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A Foundation Model Identifies Broad-
Spectrum Antimicrobial Peptides against
Drug-Resistant Bacterial Infection

Tingting Li1,2,12, Xuanbai Ren3,12, Xiaoli Luo 3, Zhuole Wang1,2, Zhenlu Li4,
Xiaoyan Luo3, Jun Shen1,2, Yun Li5, Dan Yuan 1,2, Ruth Nussinov 6,7,
Xiangxiang Zeng 3 , Junfeng Shi 1,2 & Feixiong Cheng 8,9,10,11

Development of potent and broad-spectrum antimicrobial peptides (AMPs)
could help overcome the antimicrobial resistance crisis. We develop a peptide
language-based deep generative framework (deepAMP) for identifying potent,
broad-spectrumAMPs. Using deepAMP to reduce antimicrobial resistance and
enhance the membrane-disrupting abilities of AMPs, we identify, synthesize,
and experimentally test 18 T1-AMP (Tier 1) and 11 T2-AMP (Tier 2) candidates in
a two-round design and by employing cross-optimization-validation. More
than 90% of the designed AMPs show a better inhibition than penetratin in
both Gram-positive (i.e., S. aureus) and Gram-negative bacteria (i.e., K. pneu-
moniae and P. aeruginosa). T2-9 shows the strongest antibacterial activity,
comparable to FDA-approved antibiotics. We show that three AMPs (T1-2, T1-5
and T2-10) significantly reduce resistance to S. aureus compared to cipro-
floxacin and are effective against skin wound infection in a female wound
mouse model infected with P. aeruginosa. In summary, deepAMP expedites
discovery of effective, broad-spectrum AMPs against drug-resistant bacteria.

Antimicrobial resistance is one of the most serious public health
threats at present, leading to an estimated 10 million deaths per year
by 20501. Antibiotics are the most widely used medicines for multiple
infectious diseases worldwide. Owing to misuse and overuse of anti-
biotics, drug-resistant bacteria, such as Methicillin-resistant Staphylo-
coccus aureus (MRSA), have emerged and spread rapidly, resulting in
significant antimicrobial resistance crisis2. Despite the urgency, fewer
new antibiotics were developed and approved by the U.S. Food and
Drug Administration (FDA), and the last entirely original one was

discovered in the late 1980s3. In addition, a new antibiotic agent was
estimated to cost around 1.5 billion dollars and takemore than 10 years
from basic research discovery to FDA-approved medicine4. It is thus
urgent to develop new technologies and approaches to identify broad-
spectrum, potent antibiotics, in particular for antimicrobial peptides
(AMPs), in order to address antimicrobial resistancecrisis and effective
treatment of infectious diseases.

AMPs are typically composed of 10-50 amino acids and are con-
sidered alternative antibiotic candidates for tracking antibiotic
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resistance because of their membrane disruption capacity5. Through
their unique antimicrobial mechanism-of-action, AMPs have shown
potency in treatment of resistant bacteria with high clinical benefits6,7.
Penetratin has good cell permeability and average overall anti-
microbial activity8,9, and its derivatives have been used as a universal
delivery vehicle10,11. However, traditional experimental approaches to
identify AMPs are highly time-consuming and expensive12,13. Develop-
ing new technologies for rapid identification of effective, broad-
spectrum AMPs for effective treatment of various infectious diseases
to address the global antimicrobial resistance health threat is thus a
pressing need.

Advanced machine learning models have been developed for the
discovery of peptides14–21. Classicmethods, such as virtual screening15,17

and de novo designed molecules, have been applied toward discovery
of potential AMPs16,18,19. However, there are several potential challenges
for these classicmethods: (1) The efficacy of virtual screeningmethods
is profoundly influenced by the quality of the underlying data and the
methods employed for feature extraction. Furthermore, current
methods for screening antimicrobial peptides exhibit limitations in
terms of generalization and adaptability; (2) Unconstrained generation
methods are prone to disadvantages such as difficult peptide synthesis
and high experimental costs; and (3) Despite the availability of
experimental AMP data, its scale is modest compared to the large
datasets in natural language processing. This size disparity presents
challenges for traditional deep learning models in adequately learning
the chemical andbiological properties crucial for antimicrobial activity
from these smaller datasets.

