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Abstract: Systems biology approaches in virology aim to integrate viral and host 

biological networks, and thus model the infection process. The growing availability of 

high-throughput “-omics” techniques and datasets, as well as the ever-increasing 

sophistication of in silico modeling tools, has resulted in a corresponding rise in the 

complexity of the analyses that can be performed. The present study seeks to review and 

organize published evidence regarding virus-host interactions for the arenaviruses, from 

alterations in the host proteome during infection, to reported protein-protein interactions.  

In this way, we hope to provide an overview of the interplay between arenaviruses and the 

host cell, and lay the foundations for complementing current arenavirus research with a 

systems-level approach. 
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1. Introduction 

1.1. Systems Biology as a Tool for Virus Research  

Cells can be considered as complex circuits of interlinked molecular processes, whose activation or 

deactivation depends on stimulus-sensing, signaling, and pathway regulation through feedback loops. 

These processes and relationships can also be described mathematically in biological networks, using 
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the concepts of graph theory, where cellular components such as proteins are represented as nodes or 

vertices, and biological relationships, for example protein-protein interactions, are indicated by 

connectors or edges. Recent technical advances that have allowed high-throughput and multivariate 

investigations of biological processes have generated a wealth of data about relationships in the cell 

that lends itself to such analyses. Systems biology refers to the study of how interactions between the 

components of a biological system give rise to the functions and behavior of that system, and can 

therefore be conceptually defined as a holistic approach to the investigation of biological processes. 

Virus infection imposes new variables on the cell circuitry. On the one hand, viral components or 

‘patterns’ are sensed by the infected cell, leading to the activation of distinct signaling cascades and 

alterations in cellular gene expression. In addition, the virus itself specifically targets cellular pathways 

as it attempts to deflect anti-viral attacks, and subvert the cellular machinery to complete its replication 

cycle. Such virus-induced modifications thus amount to a re-wiring of the biological circuitry of the 

host [1,2]. Of note, this re-wiring is often achieved by the virus targeting specific ‘hubs’ within the 

cell, defined as proteins with many interacting partners and/or that are central to several pathways, and 

which are identified in network analyses by parameters of connectivity and centrality [3,4]. In this 

way, even a small number of viral proteins can impact a large number of host processes and produce a 

complex phenotype that may be difficult to interpret without a systems-level approach.  

As a practical consequence of these types of analyses, the modeling of virus-induced perturbations 

of the host network can be used to identify potential viral targets or hubs, which can then be 

experimentally tested. For example, network analysis predicted that enoyl-coA isomerase activity was 

important for HCV infection [5], and this was subsequently confirmed experimentally [6].  

Similarly, networks can be used to predict additional consequences of any experimentally observed 

virus-host interaction, which may in turn provide an explanation for other observed pathogenic effects. 

In Coxsackie virus B3 infection, the contribution of an autocrine feedback circuit involving the 

proinflammatory cytokines TNF and IL-1 to virus-induced myocardial damage was initially predicted 

through network analysis [7]. Ultimately, identifying the most basic or direct levels of the host-virus 

interface in this way can suggest important targets for the development of antiviral therapies. 

1.2. The Arenaviruses and Studies of their Impact on the Host Cell 

The arenaviruses express only 4 proteins: an RNA-dependent RNA polymerase (L) that carries out 

viral RNA synthesis, a matrix protein (Z) that drives viral budding, a nucleoprotein (NP) that 

encapsidates viral RNA, and a glycoprotein (GP) that mediates entry. Similar to other viral systems, 

some of these proteins are multitasking “swiss-army knife” proteins. For example, the Z protein of 

lymphocytic choriomeningitis virus (LCMV), in addition to its role in viral egress and budding, has 

been shown to interact with PML [8] to repress EIF4E-dependent translation [9,10], and to associate 

with the ribosomal protein P0 [11], although the functional relevance of this latter interaction has not 

yet been determined.  

Additionally, certain large-scale analyses of host proteomics [12–14], kinomics (study of 

phosphorylation changes) [15], transcriptomics [16–18], and metabolomics (changes in levels of small 

molecules) [19] have been undertaken to investigate the consequences of arenavirus infections. 

