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Abstract

Transcription factor and microRNA (miRNA) can mutually regulate each other and jointly regulate their shared target genes to
form feed-forward loops (FFLs). While there are many studies of dysregulated FFLs in a specific cancer, a systematic investiga-
tion of dysregulated FFLs across multiple tumor types (pan-cancer FFLs) has not been performed yet. In this study, using
The Cancer Genome Atlas data, we identified 26 pan-cancer FFLs, which were dysregulated in at least five tumor types. These
pan-cancer FFLs could communicate with each other and form functionally consistent subnetworks, such as epithelial to
mesenchymal transition-related subnetwork. Many proteins and miRNAs in each subnetwork belong to the same protein and
miRNA family, respectively. Importantly, cancer-associated genes and drug targets were enriched in these pan-cancer FFLs, in
which the genes and miRNAs also tended to be hubs and bottlenecks. Finally, we identified potential anticancer indications
for existing drugs with novel mechanism of action. Collectively, this study highlights the potential of pan-cancer FFLs as a
novel paradigm in elucidating pathogenesis of cancer and developing anticancer drugs.

Key words: pan-cancer; feed-forward loop; TF and miRNA regulatory network; gene and miRNA expression;
drug repositioning

Introduction

Transcription factors (TFs) are proteins that control the rate of
transcription from DNA to messenger RNA (mRNA) through
binding to specific DNA sequences [1]. A larger fraction of onco-
genes and tumor suppressor genes encode TFs [2]. Aberrant TF
activity can lead to dysregulation of genes involved in almost all
known cellular processes related to tumorigenesis, such as
apoptosis, proliferation, angiogenesis and metastasis [2, 3].
microRNAs (miRNAs) are small (�22 nucleotides) noncoding

RNAs that mainly repress gene expression at the posttranscrip-
tional level by binding to the 30 untranslated regions of the tar-
get mRNA [4]. Accumulating evidence has shown that miRNAs
may play oncogenic and/or tumor-suppressive roles in a variety
of human cancers [5]. To date, there were many Web servers
and databases to predict TF targets, such as JASPAR [6] and
TRANSFAC [7], or miRNA targets, such as TargetScan [8] and
miRanda [9]. However, the predicted targets usually had high
false-positive rates. With the accumulation of experimentally
validated TF and miRNA regulations, several databases had
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been developed to collect these curated regulations, such as
TRANSFAC [7] and TarBase [10].

Importantly, TFs and miRNAs can regulate the shared target
genes in a coordinated fashion [11], thus, forming the feed-
forward loops (FFLs) as regulatory units, in which TF regulates
miRNA or miRNA regulates TF, and both of them co-regulate
target genes [12]. According to the types of master regulators,
the FFLs can be divided into three groups: (1) TF is master regu-
lator, which regulates miRNA and target gene; (2) miRNA is
master regulator, which regulates TF and target genes; and (3)
TF and miRNA mutually regulate each other. The TF–miRNA
FFL has been reported as motif that is overrepresented in regu-
latory network, and can minimize expression fluctuation
against signaling noise [11]. During the past decade, network
approach based on TF–miRNA FFLs has been demonstrated as a
promising tool to dissect the etiology of many tumors [13], such
as glioblastoma [14], ovarian cancer [15], non-small-cell lung
cancer (NSCLC) [16] and T-cell acute lymphoblastic leukemia
[17]. For example, Mitra et al. identified the disrupted FFLs in
NSCLC from a predicted, but reproducible, TF and miRNA regu-
latory network, and found that miR-9-5p and miR-130b-3p could
inhibit the tumor-suppressive activity of TGF-b pathway by tar-
geting a core regulatory molecule TGFBR2 [16]. Recently, Yan
et al. proposed a novel method, dChip-GemiNI, to identify sig-
nificant TF–miRNA FFLs altered in cancer from a computation-
ally derived regulatory network. The authors evaluated this
approach in six data sets across five tumor types, and prelimin-
arily investigated FFLs that were cancer specific or common
across multiple tumor types [18]. However, many questions
about the common or specific regulatory mechanism in differ-
ent tumor types have not been fully addressed, such as which
FFLs are dysregulated across tumor types (pan-cancer FFLs) or
in a specific cancer? What about the functions, regulatory roles
and biological insights of the pan-cancer FFLs? Thus, systematic
analysis of the pan-cancer TF–miRNA FFLs and their clinical ap-
plications is urgent and necessary.

The availability of large-scale RNA-seq and miRNA-seq data
from The Cancer Genome Atlas (TCGA) project and the accumu-
lation of experimentally validated TF and miRNA regulations
allow us to decipher dysregulated FFLs in pan-cancer accurately.
In this study, we identified the dysregulated TF–miRNA FFLs in
13 tumor types through integrating the gene and miRNA expres-
sion data of matched tumor and normal samples from TCGA
into a curated TF- and miRNA-mediated regulatory network.
Here, we focused on the pan-cancer FFLs to investigate their bio-
logical insights. We identified 26 pan-cancer FFLs, defined to be
dysregulated in at least five tumor types. We found that they
were not independent; rather, they communicated with each
other to form several dense subnetworks. The genes and
miRNAs in the pan-cancer FFLs showed some meaningful func-
tional, topological and pharmacological properties, indicating
that they might play important roles in tumorigenesis. In add-
ition, targeting TFs or miRNAs is a promising strategy for mo-
lecular cancer therapy [19, 20]. Thus, we subsequently explored
the application of pan-cancer FFLs in anticancer drug develop-
ment. We found that the dysregulation of three FFLs, including
E2F1_hsa-miR-195-5p_CCND1, hsa-miR-34a-5p_E2F1_CCND1 and
JUN_hsa-miR-21-5p_MSH2, might be the potential mechanism of
action (MOA) of an anticancer drug arsenic trioxide (ATO).
Moreover, sulindac, which is used for the treatment of pain and
fever, might have the anticancer activity. In summary, we identi-
fied the pan-cancer dysregulated FFLs, explored their function

and demonstrated the potential ability to elucidate pathogenesis
of cancer and develop novel anticancer drugs.

