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Analysis of genetic characteristics of pig breeds using information 
on single nucleotide polymorphisms

Sang-Min Lee1,a, Jae-Don Oh1,a, Kyung-Do Park1,*, and Kyoung-Tag Do2,*

Objective: This study was undertaken to investigate the genetic characteristics of Berkshire 
(BS), Landrace (LR), and Yorkshire (YS) pig breeds raised in the Great Grandparents pig farms 
using the single nucleotide polymorphisms (SNP) information.
Methods: A total of 25,921 common SNP genotype markers in three pig breeds were used 
to estimate the expected heterozygosity (HE), polymorphism information content, F-statistics 
(FST), linkage disequilibrium (LD) and effective population size (Ne).
Results: The chromosome-wise distribution of FST in BS, LR, and YS populations were within 
the range of 0-0.36, and the average FST value was estimated to be 0.07±0.06. This result indi
cated some level of genetic segregation. An average LD (r2) for the BS, LR, and YS breeds was 
estimated to be approximately 0.41. This study also found an average Ne of 19.9 (BS), 31.4 (LR), 
and 34.1 (YS) over the last 5th generations. The effective population size for the BS, LR, and 
YS breeds decreased at a consistent rate from 50th to 10th generations ago. With a relatively 
faster Ne decline rate in the past 10th generations, there exists possible evidence for intensive 
selection practices in pigs in the recent past. 
Conclusion: To develop customized chips for the genomic selection of various breeds, it is 
important to select and utilize SNP based on the genetic characteristics of each breed. Since 
the improvement efficiency of breed pigs increases sharply by the population size, it is impor
tant to increase test units for the improvement and it is desirable to establish the pig improvement 
network system to expand the unit of breed pig improvement through the genetic connection 
among breed pig farms.

Keywords: Effective Population Size; F-statistics; Heterozygosity; Linkage Disequilibrium; 
Polymorphism Information Content

INTRODUCTION 

An investigation of the genetic architecture is the first important step towards genomic selection 
for the improvement of pig breeds. Today, the genetic information on breeding pigs has been 
accumulating. If the reference population is entirely established in the future, genomic selec-
tion can be possible and used to increase selection accuracy through the use of genomic and 
phenotypic data along with pedigree information [1].
  A comprehensive information on the genetic diversity and introgression is essential for 
an improvement of national breeding as well as the design of conservation programs. In the 
past, the genetic diversity in pigs was mostly reported using information on both microsatellite 
markers [2,3] and mtDNA [4]. However, the advantages of single nucleotide polymorphism 
(SNP) over microsatellite or mtDNA are that they represent the major source of genetic vari-
ation, show low mutation rates, and are associated with complex heritable traits [5]. Nowadays, 
thousands of SNP information are readily available, with the advent of next generation se-
quencing technology [6]. Through various high-density SNP panels, the Illumina Porcine 

* �Corresponding Authors: 
Kyung-Do Park
Tel: +82-63-219-5502, Fax: +82-63-219-5505, 
E-mail: doobalo@jbnu.ac.kr
Kyoung-Tag Do
Tel: +82-64-754-3334, Fax: +82-64-754-0000, 
E-mail: challengekt@gmail.com

  1 �Department of Animal Biotechnology, Chonbuk 
National University, Jeonju 54896, Korea

  2 �Department of Animal Biotechnology, Jeju National 
University, Jeju 63243, Korea

a These authors contributed equally to this work.

ORCID
Sang-Min Lee
https://orcid.org/0000-0001-8549-879X
Jae-Don Oh
https://orcid.org/0000-0001-7756-1330
Kyung-Do Park
https://orcid.org/0000-0002-1945-6708
Kyoung-Tag Do
https://orcid.org/0000-0001-5188-7295

