
Citation: Clin Transl Sci (2018) 11, 153–161; doi:10.1111/cts.12511
C© 2017 ASCPT. All rights reserved

TUTORIAL
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and Implications for Pharmacogenomics Research
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INTRODUCTION

Pharmacogenomics has revealed compelling genetic signals
associated with variability in drug response. Gene expres-
sion studies represent an additional approach to identify can-
didate genes accounting for drug response variability. This
review focuses on insights that might be gained through
analysis of the transcriptome to reveal the influence of gene
expression on variable drug response. We provide a basic
overview of RNA-Sequencing (RNA-Seq) and its applica-
tions, and outline advances in pharmacogenomics achiev-
able with RNA-Seq data.

POTENTIAL FOR SCIENTIFIC DISCOVERIES THROUGH
RNA-SEQUENCING

Every human cell in the body arises from the same set of
genetic information, yet only a fraction of genes is expressed
in any given cell at any given time.1 This carefully controlled
pattern of gene expression differentiates liver cells frommus-
cle cells, for instance, and healthy from diseased status.
Therefore, enhanced understanding of gene expression pat-
terns can lead to molecular pathways that underlie disease
susceptibility or drug response.
The complete transcriptome consists of protein coding

and long and short noncoding RNAs. We will focus here on
protein coding RNAs (mRNAs). The expression level of RNAs
represents the most immediate phenotype that can be asso-
ciated with cellular conditions (such as drug exposure or dis-
ease state), and regulatory variants in the gene locus itself
(cis-acting) or in trans-acting regulatory factors. Sequence
variation in regulatory regions that govern gene expression
is a main mediator of overall phenotypic diversity.2,3 On the
other hand, genetic variants in the transcribed region of a
gene can influence multiple RNA functions, such as splicing,
turnover, and translation.4 Therefore, RNA levels reflect the
combined influence of genetic factors, cellular conditions,
and environmental factors. We propose that regulatory vari-
ants are key factors and frequently represent causal muta-
tions in disease genetics5 and pharmacogenomics.6
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High-throughput DNA sequencing tools have provided a
new, comprehensive method for both mapping and quanti-
fying transcriptomes.7 RNA-Seq has emerged as an innova-
tive method for both mapping and quantifying transcriptome
signatures associated with diseases and traits.8–10 When
compared with other transcriptomic techniques, such as
microarrays, RNA-Seq has the ability to quantify expression
levels of all RNAs at a given gene locus, including RNA iso-
forms generated through alternative transcription and trans-
lation start sites, 3’UTR poly-adenylation sites, splicing, RNA
editing, and more. As a result, RNA-Seq characterizes the
complete transcriptome and facilitates discovery of differen-
tially expressed genes and RNA isoforms that are not oth-
erwise accessible. The power of sequencing RNA vs. using
oligonucleotides to assess gene expression with microarrays
lies in the fact that both transcript discovery and quantifica-
tion can be incorporated in one high-throughput sequenc-
ing assay with RNA-Seq. Thus RNA-Seq enables dynamic
assessment of mechanisms associated with disease and
drug response to bridge the gap between genomics and
phenotype,11,12 providing a powerful tool germane to preci-
sion medicine.

OVERVIEW OF THE RNA-Seq TECHNOLOGY

Until recently, microarrays have served as the most cost-
effective, reliable, and rapid technology for high-throughput
profiling of gene expression. However, microarrays require
a priori knowledge of sequences to be investigated,
limiting discovery of de novo splicing isoforms or novel
exons, transcripts, and genes (Table 1).7 In addition,
hybridization-based methods used in microarrays can also
limit the dynamic range of gene expression quantification
(Table 1), casting doubt on measurements of transcripts with
high or very low abundance.13

With widespread adoption of Next Generation Sequencing
(NGS) platforms, RNA-Seq, a methodology for RNA profil-
ing, using millions of short reads (sequence strings), enables
the investigation of all the RNA in a sample, theoretically.14

In practice, the input population of RNA, either total RNA or
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Table 1 Advantages of RNA-Seq compared with microarrays

Microarrays RNA-Seq

Principle Hybridization High-throughput sequencing

Resolution >100 bp Single base

Reliance on genomic sequence Yes Not necessarily

Background noise High Low

Dynamic range for gene expression quantification Few 100-fold >8,000-fold

Ability to distinguish isoforms Limited Yes

Ability to distinguish allelic expression Limited Yes

Required amount of RNA High (μg) Low (ng)

