from the mineral
nanoscale topography, thus, to clearly separate it from mesoscale effects of, e.g., interplay
with pore solution concentrations, i.e., the free energy driving force (∆G) between mineral
and solution. Therefore, the mechanism of ionic (calcium silicate) minerals dissolution
deserves more in-depth research, as it is the critical missing link that would unlock a
fundamental understanding of cement hydration.

Recently, the atomistic kinetic Monte Carlo (KMC) model was proposed by Martin et al. [6]
for the dissolution of a simple Kossel crystal, which successfully described the experimen-
tally observed sigmoid dependence of the dissolution rate versus the free energy driving
force (∆G). This major achievement was made possible by invoking the reversibility of the
chemical reactions at the microscopic level. The new KMC model confirmed that the onset
of the rapid dissolution rate originates from the opening of pits, which constantly supply
terraces for step retreat. However, the two main parameters of the simplified atomistic
model, namely the dissolution and precipitation energies, have been calibrated to correctly
fit the dissolution rates of several representative aluminosilicate minerals, as well as alite.
Thus, the next step is to downscale the recent KMC approach from Martin et al. [6], by
going beyond the most recent state-of-the-art implementation based on over-simplified
Kossel crystals and considering more realistic specifics of the calcium(-silicate) based crystal
structures. For this, a direct link between the atomistic simulations and KMC should be
established. Recently, Martin et al. [7] successfully described the dissolution of a quartz
crystal by the atomistic kinetic Monte Carlo model, confirming measurement-observed
dependence of the dissolution rate as a function of free energy driving force, which has a
transition state theory behavior in contrast to an empirical sigmoidal dependence observed
for aluminosilicate minerals.

Mixing cement with water results in cement dissolution and subsequent precipitation
of portlandite, calcium silicate, and calcium aluminate hydrates which bind sand and gravel
aggregates in concrete. Portlandite or calcium hydroxide (Ca(OH)2) is a significant mineral
phase precipitated as hexagonal crystals of various sizes filling the pore space within the
bulk cement paste and more porous interfaces around inert aggregates. Portlandite plays a
substantial role in the mechanical and durability properties of cement paste [8] as well as
corrosion protection [9]. Other widely exerted aspects include dewatering sludge [10,11],
improving the mechanical properties of fly ash cement [12,13], delaying steel corrosion [14],
resistance to leaching and degradation in water [8,15,16] and acids [17,18]. The Ca(OH)2 is
also very important in other areas of chemical industry, so the knowledge generated here is
of general importance.

In Portland cement paste, portlandite represents the second most abundant hydration
phase, with a fractions of about 15–25%, but presents the most soluble hydration phase [8].
Thus it is the phase that dissolves first and creates porosity in case of leaching in pure
water, or exhibits an intense reactivity to the CO2 results in the entire re-crystallization
of portlandite into the calcite [19,20]. The high initial pH of the Portland cement paste
(~14) is typically higher than for saturated portlandite solution (12.5) due to presence of
soluble alkalis (common ion effect). This pH is significantly reduced with carbonation or
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other acid attack reactions due to the dissolution of first portlandite and then other less
soluble hydrates, resulting in increased porosity and degradation of concrete and imposing
mechanical and durability issues for reinforced concrete structures [21].