Material and methods
Gene and miRNA expression data across 13 tumor types

Gene and miRNA expression data in matched tumor and normal
samples were obtained from TCGA project (as of September 2014).
To eliminate the bias from different platforms, we only extracted
gene and miRNA expression levels that were measured by
Illunima HiSeq platform. As a result, we obtained the gene and
miRNA expression data of 13 tumor types and matched normal
samples; the sample sizes ranged from 14 to 172 (see details in
Supplementary Table S1). Because we only used matched tumor
and normal samples, the number of tumor samples and the num-
ber of normal samples are the same. For miRNA expression, we
calculated the read counts and the reads per million values of
each mature miRNA from the isoform quantification files. Next,
we filtered out genes or miRNAs with low expression using the
edgeR R package [21]. Only genes or miRNAs having more than
one count per million (CPM) in at least half of the samples were
considered as detected genes or miRNAs, and they were retained
for further analysis. For example, in bladder cancer, the genes
were detected if they had CPM> 1 in at least 19 (38/2) samples.
Finally, the differential expression for genes and miRNAs was
evaluated by edgeR based on read counts. Here, we defined the
significantly differentially expressed (DE) genes and miRNAs at
the threshold of false discovery rate (FDR)< 0.05 and jlog2FCj> 1.

The TF–miRNA regulatory network

The regulations of TFs to genes were obtained from TRANSFAC
VR

Professional database (Release: 2014.2) [7]. The regulations of
miRNAs to genes were obtained from TarBase v6.0 [10] and
TRANSFAC

VR

Professional database. In TarBase, we only retained
the miRNA regulations that have been validated by low-
throughput experiments, such as reporter gene, northern blot,
western blot and quantitative PCR (qPCR). The regulations
of TFs to miRNAs were obtained from TransmiR v1.2 [22] and
TRANSFAC

VR

Professional database. Here, the TF and gene
names were mapped to Entrez IDs, and the miRNA names were
mapped to miRBase accession numbers of mature miRNAs.
We constructed the background regulatory network through
combining all TF and miRNA regulations, and then eliminated
all self-loops. As a result, the background regulatory network
consists of 10 046 regulations among 597 TFs, 498 miRNAs and
2581 target genes (Supplementary Table S2).

Definition of the TF–miRNA FFLs

In this study, we only considered the three-node FFLs, which in-
clude a TF, a miRNA and a target protein-coding gene.
According to the regulations between TF and miRNA, the FFLs
can be classified into three types. In the first type of FFL, which
is termed as TF-FFL, TF regulates protein-coding gene and
miRNA at transcriptional level, and miRNA represses gene ex-
pression at posttranscriptional level. Similarly, the miR-FFL was
defined as the structure that miRNA represses TF and gene ex-
pression, while TF regulates gene expression. In the last type
of FFL, TF and miRNA mutually regulate each other to form a
feed-back (FB) loop, and both of them regulate the shared target
genes. Thus, we denoted it as FB-FFL.
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Identification of the dysregulated TF–miRNA FFLs in
cancer

To evaluate the biological activity of a particular FFL, we inte-
grated the differential expression of all nodes and the differen-
tial co-expression of all edges in the FFL. First, the node score
was calculated through the Equation (1), which was based on
the significance of differential expression [23].

Ni ¼ u�1 1� pið Þ (1)

where pi is the P-value that represents the significance of ex-
pression change determined by edgeR. u�1 is the inverse normal
cumulative distribution function. Next, for each edge in the FFL,
we calculated the Spearman correlation coefficients based on
normalized read counts in tumor samples (rtumor) and normal
samples (rnormal) separately. The correlations were then trans-
formed by Fisher transformation as:

F rð Þ ¼ 1
2

ln
1þ r
1� r

(2)

Here, the edge score was calculated based on the difference be-
tween correlations in tumor samples and normal samples [24]
through Equations (3) and (4).

Ei ¼ u�1 1� 2� 1� u jDjð Þð Þð Þ (3)

D ¼ F rtumorð Þ � F rnormalð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:06

ntumor�3þ 1:06
nnormal�3

q (4)

where n is the number of samples. Finally, the FFL score is the
weighted sum of node scores and edge scores [25, 26] as follows:

S ¼ k

Xk

i¼1

Ni

ffiffiffiffiffiffi
kN

p þ ð1� kÞ

Xk

i¼1

Ei

ffiffiffiffiffi
kE

p (5)

where kN and kE are the numbers of nodes and edges in the FFL,
respectively (here both of them are 3). k (0� k� 1) is a weight
parameter controlling the respective contribution of the node
score and edge score. Here, we set k¼ 0.5 to balance the contri-
bution of nodes and edges.

We performed permutation analysis to estimate the signifi-
cance of each FFL score. We first randomly selected three mol-
ecules to construct a random FFL. This process was repeated
100 000 times. Next, we calculated the FFL score for each ran-
dom FFL according to the above equations and generated the
null distribution of FFL scores (as shown in Supplementary
Figure S1). The empirical P-value for an observed FFL was
defined as the proportion of random FFL scores (Srandom) larger
than the observed FFL score (S): P-value¼ (NSrandom> S)/Np, where
NSrandom> S is the number of random FFLs that have larger scores
than the particular FFL, and Np is the number of permutations.
In this study, only FFLs with P-value< 0.05 were considered as
dysregulated in the cancer of investigation.