Figure 1 Schematic representation of the pre-messenger RNA
(mRNA), with exons and introns, and the RNA-Sequencing (RNA-
Seq) short reads mapped to the final m(RNA).

fractioned (such as poly(A) selected, capturing most mRNAs
and many noncoding RNAs), is converted to a library of
fragmented cDNA.14 Then, each fragment receives adaptors
attached to one or both ends.14 These fragments are ampli-
fied and sequenced in a high-throughput manner, generating
millions of short reads14 (Figure 1). Current RNA-Seq meth-
ods target RNAs with at least 200 base pairs, whereas short
noncoding RNAs, includingmicroRNAs, require separate iso-
lation and protocols.15,16

Depending on the sequencing platform (Illumina, Roche
454, Solid, Ion Torrent), read lengths typically range between
30–500 base pairs.17 Sequence length is an important
criterion since longer reads improve mappability for identifi-
cation of transcript and transcript isoforms.18 Another impor-
tant factor is the library size or read depth, which is the num-
ber of sequence reads for a given sample. The deeper the
sequencing level, the more sensitive and precise transcript
identification and quantitation will be.18 While some studies
advocate that read counts as low 5 million reads can accu-
rately quantify moderate to highly expressed genes,19 the
ENCODE best practices protocol recommends library sizes
with more than 25 million reads for a typical RNA-Seq proto-
col for investigating mRNA expression using poly-A selected
RNAs.20

Once high-quality reads are obtained, RNA-Seq reads are
computationally mapped to the human reference genome,
revealing a transcriptional map.7,21 Owing to extensive alter-
native splicing that occurs in the human transcriptome, the
alignment process is more challenging to map reads that
span splice junctions.17 Also, RNA-Seq read alignment is
complicated by the fact that short reads may be assigned
to multiple regions of the human genome.17 The most widely
used RNA-Seq alignment software programs use gene anno-
tation to achieve better placement of spliced reads and
correctly handle multiple short read assignment in the vast
majority of occurrences.22

Next, overlapping reads that were mapped to a par-
ticular exon are clustered into gene or isoform levels for
quantification.18 Raw read counts per gene locus alone are
insufficient to compare expression levels among samples.18

The most frequently reported measure of gene expression
from RNA-Seq analysis is R/FPKM (reads or fragments per
kilobase of exon model per million), a within-sample nor-
malization method that considers transcript length and total
number of mapped reads.18 The data analysis then allows
the characterization of gene expression levels that can be
applied to investigate distinct features of the transcriptome
diversity. As with all large-scale analyses, the resulting RNA
levels are subject to error, so that important findings need to
be replicated with alternative methods, such as quantitative
real time-polymerase chain reaction (qRT-PCR).

RNA-Seq APPLICATIONS

The beauty of the RNA-Seq tool lies in the fact that previously
distinct core activities of discovery and transcript quantifica-
tion now can be combined in a single high-throughput assay.
This approach provides a significant qualitative and quantita-
tive improvement to study the transcriptome, enabling detec-
tion of genes with low expression (given enough read counts
per sample), sense and antisense transcripts, RNA edits, and
novel isoforms, all at base pair resolution.7

mRNA expression profiling
One of the most biologically relevant applications of RNA-
Seq is the comparison of mRNA transcriptomes across
distinct developmental stages, across samples from dis-
eased vs. normal individuals, or other specific experimental
conditions.23 For this type of analysis, it is crucial to accu-
rately construct the isoform structure to assess transcript
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Figure 2 Genome-based assembly strategy for reconstructing transcripts from RNA-Seq reads. First, short RNA-Seq reads are aligned
to the reference genome, accounting for possible splicing events. Then transcripts are reconstructed from the spliced alignments. The
colors of the RNA-Seq reads represent the transcript isoform from which they are derived.

abundances when comparing multiple samples (Figure 2).17

This powerful approach is essential for the interpretation of
functional genomic elements and discovery of transcripts key
to molecular mechanisms underlying disease susceptibility
or drug response.