Submitted Apr 19, 2018; Revised May 20, 2018;  
Accepted Aug 6, 2018

Open Access



486    www.ajas.info

Lee et al (2019) Asian-Australas J Anim Sci 32:485-493

60k Bead Chip allows for more precise and comprehensive 
genome-wide investigation of genetic diversity, and the degree 
of admixture among pig breeds [7-9].
  Linkage disequilibrium (LD), on the other hand, existing 
within population could assist in determining the relationship 
among the SNPs which affect the economic traits, mapping 
the quantitative trait locus (QTL), and selecting the tagging 
SNP. Additionally, the LD between SNP among specific physi-
cal distance can be used to estimate the effective population 
size, and to identify the genetic diversity through genetic char-
acteristics [10]. Furthermore, the QTLs governing pig economic 
traits have been studied frequently, primarily through genome-
wide association studies using single marker regression [11-13].
  This experiment was conducted to investigate the genetic 
characteristics and effective population sizes of Berkshire, Land-
race, and Yorkshire pig breeds raised in the great grandparent 
(GGP) farms using the SNP information.

MATERIALS AND METHODS 

Description of single nucleotide polymorphism data
A total of 3,710 pigs of consisting of the Berkshire (1,615), Land-
race (1,041), and Yorkshire (1,054) were genotyped using 
Porcine SNP 60k and 61,565 SNP were collected.
  To ensure the quality of the genotypic data, SNP on the sex 
chromosomes, SNP without information on chromosome, SNP 
with higher than 10% of missing rate, SNP without polymor
phism (all homo or hetero), SNP with less than 1% of minor 
allele frequency and SNP with more than 23.93 (p<10–6) of 
Hardy-Weinberg disequilibrium chi-squared value, and animals 
with more than 10% of SNP missing rate were excluded from 
the analysis.
  We found that 30, 3, and 19 pigs in Berkshire, Landrace and 
Yorkshire breeds had an SNP missing rate higher than 10%, 
respectively. Therefore, the number of pigs (SNP) after quality 
control in Berkshire, Landrace and Yorkshire were 1,585 (38,962), 
1,038 (26,392), and 1,035 (40,783) pigs, respectively. In this 
study, only the 25,921 common SNPs among three breeds were 
used for analyses.

Statistical models
Expected heterozygosity: The expected heterozygosity (HE) of 
a locus is defined as the probability that an individual is hetero-
zygous in the population.
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of the ith and jth alleles in the population, respectively [16]. 
The PIC is defined as the probability that the marker geno-
type of a given offspring will allow deduction, in the absence 
of crossing over, of which of the two marker alleles of the af-
fected parents it received [17].
  F-statistics (FIS,FST,FIT): The F-statistics were used for com-
paring the genetic characteristics among the breeds.
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one of genotypes of the two loci is homozygote, the frequency 
of haplotype can be calculated, but when the two loci are double 
heterozygotes it is difficult to distinguish the coupling (A1B1/
A2B2) and repulsion (A1B2/A2B1) by the DNA chip analysis. 
Therefore, using the EM algorithm [22] that determines maxi-
mum likelihood estimates for the parameters in the probability 
model which depends on the invisible potential variables, con-
ditional probabilities for coupling (A1B1/A2B2) and repulsion 
(A1B2/A2B1) were calculated and the value of LD was estimated 
through the repeated arithmetic calculation until the amount 
of change reaches less than 10–5 [23].
  Effective population size: The effective population size was 
determined based on a simple expectation from the amount of 
LD and a given chromosome segment. Since LD breaks down 
more rapidly over the generations for loci that are further apart, 
LD at large distances reflects Ne at recent generations [24].

 

6 
 

repulsion (A1B2/A2B1) were calculated and the value of LD was estimated through the repeated arithmetic 143 

calculation until the amount of change reaches less than 10–5 [23]. 144 

Effective population size: The effective population size was determined based on a simple expectation from 145 

the amount of LD and a given chromosome segment. Since LD breaks down more rapidly over the generations 146 

for loci that are further apart, LD at large distances reflects Ne at recent generations [24]. 147 

 148 

𝑁𝑁𝑒𝑒 =
(𝑟𝑟𝑐𝑐2)−1 − 1

4𝑐𝑐  149 

 150 

where, Ne is the effective population size t generations ago, c is the recombination distance between the SNP in 151 