Hence, the main objective of this study is to develop an elementary physical/chemical
bridging model for the initial dissolution of portlandite hexagonal crystals. Portlandite is
proposed here, as the simplest benchmark representative of cementitious mineral phases,
for the long-sought goal of connecting the nanoscale to the upscaled microscale level. To
understand the effects of equilibrium crystal morphology of portlandite [22] during the
dissolution process, different facets of 100 or 100, 001 or 001, 010 or 010, and 110 or 110
were considered according to the Wulff construction reported by Chen et al. [5]. Then, the
far-from-equilibrium kinetic Monte Carlo (KMC) approach was employed to investigate the
upscaling atomistic dissolution rates of portlandite, representing the forward reaction rate.
Moreover, to implement the KMC approach in a proper and accurate way, Salah Uddin et al.
in parallel study (Part 1) [1] provided input information about the reaction activation energy
(∆G*) of the dissolution of calcium atoms (Ca) for different neighbor scenarios and for
different facets (crystal planes or surface orientations) at room temperature by a molecular
dynamic (MD) [23,24] computational method using ReaxFF coupled with a metadynamics
approach as input values to compute the dissolution rates (rD) according to transition
state theory (Equation (1)). In fact, in the KMC upscaling approach, the dissolution and
precipitation activation energies for a given site are sometimes written as the sum of the
contribution of the n bonded neighbors [2]. Then, by application of a MATLAB code for a
KMC upscaling approach, the mesoscopic (total) dissolution rate is computed based on
time coarse-graining and probabilistic evolution of dissolution rates of individual atomistic
events already computed for different scenarios by the Arrhenius-like equation of the TST.

kD =
kBT

h
exp−

∆G∗
RT (1)

where kB is the Boltzmann constant, h Planck’s constant, ∆G* is the free energy of activation
calculated from meta D simulations (inputs from Part 1 paper) [1], R is the gas constant
and T is the temperature.

2. Methods and Computational Models
2.1. Quantum Chemistry Computations

Our intention in this section is to investigate the enthalpy (∆Ha) at 0 K through the
nudged elastic band (NEB) by DFT computational approach in order to decipher the rela-
tive difference in behavior with the computation of total activation energy (∆G*) obtained
from metadynamics computational approach at 298 K for dissolution of Ca at the transition
state. Therefore, density functional theory (DFT) [25–30] computational approach was
employed as defined in the Vienna ab initio simulation package (VASP) [31–33] for the
computation of the electronic structure. The Perdew–Burke–Ernzerhof (PBE) functional
was exerted to explain the electron exchange and correlation energy within the general-
ized gradient approximation [34]. A well-converged plane-wave cutoff energy of 400 eV
was employed. The projector-augmented wave method and pseudopotential were used
to describe the electron-ion interaction [35]. A force tolerance of 10−2 eV Å−1 was ap-
plied for structural optimizations. The break condition of 10−4 eV was considered for the
convergence of electronic self-consistent loop. The Brillouin zone was sampled using a
well-converged k-sampling equivalent given by 1 × 1 × 1 Monkhorst-Pack k-points for the
total system [36]. The initial lattice parameters of portlandite are as follows: a = 3.585 Å,
b = 3.585 Å, c = 4.871 Å, α = 90◦, β = 90◦, and γ = 120◦. A three-dimensional visualiza-
tion software for electronic and structural analysis (VESTA) was also used to display the
crystalline structure of our modeling [37].

The nudged elastic band (NEB) method [38,39] is a chain-states method at atomic-
scale for calculating minimum energy pathway and finding transition state between a
reactant and a product sates. The minimum energy pathway represents how the atoms
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would evolve (between given the initial and the final states), and where a maximum
in the potential energy along that path represents the activation energy of the studied
process. Initially, the method is implemented, as the geometries of the initial and the
final systems are optimized to minimize their energy. Then a rough approximation of the
reaction pathway is built, a set of images are created by performing a linear interpolation
between the initial and final systems. An intermediate system can be provided, in which
case the interpolation is performed between the initial and intermediate systems, and then
between the intermediate and final systems. Finally, a reaction path is found by performing
within a simultaneous optimization of all images. Figure 1 illustrates the minima energy
procedure of Ca dissolution on the 001 or 001 facets for the first scenario in the presence
of all neighbors through NEB by the DFT computational method. As can be observed,
the energy of the portlandite system at the transition state (c) for Ca dissolution increased
almost 2.51 eV, which equals to 242.18 (kJ/mol). The enthalpy (∆Ha) for activation energy
obtained by DFT computational method corresponds to T = 0 K, which may demonstrate
the importance of the entropy (almost 110 kJ/mol) contribution to the total activation
energy, obtained by MD computation (Table 1). In other words, contribution of entropy
(∆S*) could be (roughly) estimated by the difference between the total activation energy
(∆G*) at 298 K, and the enthalpy (∆Ha) at 0 K computed through metadynamics and DFT
computational approaches, respectively.
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Figure 1. The DFT calculation of minimum energy pathway for Ca (light gray atom as shown with
the arrow in the ground-state structure of (a)) dissolution on the 001 or 001 facets for the first scenario
in the presence of all neighbors. (a,e) show the initial and final ground-state structures, (b–d) also
illustrate the energy pathway of portlandite as the Ca dissolved.



