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ABSTRACT

The massive molecular profiling of thousands of can-
cer patients has led to the identification of many tu-
mor type specific driver genes. However, only a few
(or none) of them are present in each individual tumor
and, to enable precision oncology, we need to inter-
pret the alterations found in a single patient. Cancer
PanorOmics (http://panoromics.irbbarcelona.org) is
a web-based resource to contextualize genomic vari-
ations detected in a personal cancer genome within
the body of clinical and scientific evidence available
for 26 tumor types, offering complementary cohort-
and patient-centric views. Additionally, it explores
the cellular environment of mutations by mapping
them on the human interactome and providing quasi-
atomic structural details, whenever available. This
‘PanorOmic’ molecular view of individual tumors, to-
gether with the appropriate genetic counselling and
medical advice, should contribute to the identifica-
tion of actionable alterations ultimately guiding the
clinical decision-making process.

INTRODUCTION

Large-scale cancer genomics studies (1,2) have shown that
every personal cancer genome harbors thousands of ge-
nomic alterations –including somatic mutations, copy num-
ber alterations, gene expression changes and epigenetic
modifications– that are not present in the patient’s germline.
Of these, a very small subset might be ‘driver’ mutations,
which confer a selective growth advantage through the en-
hancement of some biological capabilities like proliferation,
angiogenesis, invasion or metastasis or through the evasion
of homeostatic mechanisms such as growth suppression,
cell cycle arrest, cell death or immune surveillance (3). How-
ever, the vast majority of genomic changes detected in can-
cer cells are just ‘passenger’ and do not confer oncogenic
properties (4).

Distinguishing between driver and passenger mutations
is a challenging task that has now become a matter of ma-
jor interest, especially if we envision that the analysis of
personal cancer genomes will become a common clinical
practice. Current methods are based on the identification of
signatures of positive selection at gene level that have been
observed in large cohorts (i.e. identification of genes show-
ing high somatic mutation rate, mutation functional impact
bias and/or mutational clustering patterns that are more of-
ten observed in cancer than expected by chance) (5). These
statistical approaches have permitted the identification of,
for instance, over 200 driver genes for cutaneous melanoma
or breast cancer (6). However, when focusing on individual
tumors, it is difficult to find >2–4 driver genes mutated and,
in some patients, none of the usual suspects seems to be al-
tered (6). Moreover, the effect of distinct mutations in the
same gene might be radically different (7–9), being it nec-
essary to consider their exact location and molecular envi-
ronment.

Cancer PanorOmics integrates and displays high-
throughput cancer sequencing analyses, together with data
obtained from individual patients. The user can upload a
list of somatic mutations, copy number alterations and/or
gene expression changes detected in a personal cancer
genome, and choose a reference cohort among the 26
tumor types available. Then, these genomic alterations
can be explored in the light of what is known about the
reference cohort. Additionally, the server maps muta-
tions on the high-resolution 3D structure of proteins and
protein–protein interactions to provide a molecular context
to the genomic alterations analyzed. Cancer PanorOmics
is available at http://panoromics.irbbarcelona.org.

DATA

The current version of Cancer PanorOmics catalogs 2 335
564 mutations found in 17 613 gene products from 20 683
cancer patients, representing 26 tumor types. These data
have been compiled from IntOGen (10) and COSMIC (11)
databases and complemented with interactions and struc-
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Table 1. Cancer PanorOmics database content