Pathway analysis of genes and miRNAs in pan-cancer
FFLs

We used DAVID Bioinformatics Resources [27] to examine the en-
riched KEGG pathways for genes in pan-cancer FFLs. The signifi-
cance level was set to FDR< 0.01. Next, we investigated the

combinatorial effect on pathways of the miRNAs in pan-cancer
FFLs using the DIANA miRPath Web server [28]. Here, we used
‘TarBase’ to extract miRNA target genes and selected ‘pathways
union’ to merge the results. For each miRNA, FDR< 0.01 was used
as cutoff to identify the significant pathways. Only pathways that
were significantly regulated by at least five miRNAs were retained.

Results
Characteristics of curated TF and miRNA regulations

We obtained the experimentally validated TF and miRNA regu-
lations from TRANSFAC [7], TarBase [10] and TransmiR [22]
databases. After eliminating all self-loops, we obtained 10 046
regulations of 597 TFs and 498 miRNAs (Supplementary Table
S2). The curated TF and miRNA regulatory network was visual-
ized in Figure 1A. To have an overview of this integrated regula-
tory network, we examined the degree distribution of the
network by NetworkAnalyzer plug-in of Cytoscape [29]. The
power law distribution of the forms y¼ 1013.8� 10�1.516

(R2¼ 0.87), y¼ 2284.1� 10�2.127 (R2¼ 0.93) and y¼ 199.94� 10�1.131

(R2¼ 0.87) was fitted for degree (Figure 1B), in-degree (Figure 1C)
and out-degree (Figure 1D), respectively. These results indicated
that the curated TF and miRNA regulatory network satisfied ap-
proximate scale-free topology, which is the common feature of
the most biological networks [30]. Next, to get an insight into
the TF and miRNA regulations, we further investigated the rela-
tionship among the number of TFs, miRNAs and their targets.
As shown in Figures 1E and 1F, most (92.03%) genes are regu-
lated by a small number of TFs (i.e.�5 TFs), while only three
genes are regulated by more than>30 TFs. On the other hand,
most (71.19%) TFs regulate a few of genes (i.e.�5 genes), while
only two TFs regulate>200 genes. Based on the prediction re-
sults of miRNA targets, a miRNA can bind several hundred
genes, and a single gene can be targeted by multiple miRNAs
[31]. Remarkably, in the curated regulatory network that we
constructed here,>80% genes are regulated by a single miRNA
(Figure 1G), and only three miRNAs have>60 validated target
genes (Figure 1H). The same trend was observed for the TF regu-
lations of miRNAs. Most (77.64%) miRNAs are regulated by only
a few TFs (i.e.�5 TFs) (Figure 1I), and most (89.28%) TFs regulate
a small number of miRNAs (i.e.�5 miRNAs) (Figure 1J).

Differential expression pattern of genes and miRNAs
across tumor types

The gene and miRNA expression was measured using next-gen-
eration sequencing technologies. The data were downloaded
from the TCGA (Level 3). In this study, we analyzed expression
files of 13 tumor types, including bladder urothelial carcinoma
(BLCA), breast invasive carcinoma (BRCA), head and neck squa-
mous cell carcinoma (HNSC), kidney chromophobe (KICH), kid-
ney renal clear cell carcinoma (KIRC), kidney renal papillary cell
carcinoma (KIRP), liver hepatocellular carcinoma (LIHC), lung
adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC),
prostate adenocarcinoma (PRAD), stomach adenocarcinoma
(STAD), thyroid carcinoma (THCA) and uterine corpus endomet-
rial carcinoma (UCEC). Because the miRNAs in the curated regu-
latory network above are mature miRNAs, we extracted the
mature miRNA expression from the isoform quantification files.
Based on read counts, edgeR R package [21] was used to identify
the DE genes and DE mature miRNAs. At the significance level
of FDR< 0.05 and log fold change (jlog2FCj)> 1, the number of DE
genes (Figure 2A and Supplementary Table S3) and DE miRNAs
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(Figure 2B and Supplementary Table S4) in 13 tumor types
ranged from 1536 (PRAD) to 4349 (LUSC), and from 41 (PRAD) to
213 (UCEC), respectively. Next, we investigated the relationship
between the sample size and the number of DE genes or
miRNAs. The results did not show significant correlations for
DE genes (P¼ 0.455) or DE miRNAs (P¼ 0.139).

More than half of the genes were not DE in any tumor type,
while seven genes (C7, ADH1B, HSPB6, FXYD1, PLAC9, TMEM132A
and ASF1B) were DE in all tumor types (Figure 2C). These seven
genes had consistent expression pattern across 13 tumor types
(Figure 2D). For example, antisilencing function 1B histone
chaperone (ASF1B) was upregulated in all the 13 tumor types.
ASF1B is required for cell proliferation and is one of the most
frequently overexpressed histone chaperones in cancer [32].
The higher expression of ASF1B may alter nucleosome assem-
bly, resulting in genome instability and the promotion of
tumorigenesis [33], and has been demonstrated to have an asso-
ciation with increased metastasis and poor survival of breast
cancer [34]. Inhibition of ASF1B expression could decrease cell
proliferation, indicating the potential of ASF1B to be a new tar-
get for treatment of cancer. In addition, FXYD1 and HSPB6 were
overexpressed only in KIRC and LIHC, respectively, whereas
they were downregulated in other types of tumor. Similarly,
PLAC9 was downregulated in most tumor types, except for KIRC
and LIHC.

Furthermore, we found consistent overexpression of hsa-miR-
96-5p and hsa-miR-183-5p across 12 tumor types but not in KIRC

(Figure 2E and F), which was supported by the previous studies.
Hsa-miR-183-5p is a potential oncogenic miRNA, and is overex-
pressed in prostate cancer cells and tissues. The in vitro and in vivo
experiments demonstrated that inhibition of hsa-miR-183-5p
could decrease prostate tumor growth [35]. This miRNA has also
been reported to be upregulated in several other tumors, such as
colon cancer [36], breast cancer [37], liver cancer [38] and lung can-
cer [39]. Concordance in previously reported dysregulation pattern
of this miRNA with the results from TCGA miRNA-Seq expression
profiling data suggested that our downstream analysis had been
carried out using a reliable and high-quality data set.