Materials 2022, 15, 1442 5 of 17

Table 1. Activation energy (∆G*) and enthalpy (∆Ha) computations of light gray Ca dissolution on the
facets of 001 or 001 for seven different scenarios at the room temperature (298 K) as shown in Figure 2
by molecular dynamics and density functional theory (DFT) simulation methods, respectively. Rate
constants of light gray Ca dissolution computed according to the activation energies obtained through
molecular dynamic simulation method at the room temperature.

Figure 2 (a) (b) (c) (d) (e) (f) (g)

∆G* (kJ/mol) 352.00 199.10 175.40 56.14 55.80 54.90 25.90
∆Ha (kJ/mol) 242.18 140.87 120.12 41.43 40.85 39.87 18.32

k (s−1) 1.243 × 10−49 7.849 × 10−23 1.119 × 10−18 0.897 × 103 1.029 × 103 1.479 × 103 1.791 × 108
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Figure 2. Illustration of seven different scenarios for the central (light gray) Ca atom dissolution
depending on the possible significant configurations of existing nearest neighbors (in the presence
of all 6 nearest neighbors (a), 5 neighbors (b), 4 neighbors (c), 3 neighbors (d), 2 neighbors (e),
1 neighbor (f), and in the absence of all nearest neighbors (g)) on the 001 or 001 facets of portlandite.
Resulting scenarios are proposed to feed the KMC upscaling approach.

2.2. Atomistic Kinetic Monte Carlo

In order to implement the Atomistic Kinetic Monte Carlo (KMC) upscaling approach
for dissolution of portlandite in the aqueous ambient atmosphere, a MATLAB code was
developed to compute the time of dissolution of portlandite for a supercell consisting of
83,629 atoms and 17,461 sites. To execute the MATLAB code, it was initially needed to
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compute the dissolution rate constant of Ca for seven various scenarios depending on the
existing neighbors for the facets of 001 or 001; moreover, three different scenarios for the
facets of 100 or 100, 001 or 001, 010 or 010, and 110 or 110 as shown in Figures 2 and 3,
respectively. The reason for choosing different scenarios (also called atomistic events) for
the computation of each atomistic Ca dissolution rate is due to the effects of the neighbors
on the computation of activation energy during the dissolution of each particular Ca. In
this way, activation energy of Ca for each scenario has been calculated in order to compute
the dissolution rate constant (Equation (1)). It should be noted that in Figure 3, there are
3 neighbors Ca, left, right (shown with green and red colors), and behind (not shown in the
Figure 3).
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Figure 3. Illustration of three different scenarios for light gray Ca dissolution depending on the
existing neighbors (in the presence of both left and right neighbors (a), in the presence of just left or
right neighbor (b), in the absence of both left and right neighbors (c)) on the 100 or 100, 010 or 010,
and 110 or 110 facets of portlandite employing KMC upscaling approach.