Tumors––patients Molecular Data

Non small cell lung carcinoma 1515 Mutations
Head and neck squamous cell carcinoma 785 Mutations (in total) 2 335 564
Stomach adenocarcinoma 705 Mutations in reference proteome 2 277 702
Esophageal carcinoma 1113 Mutations with structural annotation 731 531
Glioblastoma multiforme 884 - Surface mutations 598 640
Hepatocarcinoma 1891 - Buried mutations 132 916
Lower grade glioma 86 - Interface mutations 81 422
Renal clear cell carcinoma 850 Proteins
Uterine corpus endometrioid carcinoma 628 Proteins in the human proteome 20 298
Medulloblastoma 459 Proteins affected by somatic mutations 17 613
Prostate adenocarcinoma 1263 Mutated proteins with structural data 10 934
Colorectal adenocarcinoma 1264 - Mutated proteins with complete structures 1669
Acute lymphoblastic leukemia 254 - Mutated proteins with complete models 2900
Thyroid carcinoma 666 - Mutated proteins with partial struct/models 6365
Difuse large B cell lymphoma 274 Mutated proteins w/o structural data 6679
Serous ovarian adenocarcinoma 637 Mutated proteins in the interactome 11 868
Cutaneous melanoma 901 Mut. proteins with struct. data in the interactome 8407
Chronic lymphocytic leukemia 807 Proteins affected by interaction mutations 5020
Breast carcinoma 2006 Interactions
Lung adenocarcinoma 867 Interactions in the human binary interactome 66 452
Neuroblastoma 720 Interactions affected by somatic mutations 9257
Acute myeloid leukemia 773 Interactions with structural data 9875
Pancreatic adenocarcinoma 1386 - Interactions with exp. structures 5235
Bladder carcinoma 650 - Interactions with global models 3254
Lung squamous cell carcinoma 641 - Interactions with domain-domain models 1386
Any tumor type 20 683 Interactions w/o structural data 56 577

tural information from Interactome3D (12) and dSysMap
(7).

We downloaded the COSMIC v79 mutation data file
containing 3 301 941 unique coding point mutations iden-
tified in genome-wide screens. We excluded polymorphic
SNPs and mutations identified in cell-lines, organoids or
xenografts, which yielded a total of 2 758 163 unique cod-
ing point mutations. We transferred somatic mutations an-
notated by COSMIC from HGNC gene symbol to the
coordinates in the corresponding protein Uniprot Acces-
sion Code(s) (Uniprot AC). When needed, we performed
an alignment between the protein sequence deposited in
COSMIC and the corresponding Uniprot AC sequence
in order to determine the precise coordinates of the mu-
tation in the protein Uniprot AC. We could successfully
remap 2 277 702 unique mutations, out of which 731 531
could be structurally annotated and classified into ‘Surface’,
‘Buried’ or ‘Interface’ using Interactome3D and dSysMap
databases. The chromosomal coordinates of the proteins
were obtained from UCSC. Regarding the information
about clinical actionability, we considered 1480 compounds
from ChEMBL database (13) with annotated protein tar-
get(s) and clinical indications, according to Medical Subject
Headings (MeSH), Anatomical Therapeutic Chemical clas-
sification (ATC) or Experimental Factor Ontology (EFO).
We defined a sublist of cancer related drugs by collecting
compounds that contained the keywords ‘cancer’, ‘carci-
noma’ or ‘neoplasm’ in the MeSH headings or in the EFO
term, or drugs classified as antineoplastic agents (‘L01’
ATC code and descendants). The list of druggable genes was
obtained from the Supplementary material of (14).

Cancer PanorOmics will be updated every 6 months.
Please, see Table 1, or the Stats page at the server, for more
detailed information.

WORKFLOW

User input

The user can upload a list of somatic mutations, copy num-
ber and/or gene expression alterations detected in a per-
sonal cancer genome. It is important to note that the main
identifier used by Cancer PanorOmics is Uniprot Acces-
sion code (Uniprot AC). The user can also provide the
HGNC gene symbol or the Uniprot gene name and Can-
cer PanorOmics will be able to structurally annotate the so-
matic mutations after ensuring that the reference aminoacid
of the mutation corresponds to the aminoacid encoded at
the same position in the Uniprot AC sequence. Before sub-
mitting the query, the user should also choose one of the 26
tumor types available as a reference cohort. The server pro-
vides several examples to show the accepted formats of the
input data.

Clinical context

Cancer PanorOmics offers a contextualized view of the ge-
nomic alterations uploaded by the user within the available
knowledge for the selected tumor type. More specifically,
the user can easily see which altered genes in a given patient
are known drivers, and how often each protein is mutated or
copy number altered in the reference cohort. The results are
displayed in two complementary Patient and Cohort Cen-
tric Views, as shown in Figure 1.