Dysregulated FFLs in 13 tumor types

Based on the regulation between TF and miRNA, there are three
types of three-node FFLs, TF-mediated FFL (TF-FFL: TF and
miRNA regulate gene, and TF regulates miRNA); miRNA-medi-
ated FFL (miRNA-FFL: TF and miRNA regulate gene, and miRNA
regulates TF); and FB loop-mediated FFL (FB-FFL: TF and miRNA
regulate gene, and TF and miRNA mutually regulate each other)
(Figure 3A–C), in the TF–miRNA regulatory network. Here, we
identified 505 FFLs, including 244 TF-FFLs, 226 miRNA-FFLs and
35 FB-FFLs (Supplementary Table S5 and Supplementary Figure
S2A). Through combining the changes of nodes (differential ex-
pression) and edges (differential co-expression) between tumor
and normal samples, we evaluated the strength of association
between each FFL and each tumor type. We defined a FFL was

Figure 1. The curated TF and miRNA regulatory network and its node degree distribution. (A) The TF and miRNA regulatory network. Red, green and gray nodes repre-

sent TFs, miRNAs and target genes, respectively. The log-log plots show that the degree (B), in-degree (C) and out-degree (D) distributions follow the power law. (E, F)

The relationship between the number of TFs and their target genes. (G, H) The relationship between the number of miRNAs and their target genes. (I, J) The relationship

between the number of TFs and their target miRNAs. A colour version of this figure is available online at BIB online: https://academic.oup.com/bib.
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dysregulated in a tumor type if the score of the FFL in this tumor
was significantly larger than the scores of 100 000 random FFLs
(experimental P-value< 0.05). The significance information of all
the 505 FFLs across 13 tumor types is provided in Supplementary
Table S5. We identified that 267 FFLs were dysregulated in at
least one tumor type (Figure 3D and Supplementary Figure S2B),
among them E2F1_hsa-miR-195-5p_CCNE1 was most frequently
disrupted in nine tumor types (Figure 3D). The number of signifi-
cant FFLs detected in each tumor type ranged from 14 (KICH) to
94 (UCEC) (Supplementary Figure S2B). The significance of correl-
ation between the sample size and the number of dysregulated
FFLs was 0.133.

Next, we defined the FFLs that were dysregulated in at least
five tumor types as pan-cancer FFLs. This definition is arbitrary,
but we thought that this category of FFLs may reflect the com-
mon regulatory mechanisms on the pathogenesis of major
types of tumor. Based on this definition, we identified 26 pan-
cancer FFLs, as listed in Table 1 (see details in Figure 4A and
Supplementary Table S6). The number of pan-cancer FFLs (26)
was significant larger than random expectation (P< 0.001 in

1000 permutations). Through converging the 26 FFLs, we con-
structed a pan-cancer TF–miRNA regulatory network, which
consisted of 11 TFs, 15 miRNAs and 15 target genes (Figure 4B).
In this pan-cancer regulatory network, E2F1 acted as a hub with
degree 15, indicating that it was involved in many pan-cancer
FFLs. E2F1 encodes a member of the E2F family of TFs and plays
a crucial role in a wide range of cellular processes, including cell
cycle, differential, apoptosis and DNA damage [40, 41]. It had
also been reported that E2F1 was deregulated in many types of
cancers, such as bladder cancer, breast cancer and lung cancer
[41, 42].

Intuitively, the pan-cancer regulatory network was composed
of several independent densely connected subnetworks.
Surprisingly, the molecules in these subnetworks participated in
the consistent cellular processes, such as PI3K-Akt, MAPK and
Wnt signaling pathways, as well as cell cycle, DNA damage and
epithelial to mesenchymal transition (EMT) processes (Figure 4B).
These pathways and processes were all strongly related to
tumorigenesis and well documented in literature. For example,
EMT is a process by which cells lose their epithelial

Figure 2. DE genes and miRNAs in 13 tumor types. (A) The number of upregulated (in red) and downregulated genes (in green) in 13 tumor types. (B) The number of upregu-

lated (in red) and downregulated miRNAs (in green) in 13 tumor types. (C) The number of genes that were DE in different number of tumor types. (D) The expression pat-

terns of the seven most frequently DE genes across 13 tumor types. (E) The number of miRNAs that were DE in different number of tumor types. (F) The expression patterns

of the two most frequently DE miRNAs across 13 tumor types. A colour version of this figure is available online at BIB online: https://academic.oup.com/bib.
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characteristics and acquire properties of mesenchymal cells and
the ability to migrate, which usually occurs in the initiation of
metastasis for cancer progression [43]. In the EMT-related

subnetwork (the upper left subnetwork in Figure 4B), TWIST1,
SNAI2 and ZEB1 had been proved as key inducers of EMT, and
had demonstrated overexpression in many cancers [44]. In add-
ition, the miR-200 family members, such as miR-200b and miR-
200c, act as new epithelial markers and repressors of EMT
through inhibiting their target genes ZEB1 and ZEB2 [45]. Thus,
this subnetwork had been validated as the key regulatory module
for EMT.

To systematically identify pathways associated with the
pan-cancer FFLs, we used DAVID Bioinformatics Resources [27]
to identify KEGG pathways that were enriched with genes in
pan-cancer FFLs. At the significance level of FDR< 0.01, we
found that most of the pathways were cancer-specific path-
ways, such as prostate cancer pathway and bladder cancer
pathway, as well as P53 signaling, focal adhesion and Wnt sig-
naling pathways (Figure 4C). To further evaluate the combina-
torial effect of the 15 miRNAs in pan-cancer FFLs on KEGG
pathways, we used the DIANA miRPath Web server [28] to per-
form the pathway analysis[46]. Fourteen pathways were found
to be significantly regulated by at least five miRNAs (FDR< 0.01).
Similar to the result of genes in pan-cancer FFLs, most of the 14
pathways were cancer specific, as well as some well-known
cancer-related pathways, such as P53 signaling pathway, cell
cycle and PI3K-Akt signaling pathway (Figure 4D).