Morgan, c = (1/2t), 𝑟𝑟𝑐𝑐2 is the mean value of r2 for markers that are c Morgan apart. It was assumed that 1 cM of 152 

physical distance and 1 Mb of genetic distance were identical.  153 

 154 

RESULTS AND DISCUSSION  155 

 156 

Expected heterozygosity  157 

Figure 1 illustrates the distribution of expected heterozygosity for chromosome-wise SNP in the studied pig 158 

breeds. All three pig breeds showed a similar trend in the HE estimates. The estimates of the average HE in the 159 

Berkshire, Landrace, and Yorkshire were 0.33±0.15, 0.36±0.14, and 0.36±0.14, respectively. While the estimates 160 

of the average HE were low in Berkshire, they were the same in Landrace and Yorkshire. Ai et al [25] reported 161 

that research regarding genetic diversity of 18 pig breeds using 60K SNP Chip showed the similar expected 162 

heterozygosity (0.38) of Landrace and Large White. The results of this study indicated the same about expected 163 

heterozygosity. The estimates of the average HE were found to be highest in Sus scrofa chromosome 6 (SSC6 164 

(0.36±0.15) of Berkshire, SSC18 (0.38±0.12) of Landrace, and SSC14 (0.38±0.13) and SSC16 (0.38±0.13) of 165 

Yorkshire. On the other hand, the lowest HE estimates, in contrast, were found in SSC15 (0.29±0.16), SSC10 166 

(0.34±0.13), and SSC1 (0.34±0.14) in Berkshire, Landrace, and Yorkshire pigs (Figure 1).  167 

 168 

Polymorphism Information contents  169 

The estimates of PIC obtained using the HE values represented polymorphism information on each gene locus 170 

[16]. The estimates of the average PIC in Berkshire, Landrace, and Yorkshire breeds were 0.26±0.11, 0.28±0.10, 171 

and 0.29±0.10, respectively. 172 

where, Ne is the effective population size t generations ago, c 
is the recombination distance between the SNP in Morgan, c 
= (1/2t), 

6 
 

repulsion (A1B2/A2B1) were calculated and the value of LD was estimated through the repeated arithmetic 143 

calculation until the amount of change reaches less than 10–5 [23]. 144 

Effective population size: The effective population size was determined based on a simple expectation from 145 

the amount of LD and a given chromosome segment. Since LD breaks down more rapidly over the generations 146 

for loci that are further apart, LD at large distances reflects Ne at recent generations [24]. 147 

 148 

𝑁𝑁𝑒𝑒 =
(𝑟𝑟𝑐𝑐2)−1 − 1

4𝑐𝑐  149 

 150 

where, Ne is the effective population size t generations ago, c is the recombination distance between the SNP in 151 

Morgan, c = (1/2t), 𝑟𝑟𝑐𝑐2 is the mean value of r2 for markers that are c Morgan apart. It was assumed that 1 cM of 152 

physical distance and 1 Mb of genetic distance were identical.  153 

 154 

RESULTS AND DISCUSSION  155 

 156 

Expected heterozygosity  157 

Figure 1 illustrates the distribution of expected heterozygosity for chromosome-wise SNP in the studied pig 158 

breeds. All three pig breeds showed a similar trend in the HE estimates. The estimates of the average HE in the 159 

Berkshire, Landrace, and Yorkshire were 0.33±0.15, 0.36±0.14, and 0.36±0.14, respectively. While the estimates 160 

of the average HE were low in Berkshire, they were the same in Landrace and Yorkshire. Ai et al [25] reported 161 

that research regarding genetic diversity of 18 pig breeds using 60K SNP Chip showed the similar expected 162 

heterozygosity (0.38) of Landrace and Large White. The results of this study indicated the same about expected 163 

heterozygosity. The estimates of the average HE were found to be highest in Sus scrofa chromosome 6 (SSC6 164 

(0.36±0.15) of Berkshire, SSC18 (0.38±0.12) of Landrace, and SSC14 (0.38±0.13) and SSC16 (0.38±0.13) of 165 