However, any resulting biological networks that were created only included the results of these 
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individual studies. There is at present no integrated study linking all published findings relating to 

arenavirus-host interactions, and combining both the results of high throughput studies and more 

traditional single protein or pathway analyses. This review therefore seeks to summarize and organize 

current knowledge about arenavirus-host interactions in the context of a network, and to discuss 

current concepts in the analyses of such networks, in order to provide a “starter kit” systems biology 

reference as a supporting tool for arenavirus research.  

2. General Concepts in Systems Biology 

2.1. Mathematical Concepts to Describe Biological Systems  

A network is a collection of nodes or vertices connected by edges, which define pairwise 

relationships between the nodes. Networks are also referred to as graphs, with graph theory 

designating the mathematical field dedicated to the study of networks properties. Graph theory as a 

mathematical discipline is generally considered to date back to 1736, with the demonstration by 

Leonard Euler of the impossibility of finding a non-redundant path allowing the crossing of all seven 

bridges of Königsberg, which linked two islands to the rest of the city. By reformulating the problem 

in abstract terms, where land was represented as nodes and bridges as edges, Leonard Euler laid the 

foundations for graph theory [20]. However, despite attempts during the 20th century to introduce 

systems-level thinking into biology, notably with the work of Ludwig Von Bertalaffy [21,22], it is only 

in the early 2000’s with the development of high throughput molecular techniques, that systems 

biology has emerged as a significant field in biology. Attempts at modeling biological systems using 

existing mathematical tools revealed that, while some basic mathematical properties of networks could 

be ascribed biological relevance [23–30], novel analytic tools are needed in order to more aptly deal 

with the complexity of biological network architecture [31–36]. In this section, we will describe 

general network characteristics and their correlation to biological processes. For further information on 

systems-level thinking and mathematical concepts in systems biology, we refer the reader to the more 

comprehensive introductory books by Choi [37] and Alon [38]. 

2.2. Basic Principles in Biological Networks  

In systems-level approaches to investigating cellular processes, the nodes within networks can 

represent any biological entity, including genes, proteins, complexes or small molecules.  

Edges represent the relationships between these entities, whether physical, for example receptor-ligand 

binding, or functional, such as the activation or inhibition of a given protein through phosphorylation 

(Figure 1A). A network can be composed of several connected components, i.e. groups of nodes can be 

connected to each other, but bear no common edges with the other subsets of nodes present within the 

network. A network is said to be fully connected if it is composed of a single connected component. 

Current knowledge of biological processes does not always allow the inclusion of specific nodes 

within the largest connected component of the network. These nodes may thus be found as single 

nodes, when no interaction has been characterized, or within a smaller connected component if 

information exists about their interaction with other biological elements, which also do not share an 

edge with any nodes of the largest connected component. It is important to note however, that this 
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absence of connection of specific nodes to the largest connected component may not necessarily reflect 

biological properties, but rather may result from the lack of experimental data on the entity represented 

by that node [39]. 

Figure 1. Basic concepts in network analysis. (A) Two nodes are connected by an edge. 

(B) One node is connected to several nodes, the blue color denotes the highest connectivity 

(k) value within the network. (C) The red node displays high centrality (b). The red square 

designates a 4-node clique. (D) The network is more complex, the red node indicates the 

node with the highest centrality, but is not the node with the highest connectivity  

(blue node). The light green and blue circles show two communities in this network, and 

their shared nodes, the bridging node is shown as green. 

 

2.3. Local Properties in Biological Networks  

Local properties in biological networks refer to properties pertaining to a single node within the 

environment of its immediate neighbors. An elementary measure in networks is that of node degree or 

connectivity (k), which refers to the number of edges incident to that node (Figure 1B).  

Biological networks are usually inhomogeneous, and contain highly connected subnetworks [40], 

which can be defined at local or global levels. Locally, the clustering coefficient or transitivity defines 

the degree to which neighbors of a specific node are connected to each other [40,41]. A clique, or 

complete graph, designates a subset of nodes within the network which are fully connected, i.e. there is 

an edge connecting any two nodes within this subset [42] (Figure 1C). As such, the definition of 

cliques has been shown to strongly correlate with that of protein complexes or functional modules 

within networks [26]. 
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2.4. Global Properties of Nodes and Edges  

These properties describe information about the relative importance of network elements to the 

structure of the network. A common attribute within the network is the definition of the shortest path 

or geodesic, which is defined as the minimum distance between any two nodes in the network.  