We found some highly connected protein families or miRNA
families, and their regulations. As mentioned above, two mem-
bers of miR-200 family, hsa-miR-200b-3p and hsa-miR-200c-3p
were involved in the EMT process and inhibited ZEB1 expres-
sion. Hsa-miR-17-5p and hsa-miR-20b-5p belonged to miR-17
family. Both of them formed FB loop with E2F1. Four miR-15
family members, involving hsa-miR-15a, hsa-mir-15b, hsa-
miR-16 and hsa-miR-195, were direct targets of E2F1. JUN, JUNB
and JUND are members of JUN protein family, which can control
cell cycle, proliferation and differentiation processes, and con-
tribute to malignant transformation [47]. In the pan-cancer FFL
subnetwork, all JUN family members regulated the expression
of hsa-miR-21-5p. Finally, four members of cyclin family,
CCND1, CCND2, CCND3 and CCNE1, were involved in the same
subnetwork, in which CCND1, CCND3 and CCNE1 were also
regulated by the same TF, E2F1. Cyclin family had been demon-
strated to be overexpressed in many cancers, and had been
proved to be oncogenic and contributing to the pathogenesis of
cancer [48]. By extracting all pan-cancer FFLs that involve cyclin
family members (Supplementary Figure S2C), we found dense
regulations between miR-15 family and cyclin family, and all of
them were targets of E2F1 (Supplementary Figure S2D), indicat-
ing that E2F1 was a pan-cancer TF, and achieved its function
through FFLs with the miR-15 family and the cyclin family.

We further analyzed the pan-cancer FFLs from multiple
functional and topological properties. First, we obtained the
cancer-associated genes from the Cancer Gene Census data-
base, which deposits and carefully curates the mutated genes
that are causally implicated in cancer [49]. We found that 13
(50%) genes in pan-cancer FFLs were cancer-associated genes,
marginally significantly more than that in all the FFLs (32%,
Fisher’s exact test P-value¼ 0.06) and significantly more than
that in the whole background regulatory network (8%, Fisher’s
exact test P-value< 0.01). Meanwhile, the proportion of cancer-
associated genes in all FFLs was significantly larger than back-
ground network (Fisher’s exact test P-value< 0.01). The result
indicated that genes in pan-cancer FFLs were preferred to be
cancer-associated genes (Figure 4E). Second, we downloaded all
the targets of the US Food and Drug Administration (FDA)-
approved drugs from the DrugBank database [50]. We found

Figure 3. The three types of FFLs and the distribution of the number of dysregu-

lated FFLs across tumor types. (A) TF-FFL: TF and miRNA regulate gene, and TF

regulates miRNA. (B) miRNA-FFL: TF and miRNA regulate gene, and miRNA

regulates TF. (A) FB-FFL: TF and miRNA regulate gene, and TF and miRNA mutu-

ally regulate each other. (D) The number of dysregulated FFLs in different num-

ber of tumor types. Specifically, E2F1_hsa-miR-195-5p_CCNE1 was dysregulated

in nine tumor types except for BRCA, KIRC, LIHC and PRAD. The red, green and

gray nodes represent TF, miRNA and target gene, respectively. The dots on

edges indicate either transcriptional activation or inhibition, while the hammer-

heads denote posttranscriptional suppression. A colour version of this figure is

available online at BIB online: https://academic.oup.com/bib.

Table 1. Summary of the pan-cancer FFLs

FFL types Dysregulated

FFLs

#(tumor

types)a

TF-FFL E2F1 hsa-miR-195-5p CCNE1 9

TF-FFL E2F1 hsa-miR-195-5p BCL2 7

TF-FFL E2F1 hsa-miR-15a-5p CCNE1 6

TF-FFL E2F1 hsa-miR-195-5p CCND1 6

TF-FFL ETS1 hsa-miR-21-5p MMP9 6

TF-FFL ETS1 hsa-miR-21-5p DAXX 6

TF-FFL TP53 hsa-miR-145-5p NDRG2 6

miRNA-FFL hsa-miR-34a-5p E2F1 CCND1 6

miRNA-FFL hsa-miR-34a-5p E2F1 BCL2 6

FB-FFL hsa-miR-17-5p E2F1 BCL2 6

TF-FFL E2F1 hsa-miR-15b-5p CCNE1 5

TF-FFL E2F1 hsa-miR-16-5p CCNE1 5

TF-FFL EGR1 hsa-miR-130b-3p LDLR 5

TF-FFL JUN hsa-miR-21-5p MSH2 5

TF-FFL JUNB hsa-miR-21-5p HPGD 5

TF-FFL JUND hsa-miR-21-5p MMP9 5

TF-FFL SNAI2 hsa-miR-200b-3p ZEB1 5

TF-FFL SNAI2 hsa-miR-200c-3p ZEB1 5

TF-FFL TP53 hsa-miR-145-5p ZFP36 5

TF-FFL TWIST1 hsa-miR-200b-3p ZEB1 5

miRNA-FFL hsa-miR-34a-5p E2F1 CCND3 5

miRNA-FFL hsa-miR-181b-5p E2F1 BCL2 5

miRNA-FFL hsa-miR-182-5p CREB1 CCND2 5

miRNA-FFL hsa-miR-182-5p MITF BCL2 5

miRNA-FFL hsa-miR-125b-5p ETS1 ERBB2 5

FB-FFL hsa-miR-20b-5p E2F1 BRCA1 5

aNumber of tumor types that the FFL detected.
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that the proportion of drug targets in pan-cancer FFLs (31%) and
all FFLs (27%) were significantly larger than that in the back-
ground network (17%) (Fisher’s exact test P-value< 0.01). In add-
ition, the proportion of drug targets in pan-cancer FFLs was
more than all FFLs (Figure 4F), although the difference was not
significant. The result suggested that the gene products in pan-
cancer FFLs were more likely to be druggable. Finally, we calcu-
lated two widely used topological properties, degree and
betweenness, to investigate the important roles of pan-cancer
FFLs in the regulatory network. Nodes with high degree are
highly connected and referred to hubs [30, 51], while nodes with
high betweenness control the fraction of information flow and
are referred to bottlenecks [52]. We found that the nodes in the
pan-cancer FFLs had significant higher degree (Figure 4G) and
betweenness (Figure 4H) than that in all FFLs and background
network (Wilcoxon rank sum test P-value< 0.01). This compari-
son indicated that nodes in pan-cancer FFLs tended to be the
hubs and bottlenecks in the curated TF–miRNA regulatory net-
work, implying their important functional roles.