The following process briefly explains how to implement the KMC [40] algorithm
for each dissolution site selection and dissolution time advancement through developed
MATLAB code. Initially, 16 different possible events regarding four different facets must be
tabulated with their dissolution rates. Then, it is needed to compute the total rate constant
(ktot) of crystal morphology for all the exposed sites to the environment matching with
their possible events. For each time iteration, it is needed to update the book-keeping of
all facet sites (which are not in bulk) of crystal after dissolution of each site to identify
the newly exposed facet sites. To compute the total rate constant (ktot) all facet sites are
added/summed up (Equation (2)).

ktot =
Np

∑
p=1

kp (2)

The probability of each event between 0 to 1 (16 possible events for all different
scenarios) is computed by normalizing the rate of each event, which is multiplied by the
number of sites and then divided by the ktot (Equation (3)).

Ki,p =
ki,p

∑
Np
p=1 ∑NL

i=1 ki,p

=
ki,p

∑NL
i=1 ki,tot

=
ki,p

ktot
(3)

Then, a random number of ζ1 between 0 to 1 is then generated to select the proba-
bility of occurring event (Equation (4)) and, consequently, random selection of the site
by an integer number from that event. Finally, the time of selected site for dissolution
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is then computed by division of second random number of ζ2 between 0 to 1 with ktot
(Equation (5)).

I

∑
i=1

ki,p

ktot
≥ ζ1 ≥

I

∑
i=1

ki,p

ktot
(4)

∆t = −ln(ζ2)/ktot (5)

2.3. The MATLAB Code Implementation by Employing the KMC Upscaling Approach

The coding implementation can be split in four major sections: (1) pre-processor,
(2) event processor, (3) solver and (4) post-processor. Pre-processor prepares and reads
the input (crystal) structure, i.e., creates a list of positions for all particles. A supercell
crystal morphology of portlandite, which has been prepared beforehand must be imported
into the MATLAB code. Firstly, in order to enable easy tracking of the atoms during the
dissolution process, the position of each site was indexed. Atom positions are defined by
parameters in cartesian coordinate system for three different horizontal axes of 60◦, 90◦,
120◦, and a vertical axis of Z. Secondly, it is needed to separate the sites into two groups:
(1) inner sites (blocked) and (2) outer sites (side/surface, available for dissolution). The
reason for the separation of sites is due to the dissolution process, which is only carried
out on the outer sites (side/surface) being exposed to the sounding (pure water) solution
environment. Outer sites can be separated into three different sides such as 60◦, 90◦, 120◦,
and a surface, based on the four different facets for crystal morphology of portlandite.
Event processor executes individual events, keeps track of them at the system level, and
performs updates after changes in the system. Here, it is needed to update the inner sites
to become a part of side/surface, e.g., after the process of dissolution of neighbors from
the outer sites (side/surface). It is also worth mentioning that the rate of dissolution for
each site depends on the number of (missing) neighbors, which must be defined for all
three different sides and the surface. Therefore, according to the crystal morphology of
portlandite, seven different events for the surface and three different events for each side
can be considered, i.e., in total sixteen different events for the dissolution process. Thirdly,
the solver implements the actual rejection-free KMC algorithm for probabilistic-based
selection of an event to execute. Based on the (16) dissolution rate constants (k) for all
sides and surface as shown in Tables 1–4; and moreover, according to the theory of KMC
upscaling approach as described in Section 2.2, the search for finding the most probable
outer site to be dissolved is performed. Fourthly, after the dissolution of one site, it is
essential to inform the neighbors about the missing of it. This will automatically change the
blocked sites into an outer (unblocked) site, which can thus contribute to the list of possible
processes to be selected for dissolution (in the next time step). Finally, the third and fourth
processes must be continued consecutively until reaching a user defined number of (time)
steps, or else all sites have been dissolved. In post-processor, the data are prepared for
exporting and plotting purposes.

Table 2. Activation energy (∆G*) and dissolution rate constant (k) computations of light gray Ca
dissolution from 100 or 100 facets at the room temperature according to Figure 3.