From this the mean path length can be calculated by averaging all shortest paths for any two nodes in 

the network. In biological systems, path length can be used to understand the reactivity of pathways, 

for example a short path length within a signaling cascade ensures an efficient “information” flow, 

where only a small number of intermediate steps are required between the initial sensing of a given 

stimulus and the induction of a biological response, for example induction of gene expression [27].  

Centrality or vertex betweenness (b) measures the number of shortest paths that pass through a 

given vertex (Figure 1C). This property theoretically describes the breadth of pathways a protein is 

involved with, and nodes with high scores are sometimes referred to as bottlenecks. High-betweenness 

or bottleneck-ness is a measure of the essentiality of a given protein to the biological system 

considered [28,29], and has been shown for protein-protein interaction networks to correlate with a 

regulatory function central to several pathways [30]. Centrality within the network can also be 

determined through edge betweenness, which calculates the number of shortest paths a specific edge 

participates in, and similarly to node betweenness, describes the essentiality of the biological 

relationship specified by the edge to the biological system considered. 

2.5. Understanding Network Structure: Defining Communities  

The goal of systems biology is to understand how the constitutive components of a network interact 

with each other. However, one of the main problem in systems biology is the mathematical 

characterization of such components in a way that is relevant to the elucidation of biological processes. 

In network theory, there are several ways to define subcomponents of a network, which we will refer 

to as communities, but which can also be designated as clusters, cohesive groups or modules. Most of 

the algorithms developed in graph theory rely on the definition of separated communities [43–45], 

which means that any node can only belong to one community. However, a biological element, for 

example a protein, can be part of several complexes or several pathways. In order to provide a better 

model for finding communities within biological networks, Palla and coworkers developed a novel 

algorithm, called the clique percolation method, which allows the identification of overlapping 

communities [31]. Analysis of a human infectome network using this algorithm revealed the 

unambiguous assignment of most communities to at least one cellular function [3], however reliable 

mathematical identification of complex biological associations, for example pathways, remains 

unresolved. Finally, the identification of shared nodes between communities also led to the 

characterization of bridging nodes, which, contrary to hubs which may be also shared by communities, 

display low local connectivity, but high centrality, and provide a link between one or more highly 

connected components [3] (Figure 1D). 
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3. Building and Analyzing an Arenavirus-Host Network 

3.1. Datasets for the Construction of the Arenavirus-Host Network 

Data pertaining to the arenavirus-host interplay was compiled from published studies on  

arenavirus-host protein-protein interactions [8–11,46–62], viral requirements for specific host  

factors [63–83], viral inhibition of host proteins [84–86], kinomics and proteomics studies of cellular 

changes in response to infection [12–15,87–107]. Data was also retrieved from studies describing  

co-localization of viral and host factors [108] or cellular factors that inhibit viral replication [109,110]. 

In total, 304 cellular proteins were identified as playing a role in arenavirus infection from this 

literature analysis (through September 2012). To simplify nomenclature, this primary set of 304 host 

proteins will be referred to as ‘host targets’ in this article. The proteins’ identities, as well as details of 

the nature of the virus-host interactions, and the specific viral systems in which the interaction was 

observed, are available in Table S1. 

The usefulness of any network will of course only be as good as the primary data used to create it. 

Therefore, we have carefully curated the primary literature to establish that the experimental data 

reasonably supported any conclusions made in a publication about interactions, before including it in 

the dataset. However, we have not assigned any weight to a given interaction. Instead, details are 

provided that a user can access to determine for his or herself the strength of the data supporting a 

given interaction, and are available through the Description and References section within Table S1, or 

through the Description and Reference attribute within the network. In both cases, information is 

provided about whether the interaction was identified during virus infection, or through a sub-viral 

system such as the co-expression in cells of specific viral proteins. 