Yorkshire. On the other hand, the lowest HE estimates, in contrast, were found in SSC15 (0.29±0.16), SSC10 166 

(0.34±0.13), and SSC1 (0.34±0.14) in Berkshire, Landrace, and Yorkshire pigs (Figure 1).  167 

 168 

Polymorphism Information contents  169 

The estimates of PIC obtained using the HE values represented polymorphism information on each gene locus 170 

[16]. The estimates of the average PIC in Berkshire, Landrace, and Yorkshire breeds were 0.26±0.11, 0.28±0.10, 171 

and 0.29±0.10, respectively. 172 

 is the mean value of r2 for markers that are c Mor-
gan apart. It was assumed that 1 cM of physical distance and 
1 Mb of genetic distance were identical. 

RESULTS AND DISCUSSION 

Expected heterozygosity 
Figure 1 illustrates the distribution of expected heterozygosity 
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Yorkshire were 0.33±0.15, 0.36±0.14, and 0.36±0.14, respec-
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of 18 pig breeds using 60K SNP Chip showed the similar ex-
pected heterozygosity (0.38) of Landrace and Large White. 
The results of this study indicated the same about expected 
heterozygosity. The estimates of the average HE were found 
to be highest in Sus scrofa chromosome 6 (SSC6 (0.36±0.15) 
of Berkshire, SSC18 (0.38±0.12) of Landrace, and SSC14 (0.38± 
0.13) and SSC16 (0.38±0.13) of Yorkshire. On the other hand, 
the lowest HE estimates, in contrast, were found in SSC15 (0.29± 
0.16), SSC10 (0.34±0.13), and SSC1 (0.34±0.14) in Berkshire, 
Landrace, and Yorkshire pigs (Figure 1). 

Polymorphism information contents 
The estimates of PIC obtained using the HE values represented 
polymorphism information on each gene locus [16]. The es-
timates of the average PIC in Berkshire, Landrace, and Yorkshire 

breeds were 0.26±0.11, 0.28±0.10, and 0.29±0.10, respectively.
  Across the chromosomes, the estimates of PIC for the SNP 
was highest in SSC6 (0.28±0.10) of Berkshire, SSC18 (0.30± 
0.08) of Landrace, and SSC14 and 16 (0.30±0.09) of Yorkshire. 
On the other hand, the lowest values of PIC were observed 
for SSC15 (0.23±0.12) in Berkshire, for SSC10 (0.27±0.09) 
in Landrace, and for SSC1 (0.27±0.10) in Yorkshire. Overall, 
the estimates of PIC were lower than those of the average 
HE (Table 1).

Pairwise t-test
Using the estimates of the average HE and PIC in each breed, 
pairwise t-tests were performed, across the breeds. 
  For the HE estimates, there was no significant (p<0.05) dif-
ference in SSC1 and SSC8 in the comparison between Berkshire 
and Landrace, and in SSC6 and SSC8 in the comparison be-
tween Berkshire and Yorkshire, and in SSC2, SSC3, SSC8, 
SSC10, SSC12, SSC15, and SSC17 in the comparison between 
Landrace and Yorkshire. For the PIC estimates of the average, 
there was no significant (p<0.05) difference in SSC1 and SSC8 
in the comparison between Berkshire and Landrace, and in 
SSC6 and SSC8 in the comparison between Berkshire and 
Yorkshire, and in SSC1, SSC2, SSC3, SSC8, SSC10, SSC12, 
and SSC17 in the comparison between Landrace and Yorkshire 
(Table 2).
  However, the pairwise t-tests using all SNP revealed sig-
nificant differences (p<0.01) in the estimates of the average 
HE and PIC among Berkshire, Landrace, and Yorkshire breeds 
(Table 2). According to the study of Edea et al [26], the HE esti-
mate was reported to be lowest in Berkshire breed (0.31±0.17), 
highest in Landrace breed (0.42±0.22), while that of Yorkshire 
breed was reported to be 0.35±0.17. The results of this study 
were consistent with those of the study [26], and the estimates 
of expected heterozygosity were observed the same pattern 
(Berkshire, 0.327±0.017; Landrace, 0.363±0.012; and York-
shire: 0.361±0.011).