Figure 3 (a) (b) (c)

∆G* (kJ/mol) 195.30 114.60 70.00
k (s−1) 3.638 × 10−22 5.081 × 10−8 3.337

Table 3. Activation energy (∆G*) and dissolution rate (k) computations of light gray Ca dissolution
from 010 or 010 facets at the room temperature according to Figure 3.

Figure 3 (a) (b) (c)

∆G* (kJ/mol) 29.90 20.55 7.1
k (s−1) 3.565 × 107 1.552 × 109 3.536 × 1011
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Table 4. Activation energy (∆G*) and dissolution rate (k) computations of light gray Ca dissolution
from 110 or 110 facets at the room temperature according to Figure 3.

Figure 3 (a) (b) (c)

∆G* (kJ/mol) 59.99 34.91 0.72
k (s−1) 0.189 × 103 4.720 × 106 4.643 × 1012

3. Results and Discussions

According to the activation energy (∆G*) obtained through a metaD computational
method by Salah Uddin et al. (Part 1 of companion paper) regarding Ca dissolution
for all different scenarios, the dissolution rate constants were initially computed for all
possible scenarios using Equation (1). In total, 16 different Ca atom dissolution events (MD
simulations) were used, including the facets of 001 or 001, 100 or 100, 010 or 010, and 110
or 110 as shown in Tables 1–4, respectively. According to the DFT computational method,
obtained activation enthalpy (∆Ha in Table 1) of all seven different scenarios on the 001
or 001 facets showed a decreasing trend as the number of neighbors decreased. Then, the
difference between the activation energy (∆G*) computed through metaD and enthalpy
(∆Ha) through DFT methods demonstrates the contribution of entropy for total activation
energy calculation, which might be significant and should be considered for atomistic rate
constant computations. Here it should be noted that the DFT calculations represent at 0 K
temperature, while the MD simulations are run at room temperature (298 K). The absolute
contribution of entropy was difficult to quantify, as it is challenging to be obtained for
individual atomistic events. Unlike typically employed approach for equilibrium reaction
thermodynamics, where the change of enthalpy with temperature could be calculated (by
knowing the heat capacity dependency with temperature) according to the Arrhenius-
like equation of the TST, this methodology is formidable for individual atomistic events.
However, the comparison between ∆Ha (DFT) and ∆G* (metaD) results shows very good
qualitative agreement, capturing the same trends as a function of neighbor’s configurations.
The change in relative difference, calculated as rel_error = (∆Ha − ∆G*)/∆G*, was quite
consistent, with a maximum and minimum rel_error of −35.5% and −46%, a mean value
of −45%, and a standard deviation of this mean being only 4% (absolute error value).
This indicates that a consistent increase (i.e., shift) of all ∆Ha values for a mean relative
difference (+45%) would result in a 4% error. This shift is due to a combined effect of
(a) entropy and (b) enthalpy increase due to temperature increase (from 0 to 298 K). More
research in this direction is needed in order to obtain (∆G*) with contribution of entropy
directly from DFT computational approach. For this, the use of vibration frequencies to
separate entropy contributions in TST equations seems to be an elegant approximation [7].

Next, it was attempted to test a correlation between the seven scenarios of Figure 2 and
the resulting dissolution rate constants (Table 1). According to Elts et al. [3], the logarithmic
values of the rate constants y = ln(ki) can be fitted as a function of the number of neighbors
(xi) with an Allometric (basic Origin) function yi = a + bxi

c, resulting in a = 10.9, b = −0.581
and c = 2.98 as calibrated parameters. The correlation resulted in a quite convincing
adjusted R-square coefficient of 0.932, indicating that the selected model follows the trend
of the data satisfactorily. Rewriting this model in exponential form and comparing it to the
Arrhenius equation, one obtains the direct dependence ∆G*(x) = −bRTxc.