A primary network was constructed, organized around the 4 arenaviral proteins and the 304 curated 

host targets. Protein-protein interactions and functional pathway information was then retrieved for 

each host target by searching the public databases available through Pathway Commons [111], and was 

merged with the primary network. Such functional enrichment of the primary network therefore allows 

a comprehensive overview of the host cell pathways affected by, or required during, arenavirus 

infection, based on current knowledge curated from the literature. A schematic of the network building 

process is shown in Figure 2, and the resulting arenavirus-host protein network is available as 

supplemental data (Supplemental Data—Arenavirus-Host Full Network.cys). 
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Figure 2. Construction of the arenavirus-host network. Schematic representation of 

steps in the construction of the arenavirus-host network. The four arenavirus proteins are 

represented by red nodes, host targets identified in the literature are blue nodes, and the 

directly interacting partners of these host targets, obtained from databases, are represented 

by green nodes. Black nodes represent proteins uploaded into the network through pathway 

enrichment performed on the host targets, and may contain, in addition to protein-protein 

interaction data, additional information about functional interactions between proteins. 

Edges indicate a relationship between two proteins, such as a direct protein-protein 

interaction or a process of protein modification, such as phosphorylation or ubiquitination.  

 

3.2. Programs for Building and Analyzing the Network 

The arenavirus-host network was constructed in Cytoscape 2.8 [112,113], a freely available 

software for complex network visualization [114]. Retrieval of host protein-protein interactions, as 

well as pathway enrichment, was performed using the cPath software [115], which enabled access 

from the Cytoscape platform to the Pathway Commons Web Service [111], a web-based interface that 

allows the simultaneous mining of biological databases such as Reactome or BioGrid. Network 

visualization was also carried out in Cytoscape 2.8. Details on how to use the Cytoscape software, as 

well as links to advanced tutorials, are available in Supplemental File II. 

General mathematical properties of the network, such as node connectivity and centrality, were 

determined using the R package igraph for network analysis [116]. A link to the igraph site, which 

includes information on how to download and use this software is provided in Supplemental File II. 

3.3. Embedding Information (Attributes) in the Network 

Any information regarding nodes and edges is encoded within the network as attributes.  

Different categories of information, such as gene or protein name, role in arenavirus infection, or the 

pathways the protein is active in, are encoded as individual attributes. For example the gene name of 

Viral proteins 

Host targets  

Direct interactants of host targets 

Pathway enrichment 
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any given node can be found under the attribute “biopax.xref.GENE_SYMBOL”. This information can 

be retrieved within Cytoscape by directly clicking on the node or edge of interest, which will result in 

the display of attributes values in the data panel. These attributes can also be used to search for specific 

elements within the network, such as nodes involved in a given biological process or pathway.  

For example, the user can configure Cytoscape search options, by clicking on the icon immediately to 

the right of the search box, to be based on the attribute category “nodes.ListPathway”. The user can 

then type in the desired request in the search box, such as the term “translation”, which will highlight 

all nodes involved in this pathway within the network, and provide a list of these nodes in the data 

panel. Attributes can also be used to specify differential displays within the network (such as the node 

color or size, but also the layout of the selected nodes), or can be used to create subnetworks through 

the use of filters (discussed in Section 3.5). 

3.4. Virus-Specific Elements Encoded within the Network  

The arenaviruses are distinguished serologically as belonging to either the Old World (LCMV 

complex) or the New World (Tacaribe complex) viruses, with the New World viruses being further 

divided into clades, A, B and C. The members of these groups have both common and distinct features, 

and pathogenic and non-pathogenic viruses are present in both of the two major serological complexes. 

The network we built includes all relevant information about the arenavirus-host relationships that we 

obtained from the literature, and includes observations about the following viruses: Old World (LASV, 

LCMV, MOPV, MOBV), New World clade A (PICV), clade B (JUNV, MACV, GTOV, AMAV, 

TCRV, SABV), clade C (OLVV, LATV), and clade A/B (WWAV). The network also contains 

information, where available, about different strains of viruses used, with human pathogenic strains 

denoted with a subscript ‘v’ and non-pathogenic strains with the subscript ‘a’, for example the 

attenuated PICV variant P2 is denoted PICVa, and the virulent PICV variant P18 is denoted as  

PICVv [117,118]. The information for each investigated virus is reported as string values (TRUE/ 

FALSE/ Not tested), indicating whether the interaction or the node has been confirmed for the specific 

virus indicated, or if no studies have yet evaluated the role of a host protein interaction for that 

arenavirus family member.  