From the identified dysregulated FFLs in different tumor
types (Supplementary Table S5), we could also find the cancer-
specific FFLs. There were 105 FFLs that were only disrupted in

one specific tumor type (Figure 3D). For example, IRF1_hsa-
miR-155-5p_VCAM1 was found to be dysregulated only in KIRC.
We found that all of the three molecules were significantly
DE in KIRC. The P-values of IRF1, hsa-miR-155-5p and VCAM1
were 1.12� 10�18, 2.64� 10�35 and 1.34� 10�82, respectively. In
addition, the dysregulated FFLs could be used to identify the
common FFLs shared by some tumor types of interest. For ex-
ample, lung adenocarcinoma and lung squamous cell carcin-
oma are two main subtypes of NSCLC. We found that there
were five common FFLs altered in both subtypes of NSCLC,
involving E2F1_hsa-miR-195-5p_CCNE1, E2F1_hsa-let-7a-5p_
AURKB, E2F1_hsa-miR-92a-3p_BCL2L11, EGR1_hsa-miR-30a-5p_
GNAQ and SPI1_hsa-miR-146a-5p_TLR4. Most of the genes
and miRNAs in these five FFLs had been examined and are aber-
rantly expressed in NSCLC [53].

Potential MOA of ATO and drug repositioning

In the above analyses, we found that the pan-cancer FFLs con-
tained the highest proportion of drug target genes compared
with all the FFLs and the whole regulatory network, indicating
that gene products in pan-cancer FFLs were favored to be

Figure 4. Pan-cancer FFLs and their functional analysis. (A) Pan-cancer FFLs and their significance in different tumor types. Light blue, blue and dark blue cubes repre-

sent the FFLs that were not significant (P>0.05), significant (P�0.05) and strongly significant (P�0.01) in the corresponding tumor type. (B) Pan-cancer TF–miRNA regu-

latory network and the function of each highly connected subnetworks. The members of the cyclin and Jun family are marked with red and blue stars, respectively.

Red, blue and orange triangles represent miR-15, miR-17 and miR-200 family, respectively. (C) The pathways that were significantly enriched with genes in pan-cancer

FFLs. (D) The significant pathways that were affected by miRNAs in pan-cancer FFLs. (E) The proportion of cancer-associated genes in pan-cancer FFLs, all FFLs and

background regulatory network. (F) The proportion of drug target genes in pan-cancer FFLs, all FFLs and background regulatory network. (G) The degree distribution of

all nodes in pan-cancer FFLs, all FFLs and background regulatory network. (H) The betweenness distribution of all nodes in pan-cancer FFLs, all FFLs and background

regulatory network. A colour version of this figure is available online at BIB online: https://academic.oup.com/bib.
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druggable. Here, we further analyzed the anticancer drugs that
targeted the gene products in pan-cancer FFLs. First, we obtained
the anticancer drugs according to the Anatomical Therapeutic
Chemical (ATC) classification system. If one drug has the first
two levels of ATC code L01 (antineoplastic agents), we considered
this drug as anticancer drug. We found a total of 21 FDA-
approved drugs that could target gene products in pan-cancer
FFLs, among which 9 drugs had the ATC code L01 (Table 2). By
comparing the proportion of all drugs with the L01 ATC code, we
found that the gene products in pan-cancer FFLs were more
likely to be targeted by anticancer drugs (hypergeometric test P-
value¼ 1.48� 10�6). Second, we constructed the pan-cancer FFLs
subnetworks that were targeted by the nine anticancer drugs
(Figure 5), in which ATO has two drug targets, CCND1 and JUN.
ATO is an ancient drug used in both traditional Chinese and
Western medicine, and has been demonstrated to have anti-
cancer activity, especially in acute promyelocytic leukemia
through promoting degradation of PML-RARa Oncoprotein [54,
55]. ATO can induce apoptosis, inhibit angiogenesis and promote
differentiation [56, 57], and thus, it has been investigated as one
promising general anticancer drug for both hematologic cancer
and solid tumors [56–58], such as esophageal cancer [57], neuro-
blastoma [57], lymphoma [59], hepatocellular carcinoma [60] and
sarcoma [61]. However, ATO can cause serious and sometimes
fatal side effects because of the toxic nature of arsenic. The MOA
of ATO is currently not completely understood. In the identified
pan-cancer FFLs, CCND1 and JUN are drug targets of ATO, which
span three pan-cancer FFLs (Figure 6). ATO is an antagonist of
CCND1, which has been validated in many cancers, such as blad-
der cancer [62], breast cancer [63], kidney cancer [64], liver cancer
[65] and NSCLC [66]. In this study, we found that CCND1 was
upregulated in most of the tumor types (Figure 6). Meanwhile,