After computation of the rate constants for all 16 different scenarios applied on all
facets, a KMC MATLAB code was developed to compute the time of site dissolution for the
whole crystal morphology of portlandite consisting of 17,461 sites as shown in Figure 4.
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Figure 4. Snapshots of the crystal morphology of portlandite consisting of 17,461 sites from two vari-
ous perspectives (dimensions of lateral rectangle are 6.094 nm × 8.768 nm). For better visualization
of each facet, they were shown with different colors, while atoms with less neighbors have lighter
color tone. Figure on the right side (b) represents a 180-degree rotation about (a) axis of the crystal on
the left side.

Figure 5 shows site-by-site dissolution model of portlandite after 5250 (a,d), 10,500 (b,e),
and 15,750 (c,f) steps. Each step is representative of one site dissolution. The dissolution
process for the crystal morphology of portlandite is basically performed from 010 or 010
(facet 60◦), and 110 or 110 (facet 90◦) facets. The results show that the dissolution process
of the crystal is mostly happening for the scenarios of 010 or 010 facets, the common sides
with facets of 110 or 110 (medium red color as shown in Figure 4), and the common edges
with 001 or 001 (dark red color as shown in Figure 4). This is due to the greater value for
the event probability according to the greater computed rate constants. On the other hand,
as the process of sites dissolution progress from 010 or 010 facets, a small contribution of
110 or 110 facets account for less than one to four percent regarding the first 5250 sites
dissolution to the dissolution of the whole crystal as shown in Figure 6, respectively. This
is due to the formation of sites with missing left and right neighbors for 110 or 110 facets;
and consequently, the higher chance of event probability being selected because of its
large rate constant (4.643 × 1012). It must be highlighted that after several numerical
realizations (at least 10 times) of KMC MATLAB code for sites dissolution of portlandite
crystal, contributions of 100 or 100, and 001 or 001 facets have not been observed at all. In
other words, not one site dissolved in the simulated time frame. Slow reacting facets were
simulated separately, to deal with the huge time differences to dissolve similar number of
atoms (results show later). The only variability in the numerical realizations was observed
for the contribution of 110 or 110 (facet 90◦) facets, resulting in 2% (8 numerical realizations,
Figure 6c) and 3% (2 numerical realizations), and 4% (8 numerical realizations, Figure 6d)
and 5% (2 numerical realizations) after 15,750, and 17,461 steps, respectively.
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Figure 5. Evolution of calcium hydroxide crystal morphology during an atom-by-atom site dissolu-
tion KMC simulation. Initial crystal (Figure 4) consists of 17,461 sites, and after 5250 (a,d), 10,500 (b,e),
and 15,750 (c,f) dissolution steps. Each step is representative of one site dissolution. Figures on the
right side (d–f) represent a 180-degree rotation about (a) axis of the crystals on the left side (a–c).
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The dissolution time of each individual site along 5250 (a), 10,500 (b), 15,750 (c), and 
17,461 (d) steps were shown in Figure 7. It is clear that the majority of sites from both 
facets of 010 or 010 (green point), and 110 or 110 (purple cross) have been dissolved 
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selection which is close to 1 for dissolution time computation. However, the trend of 
random number selection is uniform, and it is impossible to avoid those larger random 
number selections close to 1. 

Figure 6. Contribution of each facet during sites dissolution of the whole crystal morphology of
portlandite, after 5250 (a), 10,500 (b), 15,750 (c), and 17,461 (d) steps. Each step is representative of
one site dissolution. Green and purple colors show the percentage of sites dissolution, which took
place from 010 or 010 (facet 60◦), and 110 or 110 (facet 90◦) facets, respectively.

The dissolution time of each individual site along 5250 (a), 10,500 (b), 15,750 (c), and
17,461 (d) steps were shown in Figure 7. It is clear that the majority of sites from both facets
of 010 or 010 (green point), and 110 or 110 (purple cross) have been dissolved between
10−11 to 10−14 seconds as shown in (a–c). Those sites which have been dissolved for the
time less than 10−14 second are concerning to the larger second random number selection
which is close to 1 for dissolution time computation. However, the trend of random number
selection is uniform, and it is impossible to avoid those larger random number selections
close to 1.
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Figure 7. Each point or cross represents the dissolution time for each site along 5250 (a), 10,500 (b),
15,750 (c), and 17,461 (d) steps. Each step is representative of one site dissolution. Green point and
purple cross show the time of each site dissolution, which take place from 010 or 010 (facet 60◦), and
110 or 110 (facet 90◦) facets, respectively.