Additional information linking the interaction to a summary of findings, and a reference to the 

original published report for a specific virus-host relationship, is also accessible within the network 

through the attribute “nodes.Description and References”. 

3.5. Using Filter-Set Subnetworks 

The advantage of building a full network, that includes information from all published reports, is 

that the information pertaining to all arenaviruses is encoded in one single file. This full or master 

network should be considered a work in progress, and future experimental data will both confirm and 

add to the value of the relationships embedded in the present version (September 2012). The network 

is also paradoxical, since it includes data that is both true and false for different viral systems.  

For example, the binding of GP to two known receptors for the arenaviruses, human transferrin 

receptor 1 and alpha-dystroglycan [50–57], is both true and false, depending on the virus strain. 

Therefore, in order to perform relevant systems-level analyses for the arenaviruses, the network should 
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be customized through the use of filters, from which a relevant subnetwork can be derived through  

user-driven curation, and depending on investigative needs.  

Filters can be set within from within the Cytoscape software. The available filters can be applied to 

any attribute that is assigned to either nodes or edges (for example, to select only viral host targets), as 

well as topology (for example, to select neighbors at a given distance from nodes of interest). Multiple 

filters can be combined through the use of Boolean links: AND (–node or edge selected must pass both 

filters), OR (–node or edge selected must pass at least one filter) and NOT (–to exclude nodes  

or edges).  

As a practical example, if a user wanted to generate a network displaying only the proteins that have 

been shown to play a role during infection by the pathogenic strains of JUNV, the following filter 

would be applied: nodes. JUNVv > TRUE. However, since this filter will only select a subset of the 

host target proteins, information and context could be lost. To put this data into a more relevant 

context, we have encoded a “Connect pathways” attribute. In this case, the user can select both the 

subset of viral host targets that are specific to pathogenic JUNV strains, as well as maintaining the 

integrity of the pathways that these proteins are involved in, by applying the following filter: 

nodes.Connect pathways >JUNVv. Finally, the specific subnetwork can be created and saved as a 

separate network through the path: File > New > Network > From selected nodes, All edges, and 

further analyzed using Cytoscape Network Analyzer, or other network analysis tools such as igraph.  

3.6. Identifying Potential Viral Targets Through Centrality and Connectivity Values 

Using the tools described above, we generated a subnetwork to investigate common viral host 

targets in arenavirus infection, and to analyze the role of these proteins in the context of the pathways 

they contribute to. As highlighted previously, viruses tend to target highly connected nodes within 

networks [3,4]. This can explain how viruses expressing only a small subset of proteins can subvert 

major cellular pathways, through the strategic targeting of these central elements. In order to identify 

potential hubs within the network, we plotted centrality values vs connectivity values for all nodes 

present in the common subnetwork (Figure 3B). The node with the highest connectivity value was 

found to be p53, a master regulator of cellular processes, whose steady-state levels are decreased 

during arenavirus infection [15], although no mechanism for this observation has yet been identified. 

Other hubs, which have already been identified as arenaviral host targets, include  

nucleophosmin [15], involved in ribosome biogenesis, and cytoskeletal elements such as  

vimentin [15], tubulin [70–72,77] and actin [13,70–72]. Amongst hub proteins that have not been 

previously identified as viral host targets, we found general adapters in signal transduction pathways 

such as YWHAZ or SHC1, as well as the master regulator AKT1 kinase, which is involved in many 

cellular processes such as metabolism, proliferation, cell survival and growth, and angiogenesis. These 

provide interesting leads for further investigation, since any direct effect on these proteins could 

potentially explain downstream phenotypes previously reported.  
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Figure 3. Common element network of arenavirus-host interactions, describing pathways 

targeted/perturbed during infection by all arenaviruses. (A) In this graphical representation, 

the arenaviral proteins (GP, NP, L and Z) are highlighted by dragging out of the main 

connected components, to facilitate visualization. Nodes are color-coded depending on role 

during arenavirus infection (see key in part b). Node size was correlated to node degree, to 

facilitate visualization of their relative importance within the network. Interested users can 

find the filter used to generate this network pre-loaded within the supplemental network 

file (Supplemental Data: Arenavirus-Host Full Network.cys; Filter name: Common 

elements of arenavirus replication). (B) Graphical representation of characteristics of nodes 