Alternative splicing
Alternative splicing events play a key role in shaping bio-
logical complexity and genomic diversity.24 The term alter-
native splicing refers to distinct inclusion/exclusion of exons
in the processed RNA product when compared with consti-
tutive splicing events.25 Multiple proteins regulate this RNA
processing step, called splicing factors, aggregated into
tissue-specific spliceosomes.25 Given the complexity of this
regulatory activity, it is not surprising that RNA splicing is
exceptionally susceptible to hereditary and somatic muta-
tions associated with a broad range of diseases.24,26,27

The RNA-Seq technology enables the exploration of tran-
scriptome structure, investigating different patterns of splice
junctions with more accuracy than microarrays.28 Once suf-
ficient RNA-Seq reads (tens to hundreds of millions) are
mapped to the genome, exons, and exon–exon junctions,
RNA-Seq assays allow annotation of new exon–intron struc-
tures and detection of the relative isoform abundance of
individual alternative splicing events.28,29 Unlike microarrays,
RNA-Seq does not rely on prior knowledge of transcriptome

structure and splicing events, and has nucleotide resolution
level.30 Deep surveying of alternative splicing with RNA-Seq
data has revealed unprecedented diversity of splice junc-
tions, tissue-specific RNA-binding motifs, and splicing reg-
ulatory elements.31 The relevance of alternative splicing is
further highlighted by distinct functions conveyed by splice
variants that can contribute to tissue-specific pathology.5

Gene expression regulation
Most of the single-nucleotide polymorphisms (SNPs)
identified through genome-wide association studies
(GWAS) reside in noncoding or intergenic regions of the
genome,32 suggesting that many causal variants influ-
ence traits/phenotypes by impacting gene expression.33–35

Genetic polymorphisms associated with variation in gene
expression levels, termed expression quantitative trait loci
(eQTLs), have been extensively studied over the years and
are known to be widespread over human populations.35,36

These regulatory variants contribute to phenotype diversity
by interfering with the steps across the flow of genetic
information in a cell, from DNA to protein, and are cataloged
now on GTEx37 for up to 60 different tissues in up to 1,000
subjects.
RNA-Seq enables further investigation of the regula-

tory role of specific sequences to gene expression by
taking advantage of the single-nucleotide level resolution.

www.cts-journal.com
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Figure 3 RNA-Seq can also be used to interrogate allelic effects, in sites with a polymorphism confirmed by dense coverage of reads.
Based on the reads aligned to a specific genome locus, it is possible to calculate the ratio of reads from each allele (allele 1: allele 2).
Allele-specific expression (ASE) is determined if the calculated ratio deviates from the expected 50:50.

Heterozygous individuals for a particular genome locus
present two allelic forms, which allows one to investigate
whether one of the alleles has greater expression than the
other. This event is called allele-specific expression (ASE),
and detection of ASE imbalance with RNA-Seq (unequal
expression of one allele over the other) signals the pres-
ence of genetic and/or epigenetic determinants that govern
allelic transcriptional activity (Figure 3).38,39 Often, ASE is evi-
dence of a disruption of a highly regulated process leading
to disease susceptibility38,39 or potential variability in drug
response.40

Predominantly, the largest effect sizes or the strongest
genetic effects in the expression of individual genes are
observed locally within the respective target gene locus.36,41

These are called cis-regulatory regions, composed of cis-
regulatory elements, with target sites for transcription fac-
tors and other regulatory proteins, acting as promoters and
enhancers, or as repressors defining transcriptionally inac-
tive regions.36 Transcription factor binding sites are the cen-
tral elements of cis-regulatory regions, which in the pres-
ence of transcription factors and epigenetic modifications
can determine whether transcription is turned on/off, and
the rate of the transcription process.36,42 Enhancer regions
can reside at large distances up- or downstream of the gene
locus per se, often confounding the assignment of GWAS hits
to a candidate gene.43

Trans-acting variants, polymorphic variants that regulate
gene expression via an intermediate factor, can be anywhere
in the human genome, and typically convey a smaller-effect
size than cis-acting variants.33,36,42 One of the reasons may
be that expression levels of a particular gene are usually
under the effect of multiple trans-acting regulators, such as
different transcription factors, coactivator proteins, proteins
that help stabilize transcription factors, etc. Consequently,
the effect size of each one of these trans-acting regulators
is diminished.42,44 To date, several trans-acting regulatory
regions have been identified as “hot spots” but only a few

of these regions have been determined to account for the
underlying regulatory mechanism.44–50