On the one hand, Figure 8 has been plotted to illustrate the time evolution of the total
number of dissolved sites after 5250 (a), 10,500 (b), 15,750 (c), and 17,461 (d) steps. The
slope of the line stays monotonic from almost 2000 to 15,750 sites dissolution (a–c). This is
due to the almost identical total rate constant (ktot) for each step computation, resulting in
little change of the statistical average of a dissolution kinetics (inverse of slope in Figure 8).
In contrast, the slope of the total number of dissolved sites for the first 2000 sites behaved
differently, i.e., exhibiting a dynamical increase in the averaged dissolution rate within the
region highlighted with the green ellipse in Figure 8a. At the beginning of the dissolution
process, the event probability to be selected for site dissolution on the edges, sides, and
facets of 010 or 010 (facet 60◦) due to the Ca atoms having more neighbors (e.g., Ca with one
or two neighbors, Table 3 scenarios a and b). As time goes on with more site dissolution,
the formation and then contribution of scenario c with no neighbors on the facets of 110
or 110 (facet 90◦) gradually appears, which has a higher probability to be dissolved due
to the greater rate constant. It is also worth mentioning that for the remaining 1711 sites,
the dissolution time for 010 or 010 (facet 60◦) facets increased (between 10−11 to 10−9) in
comparison to 110 or 110 (facet 90◦) facets (between 10−12 to 10−15) as shown with the
green and purple ellipses in Figure 7d, respectively. In other words, the contribution of
scenario c from facets of 110 or 110 can increase the average dissolution rate (i.e., decrease
the time of dissolution per step) as shown with the purple ellipse in Figure 7d because of
greater rate constant in comparison to the scenarios a and b of 010 or 010 facets. Therefore,
the slope of the line changes as shown with the green ellipse in Figure 8d.
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Figure 8. Time evolution of sites dissolution for the crystal morphology consisting of 17,461 sites
during 5250 (a), 10,500 (b), 15,750 (c), and 17,461 (d) dissolution steps. Each step is representative of
one site dissolution.

Figure 9 shows the time evolution of sites dissolution of portlandite for each facet
independent from contributions of other facets. From the slope of the curve in Figure 9b,
the steady-state dissolution rate for the most reactive facets (010 or 010) was obtained to be
67.2 × 1010 s−1 (i.e., the number of Ca atoms per second, for the specific case simulation).
In more common mole units and normalized to the facet area, this can be recalculated
to be 1.0443 mol/(s cm2) by considering the Avogadro’s constant and that the initial
facet area of the most reactive (010 and 010) facets is in total 106.86 nm2 (=6.094 nm
× 8.768 nm × 2 facets). By considering the full crystal with two basal facets and all six
lateral (rectangular) facets, the rate would be an order of magnitude lower (normalized to
larger facet area).
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capture the concentration gradients at the interface. The solution in a hydrodynamic 
boundary layer is expected to have a much higher (Ca2+ and OH−) ion concentrations, than 
as simulated by our fully diluted (forward reaction rate) case. Realistic experimental may 
result in some precipitations (backward reaction) on the measured portlandite facet that 

Figure 9. Time evolution of sites dissolution of the whole crystal morphology of portlandite for each
facet independent from contribution of other facets. 001 or 001 (a), 010 or 010 (b), 110 or 110 (c), and
100 or 100 (d).