(connectivity and centrality values). Nodes of particular importance are revealed by high 

values in both parameters. The nodes are color-coded depending on their identified role 

during virus infection. 
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4. Biological Networks and Arenavirus Pathogenesis  

Despite the severity of the symptoms resulting from infection by pathogenic arenaviruses, which 

include hemorrhagic fevers and/or severe neurological symptoms, very limited tissue damage is 

typically observed in the vascular endothelium, brain, or other organs [119]. It is at present not clear 

what causes this significant morbidity, with the current hypothesis being that these effects are 

the consequences of as-yet-undescribed changes in the infected cell [120]. Thus, analysis of  

arenavirus-host networks may yield insights into the underlying basis of pathogenicity, by suggesting 

leads for further investigation.  

For example, analysis of an arenavirus network, built around gene products differentially expressed 

in virulent and avirulent LCMV infections of rhesus macaques, highlighted a potential role for the 

epidermal growth factor receptor EGFR in infection by pathogenic arenaviruses [17].  

Furthermore, EGFR also displayed different patterns of phosphorylation in a kinomics comparison of 

pathogenic and non-pathogenic PICV infections, which was correlated with activation or inhibition of 

its receptor activities [15]. EGFR is involved in signaling cascades that lead to a wide array of cellular 

changes such as cytoskeletal rearrangement, changes in gene expression, anti-apoptosis and increased 

cell proliferation, and it will be of great interest to elucidate its potential role in  

arenavirus pathogenesis. 

5. Convergence Between Different Virus-Host Networks  

Systems biology can also be used to compare different viral-host systems, in an attempt to identify 

common targets of viral infection, and thus highlight convergent mechanisms of viral pathogenesis. 

For example, Bowick and McAuley reported on a systems-level meta-analysis of high-throughput 

datasets from hemorrhagic fever systems of various viral aetiologies [121]. The data analyzed included 

proteomics studies of responses to PICV infection [14] and transcriptomics analyses carried out during 

LCMV infection [16,17], both of which are used as models for Lassa fever, as well as microarray 

analyses from heterologous viral systems such as the filovirus Ebola virus (EBOV) [122], and 

bunyavirus Rift Valley Fever virus (RVFV) [123]. This analysis resulted in the identification of 

cyclooxygenase-2 (COX-2) as a common viral target, which was downregulated during LCMV and 

RVFV infections, but upregulated during infection by EBOV [121]. As noted by the authors, this result 

can further be extended to infection by the flavivirus Dengue virus, which was found to induce COX-2 

expression [124]. COX-2 catalyzes the production of prostaglandin precursors, which are subsequently 

converted to active prostaglandin molecules such as prostacyclin PGI2, a vasodilator, by tissue-specific 

isomerases [125]. This finding of convergent targeting of prostaglandin pathways by hemorrhagic 

fever viruses from different families suggests an exciting new area of research towards unraveling the 

basis of hemorrhagic fever syndromes. 

Systems-level combining of virus-host networks of different viral families has also been undertaken 

in recently published studies [3,126]. One study investigating common host targets of 70 viral proteins 

from 30 viruses uncovered the ubiquitous viral targeting of hnRNPU, phosphatidylinositol-3 OH 

kinase (PI3K), the WNK kinase family, and the ubiquitin-specific  

peptidase 19 [126]. Interestingly, PI3K has already been identified as essential for arenavirus  
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infection [66–68], however, a direct interaction of PI3K with a viral partner has not yet been 

demonstrated. Moreover, hnRNPU, USP19 and WNK kinases 1 and 4 are also present in the 

arenavirus-host network, indicating their involvement in pathways identified for viral host targets. 