Network analysis
RNA-Seq data can be further explored to infer gene func-
tion, gene–disease or gene–drug exposure associations and
gene–gene interaction with coexpression network analy-
sis, an approach that constructs networks of coregulated
genes.51 Going beyond the identification of singular genes
or regulatory variants associated with disease or drug expo-
sure, building coexpression networks can be used for candi-
date gene prioritization as a function of their position in net-
work hubs, and functional gene annotation.52 Guidance and
further details about the various methods developed for this
approach are available in recent reviews.52,53

Because RNA-Seq also quantifies the expression of up
to 70,000 noncoding RNAs,54 not usually measured with
microarrays, it permits a better understanding of regulatory
networks driving biological processes including noncoding
RNAs. Numerous noncoding RNAs are thought to have reg-
ulatory roles55 and to play a role in disease processes.56,57

With sufficient read depth, RNA-Seq also increases accu-
racy for low abundance transcripts18 and has the requisite
resolution that allows to distinguish between the expression
of different splice variants.58 Thus, coexpression analysis on
RNA-Seq data can detect previously hidden networks and
thereby assign putative functions to noncoding RNAs and
splice variants.

BREAKTHROUGH DISCOVERIES WITH RNA-Seq

In the past decade, GWAS have been the most widely
employed tool to investigate the link between genetic poly-
morphisms and common diseases, due to the application
of agnostic approaches in which genetic variation across
the human genome is tested, allowing discovery of novel
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genes and pathways. Although this approach has success-
fully revealed a multitude of genetics signals associated with
complex diseases and phenotypes, revealing new biologi-
cal insights, often gene expression studies applying RNA-
Seq identify signature genes that explain a greater fraction
of interindividual variability than large GWAS.
Recently, a sequential series of large-scale GWAS in hyper-

tension (HTN) has been published. Data from two meta-
analysis studies, each with greater than 30,000 individuals,
identified three replicated loci in association with HTN.59,60

A few years later, a study with an even larger sample size
(200,000 individuals) identified 29 loci with significant asso-
ciations with BP. Of those, 6 loci had been previously associ-
ated with HTN/BP.61 These results were met with enthusiasm
in the HTN genetics field, yielding new mechanistic insights
into the biology of BP regulation. However, each SNP con-
veys only small effect sizes, averaging about 1 mmHg per
allele for SBP and 0.5 mmHg per allele for DBP, which in
aggregate accounts for less than 3% of interindividual vari-
ability in BP.62 Therefore, these studies have not provided
clinically actionable signals for defining risk of HTN, and
further exploration of the mechanisms highlighted by these
genetics findings is necessary.
Hypertension. RNA-Seq approaches have also been used

to enhance understanding of HTN. A large-scale, unbiased
investigation of BP/HTN gene expression signature using
whole blood RNA revealed 34 genes that in aggregate explain
up to 9% of interindividual variability in BP.50 These results,
based on exploration of differential expression in HTN, con-
trast to merely 3% of variability in BP explained by the GWAS
findings collectively. Further, integration of the BP signature
genes, eQTLs, and GWAS results revealed that six SNPs
associated with BP (P < 5 × 10−8 in the ICBP GWAS61) are
also trans regulators of several top BP signature genes.50

Therefore, this study provides important avenues for future
investigation on the impact of these transcriptomic markers
to predict antihypertensive drug response, and serves as an
example of the insights to be gained from RNA Seq data—
insights that are valuable alone, and amplified when coupled
with GWAS data.
Additionally, the application of RNA-Seq in HTN mouse

models for transcriptome profiling revealed novel potential
mechanisms involved in the pathophysiology of HTN and its
complications. Cowley et al.63 identified genes and biological
pathways associated with a protective effect on Dahl salt-
sensitive rats. Tain et al64 identified genes of importance for
programmed HTN, through transcriptome characterization
of the offspring of pregnant mouse models under suboptimal
conditions (high fructose and dexamethasone administra-
tion). Differential expression and pathway analysis revealed
genes involved in arachidonic acid metabolism as a potential
gatekeeper involved in programmed hypertension.64

Obesity. Multiple recent studies have also bridged the
causality gap between human regulatory variants, gene
expression, and phenotypes.65–68 One example is the insight
gained on the FTO (encoding fat mass and obesity-
associated protein) variants associated with obesity.69 This
intronic region was found to serve as an enhancer, making
physical contact with the IRX3 gene promoter, which is more
than 500 kb apart from the obesity-associated variants, reg-

ulating its gene expression in both cerebellum and human
adipocytes.70 Through IRX3 knockout models, a causal link
was established between FTO SNPs, IRX3 expression, and
obesity.70