F-statistics 
To investigate differences in the genetic characteristics, F-sta-
tistics were estimated among Berkshire, Landrace, and Yorkshire 
populations. The estimates of FST by chromosome among breeds 
were in the range of 0 to 0.36, and the distributions of FST for 
chromosome-wise SNP were shown Figure 2. Previous study 
showed that FST among Berkshire, Landrace, and Yorkshire 
breeds are 0.22 for Berkshire vs Landrace, 0.24 for Berkshire 
vs Yorkshire, and 0.20 for Landrace vs Yorkshire [26]. As the 
FST value by chromosome among breeds increased, the fre-
quency of SNP definitely decreased, and the same trend was 
shown in all chromosomes. 
  When the FST value among breeds was less than 0.05, the 
number of SNPs was 12,008 (46.3%), while it was 12,901 (49.8%) 
when the FST value was between 0.05 and 0.2. Also, when the 
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Figure 1. Chromosome-wise distribution of single nucleotide polymorphism heterozygosity (dots) and their average (solid line) in Berkshire (a), Landrace (b) and Yorkshire (c).

(a) 

(b) 

(c) 
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FST value among breeds was more than 0.2, it was 1,012 (3.9%). 
The average FST in all chromosomes was 0.07±0.06. This result 
indicated that some genetic segregation has occurred partly. 

Linkage disequilibrium 
The average physical distance between adjacent SNP pairs by 
chromosome was largest in SSC6 (126.59 kb), smallest in SSC14 
(66.73 kb) and the overall average distance was 94.09 kb (Table 
3). A total of 22,571,445 SNP pairs were used to estimate LD 
(r2). The estimates of the average r2 between adjacent SNP were 
0.411, 0.408, and 0.413 in Berkshire, Landrace, and Yorkshire, 
respectively. Similar results were reported in Landrace, York-
shire, Hampshire and Duroc in the USA and their estimates 
were 0.36, 0.39, 0.44, and 0.46 [27]. However, Uimarie and 
Tapio [28] reported that their estimates were 0.47 (Yorkshire) 
and 0.49 (Landrace) in Finland, which were higher than those 
of our results. Across the chromosomes, the estimate for the 
r2 between adjacent markers was highest in SSC1 of the Berk-
shire breed (0.47), SSC14 of the Landrace breed (0.49), and 
SSC1, SSC13 and SSC14 (0.47) of the Yorkshire breed (Table 4).
  The values of r2 decreased with increasing distance between 
SNP pairs (Figure 3) and the most rapid decline was observed 
over the first 2 Mb. But r2 decreased more slowly with increas-
ing distance and was constant after 5 Mb of distance [28]. In 
each breed, the pattern and magnitude LD decline with dis-
tance at less than 10 Mb were almost similar.

Effective population size
It can be predicted that when the LD (r2) between SNP located 
within close physical distances is low, genetic recombination 

Table 1. Chromosome-wise polymorphism information content (PIC) in 
Berkshire (BS), Landrace (LR), and Yorkshire (YS) pigs

SSC BS LR YS

1 0.27 ± 0.14 0.27 ± 0.10 0.27 ± 0.10
2 0.25 ± 0.11 0.28 ± 0.10 0.28 ± 0.09
3 0.26 ± 0.11 0.29 ± 0.09 0.29 ± 0.09
4 0.26 ± 0.11 0.29 ± 0.09 0.28 ± 0.10
5 0.25 ± 0.11 0.27 ± 0.11 0.29 ± 0.09
6 0.28 ± 0.10 0.29 ± 0.09 0.29 ± 0.09
7 0.27 ± 0.11 0.29 ± 0.09 0.29 ± 0.10
8 0.28 ± 0.11 0.28 ± 0.10 0.29 ± 0.09
9 0.26 ± 0.11 0.28 ± 0.10 0.29 ± 0.09
10 0.25 ± 0.11 0.27 ± 0.09 0.28 ± 0.10
11 0.26 ± 0.11 0.29 ± 0.09 0.28 ± 0.09
12 0.26 ± 0.11 0.28 ± 0.10 0.28 ± 0.10
13 0.27 ± 0.10 0.29 ± 0.09 0.28 ± 0.10
14 0.26 ± 0.11 0.28 ± 0.10 0.30 ± 0.09
15 0.23 ± 0.12 0.29 ± 0.09 0.28 ± 0.10
16 0.26 ± 0.10 0.28 ± 0.10 0.30 ± 0.09
17 0.26 ± 0.10 0.28 ± 0.10 0.29 ± 0.10
18 0.27 ± 0.11 0.30 ± 0.08 0.29 ± 0.09
Overall 0.26 ± 0.11 0.28 ± 0.10 0.29 ± 0.10