Patient centric view. In the ‘Patient Centric View’, known
cancer driver genes are mapped on top of all the genes
that are mutated, amplified or deleted in the patient. Chro-
mosomes are depicted as grey boxes in the outermost ring
and each circular section represents an altered gene, sorted
by chromosomal coordinates. Each gene section contains



Nucleic Acids Research, 2017, Vol. 45, Web Server issue W197

Figure 1. Clinical Context of the alterations detected in a ductolobular breast carcinoma patient (TCGA-A2-A4RX-01). The outermost rings represent the
chromosomal location of genes and the next three data tracks show information about gene expression, copy number variation or somatic mutation in each
gene. In the Patient Centric View (left panel), all somatic mutations and/or copy number alterations detected in this patient are displayed. Additionally,
known drivers for the selected tumor type (filled circles), together with other cancer drivers (empty circles), are mapped onto patient alterations. In the
Cohort Centric View (right panel), all known tumor type specific drivers are displayed and the frequency of each driver alteration is represented using a
color gradient (green represents somatic mutation frequency, whereas red/blue represent copy number gain/loss or gene over/underexpression frequency).
The alterations detected in this patient (filled circles) are mapped onto the known drivers. PIK3R1 gene is highlighted in yellow.

three cells that correspond to gene expression, copy number
and somatic mutations, which are the three concentric data
tracks displayed. Known cancer driver genes are mapped
on the patient’s alterations using filled circles for tumor type
specific drivers or empty circles for drivers in any other tu-
mor type.

Cohort centric view. In this complementary view, patient
alterations are mapped on top of known cancer driver genes.
Chromosomes are again depicted as grey boxes but here
each circular section represents a known cancer driver gene
in the reference cohort. Each gene section is colored accord-
ing to the frequency of each type of genomic alteration in
the cohort. Gene expression and copy number alteration
frequencies are represented in a red-white-blue scale in the
first two data tracks, whereas somatic mutation frequency
is represented in green in the inner data track. Patient al-
terations affecting known drivers are represented by black
circles.

Molecular context

Cancer PanorOmics maps mutations on the high-resolution
3D structure of proteins and interactions. When the user
selects a protein in the Patient Centric View or the Cohort
Centric View, a new page is loaded to display the molecular
context of the corresponding genomic alterations.

Protein–protein interaction network. The current human
interactome contains 66 452 interactions (12). We zoom in

to the protein of interest and its neighbors, and represent on
each of them the recurrence of genomic alterations in the
reference cohort. Small black circles indicate the presence
of a genomic alteration either on a protein or at the inter-
action interface between two proteins. Every node contains
three concentric circles displaying the information available
for three molecular data types: gene expression variations,
copy number changes and somatic mutations. Additional
details about each of the proteins describing their known or
potential role in cancer, as well as information about their
clinical actionability, are shown in the Molecular Context
page, and the corresponding downloadable table.

Structural details. Whenever available, structural 3D in-
formation is shown in an interactive panel. The mutations
selected by the user are highlighted with a sphere repre-
sentation and classified as ‘buried’, ‘surface’ or ‘interface’,
based on their location in the 3D structure. We provide 3D
structural details for 731 531 point mutations mapped onto
10 934 proteins, representing >30% of the cancer point mu-
tations currently cataloged. Of these, 81 422 mutations lay at
protein-protein interaction interfaces (i.e. edgetic) and are
thus likely to affect the connectivity of the human interac-
tome (7,9). Below the structural representation, we report
information about the genomic alterations detected in the
selected proteins, such as the mutation type, somatic status
and FATHMM (15) predicted functional impact for those
mutations contained in COSMIC, as well as a brief descrip-
tion of the protein function or the method used to identify
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Figure 2. Molecular Context of PIK3R1K567delK and PIK3R1overexpr. alterations detected in a ductolobular breast carcinoma patient (TCGA-A2-A4RX-
01). The protein–protein interaction network shows the 50 most frequently altered interactors of PIK3R1. Each node describes a protein with three
concentric circles informing about the frequency of each type of alteration: the inner green circle represents somatic mutation frequency, the middle red/blue
circle represents copy number gain/loss frequency and the outer red/blue circle represents over/underexpression frequency in the reference cohort. The
edges represent physical interactions between proteins. Genomic alterations detected in this patient are represented by small black dots. Genomic alterations
can affect one or more molecular layers of a protein. Somatic mutations can also affect the protein–protein interaction interface between two proteins.
Nodes or edges represented with a solid line in the network have structural information available. The structural details show the two proteins involved
in the selected interaction: PIK3R1 (blue) and PIK3CA (gray). The precise location of the aminoacid affected by the somatic mutation PIK3R1K567delK

detected in this patient is highlighted in red.

the selected interaction. We also list the mutations detected
in the reference cohort that map onto the same protein or
protein-protein interaction interface, so that the user can
identify highly mutated protein domains or regions.