Additionally, a large-scale study with RNA-Seq data from
the TwinsUK cohort (n = 856) conducted a genome-wide
search for gene-by-body mass index (BMI) interactions on
the regulation of gene expression in multiple tissues (adi-
pose, skin, whole blood, and lymphoblastoid cell lines).71

This study identified 16 cis-acting regulatory variants and
one trans-acting variant, rs3851570, regulating the expres-
sion of 53 genes in adipose tissue.71This demonstrates the
importance of investigating the role of eQTLs in influenc-
ing downstream traits. Applying the RNA-Seq technology,
Glastonbury et al.71 characterized cis and trans-regulatory
effects that BMI showed on peripheral tissue and identi-
fied robust examples of BMI-dependent gene expression
regulation. Identifying genes/regulatory variants that could
predispose to BMI-specific outcomes holds the potential
for new targeted interventions, and could provide a better
assessment of individuals at risk for obesity.
Another study of gene expression with RNA-Seq showed

that transcriptome profiling improved breast cancer pre-
diction when compared with GWAS data. With a modeling
framework that allows data integration from multiple omics
layers, and contemplates different structural effects between
these layers, a recent study analyzed data from the Cancer
Genome Atlas for prediction of survival after diagnosis
of breast cancer. Comparing predictors based on gene
expression profiling with those based on clinical covari-
ates commonly used for the assessment of breast cancer
patients, the authors report that gene expression data
provide more predictive power than any clinical assess-
ment included in the model, and the combination of gene
expression and clinical measures provided a significant
gain in predictive accuracy. These results support the
predictive power of gene expression studies to differen-
tiate breast cancer subtypes or stages, and demonstrate
how clinical information can be integrated with RNA-Seq
data.
Heart failure. In recent years, multiple studies have investi-

gated the transcriptome signature of heart failure (HF). Differ-
ential expression analysis was conducted comparing whole
transcriptome profiles between explanted human HF right
ventricles (RV) and five unused donor human heart RVs.72

STEAP4, SPARCL1, and VSIG4 were identified as potential
RV myocardial biomarkers in human HF.72 The same group
also identified long noncoding RNA differentially expressed
between normal vs. HF RVs.73 Another study used transcrip-
tomics data, generated by RNA-Seq and microarrays, to
identify novel myocardial gene expression signatures of HF.74

Although these findings are not ready yet for clinical imple-
mentation, they provide a comprehensive characterization of
the transcriptome in human HF, and represent an inventory
of key players in HF for further investigation with mechanis-
tic studies.
Cardiovascular diseases. Large existing transcriptome

databases can serve to search for key genes involved in
pathophysiology, for example RNA-Seq data for thousands
of subjects in the Framingham75 and CATHGEN76 studies.

www.cts-journal.com
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These public databases were used to address the question
whether dynamic interactions between genes detectable at
the gene or transcript levels can serve to identify key fac-
tors in disease pathophysiology. This approach led to the dis-
covery of several small interacting networks showing strong
association with coronary artery disease,12 suggesting that
single genes and transcripts alone are insufficient to account
for disease risk, but rather dynamic interactions need to be
considered, accessible via analysis of RNA-Seq data.
The examples provided here from the literature in dis-

ease genomics are not an extensive collection of each study
available with RNA-Seq data in the field, but the results
provided by these studies set the framework for success-
ful studies in pharmacogenomics research, and highlight
some of the potential opportunities for discovery presented
by RNA-Seq data. They have shown that gene expression
studies, with RNA-Seq, account for greater variability in
disease susceptibility, and that predictive models including
gene expression data have improved the accuracy of disease
models.