SSC, Sus scrofa chromosome.

Table 2. Chromosome-wise mean differences1) for heterozygosity (HE) and polymorphism information content (PIC) among Berkshire (BS), Landrace (LR), and Yorkshire (YS) 
breeds

SSC
HE ((|D| ) PIC ((|D| )

BS vs LR BS vs YS LR vs YS BS vs LR BS vs YS LR vs YS

1 0.0049NS 0.0119** 0.0069** 0.0041NS 0.0078** 0.0036NS

2 0.0487** 0.0487** 0.001NS 0.0349** 0.0362** 0.0013NS

3 0.0366** 0.0438** 0.0073NS 0.0265** 0.0319** 0.0054NS

4 0.0383** 0.0258** 0.0125** 0.0285** 0.0196** 0.0089**
5 0.0304** 0.0523** 0.0219** 0.0209** 0.0376** 0.0167**
6 0.0141** 0.0029NS 0.0113* 0.0106** 0.0031NS 0.0075*
7 0.0321** 0.0243** 0.0078* 0.0238** 0.0181** 0.0057*
8 0.0013NS 0.0071NS 0.0083NS 0.0001NS 0.0068NS 0.0067NS

9 0.381** 0.0515** 0.0134** 0.0274** 0.0366** 0.0092**
10 0.0273** 0.0380** 0.0107NS 0.0218** 0.0281** 0.0063NS

11 0.0450** 0.0332** 0.0118* 0.0335** 0.0251** 0.0084*
12 0.0282** 0.0187* 0.0094NS 0.0208** 0.0144** 0.0065NS

13 0.0190** 0.0102* 0.0088* 0.0133** 0.0069** 0.0064*
14 0.0245** 0.0478** 0.0233** 0.0169** 0.0335** 0.0166**
15 0.0754** 0.0656** 0.0098NS 0.0553** 0.0484** 0.0069
16 0.0219** 0..0600** 0.0382** 0.0143** 0.0414** 0.0271**
17 0.0288** 0.0515** 0.0227** 0.0198** 0.0342** 0.0144**
18 0.0398** 0.0306** 0.0092NS 0.0298** 0.0229** 0.0068NS

Overall 0.0289** 0.0327** 0.0038** 0.0211** 0.0236** 0.0144**

SSC, Sus scrofa chromosome; NS, not significant. 
1) Differences were inferred based on pairwise T test.
* p < 0.05, ** p < 0.01.
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at that locus occurred a long time ago. Similarly, when the r2 
between SNP located within far physical distances is high, ge-
netic recombination at that locus occurred recently. The extent 
of genetic recombination can be estimated by the population 
size, while the Ne across the generations can be estimated from 

Table 4. Mean linkage disequilibrium (r2) estimates for adjacent (ADJ) and all 
pairs (ALL) of SNP in Berkshire (BS), Landrace (LR), and Yorkshire (YS)