ATO has been demonstrated to be an inducer of JUN through
regulating JNK and MAPK pathways in many cancers, such as
bladder cancer [67], prostate cancer [68], NSCLC [69], liver cancer
[70] and endometrial cancer [71]. Here, JUN was downregulated in
almost all tumor types in our pan-cancer analysis (Figure 6).
These results might suggest a novel potential MOA that the anti-
cancer activity of ATO was generated through regulation of
CCND1 and JUN, which in turn affected the TF–miRNA regulatory
FFLs, involving E2F1_hsa-miR-195-5p_CCND1, hsa-miR-34a-5p_
E2F1_CCND1 and JUN_hsa-miR-21-5p_MSH2. Finally, based on
the three pan-cancer FFLs that were affected by ATO, we could
predict the repurposing drugs for cancer therapy. For example,
three other drugs, irbesartan, pseudoephedrine and vinblastine,
can target JUN (Figure 6), indicating that the three drugs may af-
fect the pan-cancer FFL JUN_hsa-miR-21-5p_MSH2 through
mediating their drug target JUN as the mechanism of ATO. In
addition, we obtained the drugs that can affect miRNA expres-
sion from the SM2miR database, which collects the experimen-
tally validated small molecule drug effects on miRNA expression
[72]. We found that the expression of hsa-miR-195-5p, hsa-miR-
34a-5p and hsa-miR-21-5p could be regulated by some other
FDA-approved drugs, suggesting that they might have the anti-
cancer activity through modulating the pan-cancer FFLs.
Interestingly, most of the repurposing candidates are known
anticancer drugs (marked with red color in Figure 6), such as vin-
blastine, etoposide and paclitaxel. This demonstrated the reli-
ability of our approach. Thus, the other drugs were more likely to
have anticancer activity. For example, sulindac inhibits the ex-
pression of hsa-miR-21-5p [73] and might affect the pan-cancer
FFL JUN_hsa-miR-21-5p_MSH2 (Figure 6). Sulindac is one of the
nonsteroidal anti-inflammatory drugs, which has been shown to
inhibit the growth of many kinds of cancer, including colon,

Table 2. FDA-approved drugs that targeted genes in the pan-cancer FFLs

Drug Target ATC code

Afatinib ERBB2 Antineoplastic agents (L01)
Arsenic trioxide CCND1, JUN Antineoplastic agents (L01)
Docetaxel BCL2 Antineoplastic agents (L01)
Lapatinib ERBB2 Antineoplastic agents (L01)
Paclitaxel BCL2 Antineoplastic agents (L01)
Pertuzumab ERBB2 Antineoplastic agents (L01)
Porfimer LDLR Antineoplastic agents (L01)
Trastuzumab ERBB2 Antineoplastic agents (L01)
Vinblastine JUN Antineoplastic agents (L01)
Acetylsalicylic acid TP53 Stomatological preparations (A01)

Antithrombotic agents (B01)
Analgesics (N02)

Minocycline MMP9 Stomatological preparations (A01)
Antibacterials for systemic use (J01)

Ibuprofen BCL2 Cardiac therapy (C01)
Other gynecologicals (G02)
Anti-inflammatory and antirheumatic products (M01)
Topical products for joint and muscular pain (M02)

Captopril MMP9 Agents acting on the renin-angiotensin system (C09)
Irbesartan JUN Agents acting on the renin-angiotensin system (C09)
Glucosamine MMP9 Anti-inflammatory and antirheumatic products (M01)
Rasagiline BCL2 Antiparkinson drugs (N04)
Pseudoephedrine JUN Nasal preparations (R01)
Naloxone CREB1 All other therapeutic products (V03)
Adenosine monophosphate CREB1 NA
Ado-trastuzumab emtansine ERBB2 NA
Marimastat MMP9 NA
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Figure 5. The pan-cancer FFLs that were targeted by nine anticancer drugs. The red, green and gray nodes represent TF, miRNA and target gene, respectively.

Figure 6. The pan-cancer FFLs that were affected by arsenic trioxide. The bar plot in gray represents the expression pattern of CCND1 across 13 tumor types. The bar

plot in red represents the expression pattern of JUN across 13 tumor types. The drugs in red are anticancer drugs. The bottom table summarizes the dysregulation of

the FFL in the corresponding cancer; 1 denotes dysregulation, while 0 denotes no dysregulation. A colour version of this figure is available online at BIB online: https://

academic.oup.com/bib.
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esophagus, stomach, skin, breast, lung, prostate and urinary
bladder [74]. Sulindac, which is commonly prescribed for the
treatment of pain and fever, and to help ease arthritis symptoms,
has been demonstrated as a potential anticancer treatment that
induces apoptosis by binding to RXR-alpha [75].

Discussion

TFs and miRNAs are key regulators of gene expression at the
transcriptional and posttranscriptional level, respectively. Many
lines of evidence support that they mediate the target gene ex-
pression through coordinated regulation, and form the FFLs,
which are significantly overrepresented in the mammalian regu-
latory network [11, 76]. TF–miRNA FFLs influence many biological
processes mainly as noise buffering [13]. Over the past decade,
TF–miRNA FFLs have been widely used to identify the cancer-
associated genes or miRNAs in many tumor types, such as NSCLC
[16], glioblastoma [14], ovarian cancer [15] and T-cell acute
lymphoblastic leukemia [17]. However, such studies have focused
on the individual tumor type. Some critical questions have not
been investigated, such as (1) are there common FFLs that are
dysregulated in multiple tumor types? (2) Do these common FFLs
provide an alternative way for understanding tumorigenesis
and drug development? Here, we performed a comprehensive
analysis of TF–miRNA FFLs across 13 tumor types to identify the
pan-cancer FFLs, investigate the biological meanings and explore
the potential clinical application of the pan-cancer FFLs.