The application of RNA-Seq in pharmacogenomics
research
Pharmacogenomics holds the promise to provide person-
alized treatments strategies, taking into consideration the
patient’s genetic makeup. Gene expression variation and the
diversity of splicing events occurring in drug-metabolizing
enzymes, drug transporters, and drug targets have been
associated with heterogeneity in drug response and adverse
drug events.77,78 Therefore, a comprehensive study of the
potential variability on transcriptome profiling associated
with pharmacogenomics phenotypes can provide relevant
insights into the molecular basis of heterogeneity in drug
response. In this section we provide some examples of phar-
macogenomics studies that have applied RNA-Seq technol-
ogy for identification of biomarkers.
Community-wide efforts have facilitated transcriptome

sequencing for the investigation of disease genetics (GTEX,37

the Cancer Genome Atlas79). However, the use of NGS
technology for pharmacogenomics research has been lim-
ited. Given the potential of a systematic study of the
transcriptome to elucidate drug response mechanisms,
the National Institutes of Health-supported Pharmacoge-
nomics Research Network (PGRN) capitalized the required
resources for a comprehensive transcriptome sequenc-
ing project that has cataloged variation in gene expres-
sion and splicing events of 389 pharmacogenes involved
in drug disposition, across liver, kidney, heart, adipose
tissue, and lymphoblastoid cell lines.80 Gene expres-
sion and splicing data are available for download (http://
pharmacogenetics.ucsf.edu/expression/rnaseqdata.html).
Large-scale data generation from cancer cell lines enables

pharmacogenomics oncology research to characterize
clinical models, gain mechanistic and therapeutic insights,
and to identify predictors of drug response/sensitivity.
The Cancer Cell Line Encyclopedia (CCLE) leverages
RNA-Seq and genetic (copy number and genotype) data
from 1,000 cell lines coupled with pharmacological pro-
files for 24 anticancer drugs.81 Barretina et al.81 strove to
integrate CCLE data and revealed genetic, lineage, and

gene-expression-based biomarkers of drug sensitivity.
They highlighted a few cases: plasma cell lineage for IGF1
receptor inhibitors, AHR expression for MEK inhibitors, and
SLFN11 expression for topoisomerase inhibitors. Applying
a systems biology framework to the CCLE data, Liu et al.82

investigated drug–response-associated gene expression
profiles. Functional enrichment analysis of the top candidate
genes associated with drug response identified TSPO,
TP53, and other immune or cell cycle-related genes as key
functional drivers for the association with drug response
to the anticancer drugs studied.82 The study also revealed
distinct coexpression patterns of drug response between
gender and age.82 These results provide new molecular
markers and networks related to cancer therapy. Quantified
CCLE RNA-Seq data are available for download (https://
ocg.cancer.gov/ctd2-data-project/translational-genomics-re
search-institute-quantified-cancer-cell-line-encyclopedia).

Transcriptome profiling in tumor tissues has also achieved
success in the identification of drug response predictors in
oncology. Coexpression of seven genes was associated with
molecular subtype-selective vulnerabilities in nonsmall-cell
lung cancer.83 The presence of this gene expression signa-
ture indicates potential optimal therapy selection with a syn-
thetic indolotriazine.83 The same work characterized other
molecular signatures to guide therapy selection based on an
extensive functional and genomics exploration.83 This work
illustrates the opportunities for therapy guidance that can
arise from gene expression investigation with RNA-Seq data.

Trastuzumab for patients with HER2-positive breast can-
cer is an example of a number of existing drugs that
have proved efficacy only for a group of patients with spe-
cific molecular features.84 Using RNA-Seq for an integrative
transcriptomic approach from trastuzumab-sensitive and
trastuzumab-resistant HER2+ tumors, a small set of cod-
ing and noncoding (lincRNAs) associated with trastuzumab-
resistance, following validation with cancer cell lines.85

From functional investigation of top candidate genes, they
demonstrated that inhibition of S100P results in revers-
ing trastuzumab resistance.85 Through an unbiased gene
expression investigation with RNA-Seq, this study revealed
clinically relevantmechanism of trastuzumab-resistance, and
outlined potential targets for novel therapeutic strategies.