SSC
BS LR YS

All ADJ All ADJ All ADJ

1 0.05 0.47 0.02 0.46 0.02 0.47
2 0.04 0.40 0.03 0.39 0.03 0.39
3 0.04 0.38 0.03 0.39 0.03 0.34
4 0.03 0.42 0.02 0.41 0.02 0.43
5 0.03 0.35 0.02 0.35 0.02 0.35
6 0.03 0.38 0.03 0.40 0.03 0.43
7 0.03 0.40 0.03 0.39 0.02 0.38
8 0.04 0.39 0.02 0.37 0.03 0.40
9 0.04 0.36 0.03 0.38 0.03 0.42
10 0.03 0.34 0.02 0.37 0.02 0.32
11 0.04 0.39 0.03 0.35 0.02 0.33
12 0.04 0.41 0.03 0.37 0.03 0.36
13 0.04 0.41 0.04 0.41 0.04 0.47
14 0.05 0.46 0.04 0.49 0.03 0.47
15 0.03 0.44 0.02 0.43 0.02 0.43
16 0.04 0.39 0.03 0.39 0.04 0.39
17 0.04 0.41 0.03 0.37 0.03 0.40
18 0.05 0.43 0.04 0.38 0.03 0.36
Overall 0.04 0.41 0.03 0.41 0.03 0.41

SSC, Sus scrofa chromosome.

the r2 [10,29]. The Ne for the Berkshire, Landrace, and York-
shire over 1st-5th generation was estimated to consist of 19.87, 
31.41, and 34.09 pigs, respectively (Figure 4). It was reported 
in a previous study that the Ne of the Landrace and Yorkshire 
in Finland consists of approximately 80 and 55 pigs, respec-

Table 3. Chromosome-wise number of SNP, SNP pairs and average distance 
between adjacent marker pairs (ADAM, kb) among three pig breeds

SSC No. of SNP No. of SNP pairs ADAM (kb) 

1 3,233 5,224,528 97.26
2 1,728 1,492,128 93.73
3 1,218 741,153 117.26
4 1,996 1,991,010 71.86
5 1,126 633,375 98.44
6 1,243 771,903 126.59
7 1,994 1,987,021 67.41
8 1,252 783,126 117.72
9 1,656 1,370,340 92.56
10 827 341,551 93.91
11 885 391,170 98.55
12 651 211,575 97.39
13 1,999 1,997,001 108.92
14 2,302 2,648,451 66.73
15 1,414 998,991 111.24
16 872 379,756 99.54
17 929 431,056 74.66
18 596 177,310 100.73
Overall 25,921 22,571,445 94.09

SNP, single nucleotide polymorphism; ADAM, average distance between adjacent 
marker; SSC, Sus scrofa chromosome.

Figure 2. Chromosome-wise FST estimates of single nucleotide polymorphisms in Berkshire, Landrace and Yorkshire.
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Figure 3. Changes in linkage disequilibrium estimates (r2) between single nucleotide polymorphism markers within 10 mega base (Mb) pair distance.

Figure 4. Changes in past effective population size (Ne) in Berkshire (a), Landrace (b) and Yorkshire (c).
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tively [28]. 
  The effective population size was estimated small compared 
to those of the advanced countries in pig industry since the 
scales of domestic GGP farms were relatively small. Addition-
ally, closed herds have been maintained and inbreeding mating 
system have been applied.
  In Berkshire, the size of past Ne from 50th to 5th genera-
tions ago had changed noticeably, from 97.7 to 50, with a gradual 
increase in declining rate per generation (0.8% to 9.7%). Simi-
larly, Ne declines were also observed in Landrace (100.2 to 50) 
and Yorkshire (102.3 to 34.1) pigs, followed by a somewhat 
similar declining rate. The Ne for the Berkshire, Landrace, 
and Yorkshire decreased at constant slope from 50th genera-
tions ago to 10th generations ago, with a sharp decrease in the 
recent 10th generations. Similar results were reported in a study 
by Uimari and Tapio [28]. From these results, the intensive 
artificial selection seemed to be made from recent 10th gener-
ations (Figure 4).

CONCLUSION 

In order to develop customized chips for the genomic selection 
of various breeds, it is important to select and utilize SNP based 
on the genetic characteristics of each breed. Since the improve
ment efficiency of breed pigs increases sharply by the population 
size, it is important to increase test units for the improvement 
and it is desirable to establish the pig improvement network 
system to expand the unit of breed pig improvement through 
the genetic connection among breed pig farms.
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