In this study, we first constructed the human TF–miRNA regu-
latory network based on experimentally validated TF and miRNA
regulations. In the procedure of construction of background regu-
latory network, we did not use the cancer-specific gene or miRNA
expression data. Thus, the network we constructed in this study
was general and cancer independent. In the following analysis,
through incorporating the expression profiles, we could identify
disrupted FFLs in each tumor type. To make the analysis more re-
liable, we extracted the gene and miRNA expression in matched
tumor and normal samples for 13 tumor types from TCGA. Next,
we identified the DE genes and miRNAs for each tumor type,
which can be used to discover the pan-cancer DE genes and
miRNAs. Because many ‘master regulators’ of a disease process
cannot be captured by differential expression analysis, differential
co-expression analysis has been developed and widely used for
identification of disease genes in the context of the regulatory sys-
tems [77]. The differential co-expression approach is complemen-
tary to differential expression analysis, which can not only
capture dynamic behaviors of disease genes, but also identify
genes with moderate differential expression signals. Here, we cal-
culated the association strength of one FFL with one tumor type
by combining the differential expression of nodes and differential
co-expression of edges. We identified 26 pan-cancer FFLs that
were significantly dysregulated in at least five tumor types, in
which there were 18 TF-FFLs, 7 miR-FFLs and 1 FB-FFL. Using
hypergeometric tests, we found that pan-cancer FFLs significantly
enriched only with TF-FFLs (P¼ 0.023), which indicated that TFs
acted as master regulators and might play more important roles
in tumorigenesis. In addition, we obtained one newly released
gene and miRNA expression data in 11 esophageal carcinoma
(ESCA) samples and 11 match normal samples from TCGA as an
independent data set. Of the 26 pan-cancer FFLs, 11 FFLs were sig-
nificant in ESCA. The hypergeometric test showed that the dysre-
gulated FFLs were significantly enriched with pan-cancer FFLs
(P¼ 0.006), which indicated that the pan-cancer FFLs were repro-
ducible to some extent. Furthermore, the sample size of the 13

tumor types ranged from UCEC (n¼ 14) to BRCA (n¼ 172). This
variation might affect the statistical tests and the stability of our
results. Thus, we randomly selected a portion of samples to evalu-
ate this affection. For example, BRCA had 86 tumor samples and
86 matched normal samples. We randomly selected 60, 40 and 20
pairs of tumor and normal samples to perform the same analysis.
The results showed that the ranks of differential expression of
genes and miRNAs, as well as the significance of FFLs in different
sample sizes, were all significantly correlated by Spearman correl-
ation, which also indicated that our results were stable and
reproducible.

To our knowledge, this study represents the first one to
identify dysregulated FFLs across multiple tumor types based
on experimentally validated TF and miRNA regulations. Thus,
we explored the biological insights of the pan-cancer FFLs in
depth, including both the viewpoints of function and network
topology. The identified pan-cancer FFLs formed several
densely connected subnetworks. Most of the genes and miRNAs
in each subnetwork participated in specific cellular processes
and are well documented to have important roles in tumorigen-
esis. Next, the pathway enrichment analysis revealed that the
pan-cancer FFLs were strongly associated with cancer-related
pathways, such as P53, Wnt and PI3K-Akt signaling pathways,
as well as focal adhesion and cell cycle processes. In addition,
we found that the genes in pan-cancer FFLs favored to be can-
cer-associated genes and drug targets, which indicated that
these genes might have the potential to be drug targets with
good druggable properties. Thus, targeting the genes in pan-
cancer FFLs might be a novel cancer therapeutic. Furthermore,
we investigated the relationship between these genes and pa-
tient outcomes by survival analysis using PROGgeneV2 tool [78].
The results showed that most of the genes were significantly
related to prognosis in different tumor types, which indicated
that these genes had the clinical significance. Finally, the topo-
logical analysis revealed that the molecules in pan-cancer FFLs
were more likely to be the hubs and bottlenecks. Collectively, all
these results indicated that the pan-cancer FFLs were not only
densely connected in terms of network topology but also highly
associated with cancer diagnosis, prognosis and treatment.

In this study, we further explored the clinical application of
pan-cancer FFLs for drug development. We found that the gene
products in pan-cancer FFLs tended to be targeted by anticancer
drugs. The FFLs may act as functional modules, providing the
potential MOA of drugs. In the pan-cancer FFLs, two genes,
CCND1 and JUN, are drug targets of ATO. CCND1 was overex-
pressed in most of the tumor types. ATO is the antagonist of
CCND1, which means it can inhibit the expression of CCND1. In
addition, ATO is the inducer of JUN, which was frequently
downregulated in almost all tumor types. There were three TF–
miRNA FFLs that involved CCND1 and JUN. The disruption of the
three FFLs might be the potential MOA of ATO. Furthermore, we
also found several FDA-approved drugs that can target or affect
the other genes or miRNAs in the three FFLs. Interestingly, most
of the drugs are anticancer drugs, indicating that the pan-can-
cer FFLs might be used for drug repositioning. For example, we
revealed that sulindac, a prescription drug for the treatment of
pain and fever, might have potential anticancer activity.

In summary, we identified the TF–miRNA FFLs in a curated
regulatory network, the DE genes and the miRNAs between tumor
and matched normal samples for 13 tumor types, and the pan-
cancer FFLs in the present study. Our analysis revealed the poten-
tial worth of pan-cancer FFLs in uncovering of the pathogenesis of
cancer and the MOA of drugs, as well as the drug repositioning.
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Key Points

• We have proposed an integrative systems biology ap-
proach to identify dysregulated feed-forward loops
across multiple tumor types (pan-cancer FFLs).

• Cancer-associated genes and drug targets were en-
riched in the pan-cancer FFLs.

• The genes and miRNAs in pan-cancer FFLs tended to
be network hubs and bottlenecks.

• The pan-cancer FFLs had potential to predict anticancer
indications for existing drugs with novel mechanism of
action.

• The dysregulation of three FFLs, including E2F1_hsa-
miR-195-5p_CCND1, hsa-miR-34a-5p_E2F1_CCND1 and
JUN_hsa-miR-21-5p_MSH2, might be the potential MOA
of an anticancer drug arsenic trioxide.
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Supplementary data are available online at https://academic
.oup.com/bib.
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