Transcriptomic analysis was performed in lymphoblastoid
cell lines derived from 150 participants of the Cholesterol
and Pharmacogenetics (CAP) simvastatin clinical trial, aim-
ing to identify genes that may have a role in triglyceride statin
response.86 Among the 23 genes correlated with triglyceride
statin response, insulin induced gene 1 (INSIG1) was the
most relevant biological candidate, consistent with extensive
literature that links this gene to the regulation of cholesterol
homeostasis.86 The authors also report a sex-specific corre-
lation of INSIG1 with triglyceride statin response (interaction
P = 0.0055), and that INSIG1 expression levels and splicing
changes accounted for about 30% of the variation on statin-
induced triglyceride response in men (P = 5.6 × 10−6).86

Similarly, Himes et al.87 applied RNA-Seq to investigate
a pharmacogenomic phenotype: antiinflammatory effects
of glucocorticoids for the treatment of asthma. Airway
smooth muscle cells were treated with dexamethasone for
18 h, followed by mRNA extraction, and high-throughput
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sequencing.87 This approach identified 316 genes differ-
entially expressed relative to dexamethasone treatment,
and highlighted CRISPLD2 as an asthma pharmacogenet-
ics candidate gene that regulates antiinflammatory effects of
glucocorticoids.87

Studies of transcriptome and anti-HTN drug response are
under way in our laboratory. Resources from the PGRN RNA-
Seq group allowed the first transcriptome-wide study of
gene expression impacting thiazide BP response. In order
to identify novel molecular markers of BP response to
thiazide diuretics, 150 participants from the Pharmacoge-
nomics Evaluation of Antihypertensive Responses (PEAR)
and PEAR-2 studies with extremes of BP response (respon-
ders and nonresponders) to thiazide diuretics (50 whites from
PEAR; 50 whites and 50 blacks from PEAR-2) were selected
for RNA-sequencing. Using this RNA-Seq data set to assess
the gene expression levels of 34 genes previously associated
with differential expression relative to BP/HTN50 revealed that
FOS, PPP1R15A, andDUSP1were differentially expressed in
all three cohorts.88 These findings suggest that select genes
identified through BP/HTN transcriptome profiling are also
relevant determinants of BP response to thiazide diuretics.
In addition, the PEAR RNA-Seq data provided further bio-

logical insights when integrated with the GWAS results.88 The
rs10995 G-allele was associated with better BP response
to thiazide diuretics (HCTZ and chlorthalidone), and with
increased expression of the nearby VASP gene.88 RNA-
Seq data analysis revealed that baseline expression of
VASP was higher in participants classified as responders
to thiazide diuretics when compared with nonresponders
(HCTZ: P = 0.01 and chlorthalidone: P = 0.04).88 The
allele-specific expression analysis also revealed a modest
expression imbalance at rs10995, which could impact the
observed genetic effects through expression and/or transla-
tional modifications.88 Further studies are ongoing to identify
the potential utility of RNA-Seq data in understanding vari-
able responses to antihypertensive drugs.
We can anticipate substantial additions to the literature

in the near term of data arising from transcriptome analy-
ses, likely enhancing our understanding of mechanisms and
causes of interindividual differences in drug response. The
application of RNA-Seq may lead not only to the discovery of
signature genes of response to drugs, but it may also enable
the characterization of isoform diversity, cis/trans-acting reg-
ulatory variants, and gene expression networks impacting
heterogeneity in drug response. This powerful tool repre-
sents an alternative approach for the identification of target
genes, allowing a global perspective of RNA transcripts or
transcript regulation involved in the mechanisms underlying
drug response.

CONCLUSION

Sequencing technologies have rapidly advanced in the past
years, allowing the application of RNA-Seq to systemati-
cally investigate the transcriptome with accuracy and high
data resolution to expand the knowledge on the influence
of regulatory mechanisms on gene expression affecting
variability in drug response. In this review we describe
this new technology and discuss multiple applications for

RNA-Seq, with examples of scientific discoveries in disease
genomics and pharmacogenomics. Additional studies are
still needed to advance the pharmacogenomics field to
the level of knowledge enabling clinical recommendations.
Despite the promising findings from novel genetic variants
associated with variability in drug response, transcriptomics
studies have potential to refine treatment strategies. While
the use of transcriptomics in pharmacogenomics is cur-
rently scarce, recent advances in NGS technologies allow
accurate transcript quantitation for differential expression
between biological conditions, identification of splicing
events, and the assessment of regulatory mechanisms of
gene expression. These are prominent processes generating
diversity in protein/metabolite function with proven con-
sequences in drug disposition, mechanism of action, and
clinical consequences.
Precision medicine has recently moved into the spotlight

of health care, challenging us to develop the necessary
methodology for optimizing personalized therapy selection.
With the availability of new powerful methods, the study of
the transcriptome, over the coming years, is likely to yield
biomarkers predictive of disease susceptibility and guiding
drug therapy.
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