Evolution of dissolution rates (i.e., slopes) for the rest of facets is shown in Figure 9. Ob-
tained steady-state dissolution rates are in decreasing order is as follows: 0.0032 mol/(s cm2)
for 110 or 110 (c), 2.672 × 10−7 mol/(s cm2) for 001 or 001 (a), and 0.31 × 10−16 mol/(s cm2)
for 100 or 100 (d), facets.

Such huge differences in dissolution rates for the different facets were already dis-
cussed in Part 1 of paper [1]. At the atomistic scale, the interfacial properties are reflecting
the chemical composition, type of bonds, and crystallographic orientation of the exposed
facets, impurities incorporated in the crystal, and lattice defects. However, at the meso-
scopic level, the solution properties involve the nature of the solvent and its composition
(saturation level), ionic strength, temperature, hydrodynamic conditions and other parameters.

Finally, it is interesting to attempt an (ambitious) comparison with available macro-
scopic measurements from literature [41], which reported a value of 5.40 × 10−8 mol/(s cm2).
It should be noted that to be able to make such a comparison a huge gap needs to be further
upscaled in order to reach the macroscopic predictions. In experimental measurements the
dissolution of portlandite was found to be controlled by the ion diffusion process through
stagnate hydrodynamic interface layer. Therefore, the comparison of the KMC upscaling
approach with experimental data is still very limited and requires updates on both experi-
mental (downscaling) and modeling (upscaling) sides. On the modeling side, the atomistic
KMC should incorporate the effect of solution concentration on atomistic processes and
be coupled with continuum-based models to capture the concentration gradients at the
interface. The solution in a hydrodynamic boundary layer is expected to have a much
higher (Ca2+ and OH−) ion concentrations, than as simulated by our fully diluted (forward
reaction rate) case. Realistic experimental may result in some precipitations (backward
reaction) on the measured portlandite facet that would significantly reduce the dissolution
rate [7]. Moreover, experimental measurement was undertaken on pressed portlandite
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powder tablets polished with 1 um spray; thus, the facet roughness and porosity, being
far from perfect, further signify diffusion mechanisms. Moreover, the information of the
crystal morphology and facets distribution available at the disk facet was not reported in
Wang et al. [41]. Certainly, the real fractional distribution of each facet being exposed to the
solution interface is another (statistical) parameter that would enable direct prediction of
the overall rate, and thus compare it with macroscopic measurements.

4. Conclusions

The comparison between ∆Ha (DFT) and ∆G* (metaD) results showed very good
qualitative agreement, capturing same trends as a function of neighbor configurations. The
∆Ha trend had a consistent shift for a mean relative difference of −45% +/−4%, due to the
combined effect of entropy and temperature (0 vs. 289 K).

For KMC, 16 different atomistic scenarios for Ca dissolution were considered depend-
ing on the existing neighbors for facets of 001 or 001, as well as three different facets of 100
or 100, 001 or 001, 010 or 010, and 110 or 110. This allowed the computation of KMC for
upscaling of the atomistic rate constants of the different scenarios into mesoscale rate and
enabled the visualization of the evolution of crystal morphologies during the dissolution
process (Figures 3 and 4).

The results showed that the facets of 001 or 001, and 100 or 100 represented a very
small dissolution rate constant, which allowed two scenarios from 010 or 010 and one
scenario from 110 or 110 facets to contribute to the dissolution process. Moreover, the
upscaled dissolution rate follows a linear trend from almost 2000 to 15,750 sites, and finally
the upscaled rate of site dissolution for 010 or 010 (facet 60◦) facets decreased due to the
reduction of the facet sites for the computation of the total rate constant.

The steady-state dissolution rate for the most reactive facets (010 or 010) was reported
to be 1.0443 mol/(s cm2), while 0.0032 mol/(s cm2) for 110 or 110, 2.672 × 10−7 mol/(s cm2)
for 001 or 001, and 0.31 × 10−16 mol/(s cm2) for 100 or 100 were obtained in a decreasing
order for less reactive facets. These results are important for a general understanding of the
cement hydration and other chemical processes with portlandite.
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