In an another study, Navratil and coworkers developed a model containing virus-host interactions 

for 110 viruses from 8 different viral families, constituting the most comprehensive pan-viral 

“infectome” network available at present. Further annotation of host proteins regarding their known 

involvement in diseases revealed the significant association of 57 viruses with 34 diseases [3].  

These studies are part of a current trend to investigate convergence in virus-host networks, and 

establish links through systems-level analysis between molecular characteristics and pathogenesis.  

One goal of these approaches is to generate a global viral infectome, with which to model general 

characteristics of the infected cell, and thereby identify suitable targets for the development of  

pan-viral therapeutic strategies. 

6. Systems Biology to Suggest Therapeutic Targets  

Therapeutic strategies that target cellular processes essential for virus infection are attractive since 

they are less likely to result in viral evolution towards drug-resistance [127]. In this way, biological 

networks can be used to identify candidate targets based on the mathematical properties of specific 

nodes. In network theory, situations where a small subset of proteins have a large number of 

interactions, while the majority of nodes have lower connectivity within the network, correlate with 

robustness against random attacks, which is characterized by the removal of any node or edge from the 

network. This robustness can be explained by the lower probability for a node with a higher number of 

interactions to be targeted in random attacks, meaning that the overall connectivity of the network is 

conserved. Analyses of these properties can be harnessed in biological networks towards the 

determination and testing of therapeutic targets in silico - effectively simulating an ‘attack’. In addition 

to hubs, bridging nodes (lower connectivity but connecting highly connected components), should be 

considered in attack analyses, since their removal could result in disconnection of the network.  

Network analysis of large-scale RNAi screens has been used to identify a correlation between the 

preference for viruses to interact with highly connected host proteins and the functional essentiality of 

these proteins in virus infection [3]. Furthermore, amongst the lower-connected proteins represented in 

those screens, a predominance of bridging elements was observed. Interestingly, when targeting 

bridging nodes within the network, a lower impact on network topology was observed than when 

targeting central nodes [3]. It has been argued that targeting bridging proteins instead of highly 

connected nodes might result in lower toxicity within the host [3,128,129]. While it is true that 

extensive network disruption is likely to be detrimental to the host, only empirical testing will truly 

determine drug toxicity versus efficacy, and indeed whether a temporary toxicity can be tolerated in an 

attempt to thwart a severe viral disease such as the arenviral hemorrhagic fevers.  

Systems biology is also used in pharmacogy for drug discovery or drug repositioning. By network 

analysis of phenotypic side-effect similarity of chemically dissimilar drugs, a recent demonstration was 

made of the power of systems biology to uncover shared cellular targets, and therefore potential 

alternative applications for existing drugs [130]. As networks grow in sophistication and power, 

reliable systems-level models of the infected cell or organism might not be so far ahead. And since the 
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pathogenic arenaviruses require BSL4 containment, the pre-screening, in silico, of the antiviral 

potential of existing drugs appears all the more an attractive option. 

7. Conclusions  

Systems biology has been readily embraced by virologists, with the creation of databases entirely 

devoted to virus-host relationships such as VirhostNet [131] or VirusMint [132], as well as  

virus-specific ones such as HCVpro [133], and with the development of increasingly comprehensive 

networks being developed for several viruses [3,134,135]. In this study, we provide the first 

comprehensive synthesis of all published accounts of arenavirus-host protein interactions  

(September 2012) and have used this information to build a “starter kit” arenavirus-host network. It is 

expected that future unbiased studies of protein-protein interactions, including proteomics screens, will 

significantly improve its accuracy. 

As -omics data become more abundant and refined, the next challenge for systems biology will be 

to integrate datasets pertaining to different biological entities (small molecules, proteins, genes) into a 

single network. At the same time, modeling of cellular processes, as well as viral infection, will need 

to take into account spatial (subcellular localization) and temporal (time post infection) parameters, in 

order to generate dynamic networks that more accurately reflect cellular processes. Also, in the  

(not-so-distant?) future, it might be possible to generate a reliable in silico model of 

arenavirus infection. 
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