USE CASE

To illustrate the applicability of Cancer PanorOmics, we
studied the genomic alterations detected in a 67 years
old woman diagnosed with ductolobular breast cancinoma
(TCGA-A2-A4RX-01). The molecular profile of this pa-
tient consisted of 21 somatic mutations, 5 copy number al-
terations and 1120 gene expression changes.

The Patient Centric View (left panel in Figure 1)
showed that six genomic alterations affect either known
breast cancer driver genes (PIK3R1K567delK, STAG1E449Q,
KMT2CCN loss, PIK3R1overexpr.) or a driver gene that is
not annotated to any specific tumor type (LMNAG567V,
LMNAoverexpr.). The Cohort Centric View (right panel in
Figure 1) indicates that STAG1 and PIK3R1 are only rarely
mutated in this reference cohort (mutated in <2% of pa-
tients). It also shows that KMT2C is more frequently al-
tered (deleted in 12% of patients). Many other gene expres-
sion alterations appear in this view, being the upregulation
of NDRG1 the most recurrent one (>12% of patients).

We next explored the molecular context of the
PIK3R1K567delK mutation. The network view (left panel
in Figure 2) shows that 11 of the direct interactors of
PIK3R1 exhibit gene expression changes (e.g. EGFR and
ABL2 upregulation, which occur in >5% of breast cancer
patients). Moreover, PIK3R1K567delK lays at the interaction
interface with PIK3CA (right panel in Figure 2), one of

the most frequently mutated breast cancer drivers, likely
triggering an edgetic perturbation. However, experimental
validation is needed to know whether this mutation is really
disrupting the PIK3R1-PIK3CA interaction, and whether
this might have an impact on the oncogenic potential.
Additionally, we observed that patients with putative
PIK3R1 edgetic mutations have an overall survival curve
that is more similar to that of patients with edgetic muta-
tions in the PIK3CA side of the interaction than patients
with non-edgetic PIK3R1 mutations (Figure 3). Although
we did not account for any other covariates that might
influence the overall survival (i.e. age, tumor type or stage
at diagnosis), this serves as an example of how a survival
analysis could be used to identify edgetic mutations that
might have a prognostic value and would deserve further
investigation.

DISCUSSION

In the era of personalized medicine, we can now gener-
ate comprehensive and accurate portraits of individual tu-
mors by putting together multiple layers of molecular pro-
files, such as somatic mutations, DNA copy-number alter-
ations or mRNA expression. Computational solutions to
large-scale data integration and visualization are needed to
facilitate the interpretation of such complex data. Cancer
PanorOmics has a significant added value with respect to
other resources separately, since it switches between patient-
and cohort-centric perspectives, contextualizing the alter-
ations of interest, and offering a seamless systemic (net-
work) view annotated with 3D structures. In addition, no
programming skills are needed to submit an integrated
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Figure 3. Kaplan–Meyer estimate of probability of overall survival (OS)
in patients with non-edgetic PIK3R1 mutations and patients with putative
PIK3R1–PIK3CA edgetic mutations at both sides of the interaction in-
terface. The estimated 3-year survival probability of patients with putative
PIK3R1–PIK3CA edgetic mutations is 69.58% (PIK3R1 interface, n = 81)
and 78.02% (PIK3CA interface, n = 374), which are considerably higher
than the 59.21% (n = 89) observed in patients with non-edgetic PIK3R1
mutations. The survival analysis has been generated with somatic muta-
tions and survival data of 4795 cancer patients obtained from cBioPortal
(18,19).

query and visualize the results with an enhanced and in-
teractive display. We believe that servers like this one will
help bridging the gap between cancer genomics and clinical
oncologists, and play a central role in future personalized
cancer management.

SERVER INFORMATION

Cancer PanorOmics runs on Apache HTTP Server, and
it is written in PHP. After the automated validation by
the server, the submitted mutations are stored into a Post-
greSQL database and a user id is generated to identify ac-
cess to the data. The server frontend is designed using the
Bootstrap css framework. The interactive display of the mu-
tation data relies on BioCircos.js (16) and Cytoscape.js (17)
javascript libraries, which were modified to fulfill the visu-
alization needs. D3.js (https://d3js.org/) javascript library is
also used to display legend information, and Jsmol (http:
//www.jmol.org/) to provide interactive visualization of pro-
tein 3D structures.
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