Inspired by the success of language models in natural language
processing, we developed deepAMP, a peptide language model
requiring limited resources for discovering potential AMPs with high
potency (Fig. 1). This model takes peptides with low antimicrobial
activity as inputs and output analogs with high antimicrobial activity
and broad-spectrum resistance. To address the issue of scarce training
resources, we propose a pre-training andmultiple fine-tuning strategy,
augmenting data through a sequence degradation approach. At a
microscopic level, we pre-trained a generalized peptide generative
model (deepAMP-general) in anunsupervisedmanner froma large and
varied sequence database of peptides, making it capable of non-
functional peptide generation. Subsequently, the dataset was expan-
ded through a sequence degradation approachwith deepAMP-general
to construct AMP pairs. In a two-stage fine-tuning process, we fine-
tuning the AMP optimization model (deepAMP-AOM) to identify
highly potent AMP candidates, and re-fine-tuning the penetratin opti-
mizationmodel (deepAMP-POM) to reduce antimicrobial resistanceby
enhancing the membrane disruption capacity of candidate AMPs. As
proof of concept, our experimental assays show thatmore than90%of
the candidate sequences achieve better inhibitory outcome at lower
concentrations than the original AMPs. The ability to rapidly discover
antimicrobial peptides indicates that the combination of originalAMPs
and deep language model optimization can effectively identify AMPs
with broad-spectrum antimicrobial effects.

Results
Overview of deepAMP
In order to discover potential AMPs with broad-spectrum antibacterial
activity and reduced risk of drug resistance. A 16-mer peptides,
penetratin was chosen as the template sequence because of its good
cell permeability and average overall antimicrobial activity. The opti-
mization comprises four sub-processes (Fig. 1): (1) a deepAMP-general
(pre-training model) that is responsible for rational peptide genera-
tion, (2) deepAMP-AOM (fine-tuning model) that optimize low anti-
bacterial activity peptides and (3) deepAMP-POM (re-fine-tuning
model) that optimize for penetratin, and (4) deepAMP-predict for
screening prior to experimental assays.

For the first step, we formulate the problem as a mask language
model by pre-training on 300,000 peptide sequences obtained from
UniProt with sequence lengths between 10 and 50 (see Methods).
DeepAMP-general learns the syntax rules of the peptide sequences and
is able to generate non-functional peptides that are valid, diverse and
not in the training set. Owing to the small number of penetratin
sequences available (29 sequences), we propose a sequence degrada-
tion approach that employs deepAMP-general to transform existing
highly bioactive peptides into multiple low activity peptide thereby
constructing AMP pairs. This approach leverages deepAMP-general’s
capability to generate non-functional peptides and significantly
expands our training dataset, resulting in the creation of 1009 pene-
tratin pairs. For the second step, wefine-tuned deepAMP-AOMby AMP
pairs to learn the activity characteristics key for converting low and
high activity AMPs, akin to how a language model translates different
languages. For the third step, we used the penetratin pairs re-fine-
tuning model to make deepAMP-POM learn the characteristics of high
antimicrobial activity and cell permeability. Prior to the experiment,
we scored the candidate AMPs using deepAMP-predict (for more
details, see Methods).

Optimization of antimicrobial peptides
To evaluate our method, we chose an existing bioactive AMP of
Temporin-Ali21 and four existing bioactive fragments of Pg-AMP122 as
optimization templates. Temporin-Ali was optimized and experimen-
tally validated across three rounds of iterations21 (termed Baseline-T).
The performance of deepAMP in optimizing the AMPs was compared
to four methods: Random mutation, Baseline-T21, PepCVAE23 and
HydrAMP16. Random mutation is a random change of an amino acid
site in a randommask sequence to any other amino acid. Baseline-T is
the optimized AMP using a genetic algorithm21. PepCVAE is one of the
state-of-the-art approaches to peptide generation using the condi-
tional variational autoencoder (CVAE) framework23. HydrAMP is an
AMP optimizationmethod using the CVAE16. Our presented deepAMP-
AOM is a generic antimicrobial peptide optimization model, which is
similar to the antimicrobial peptide pre-training model. We used an
experimentally reported training set21 on deepAMP-AOM for fine-
tuning to obtain deepAMP-TOM, and used deepAMP-TOM for
Temporin-Ali optimization task comparison. All details are provided in
the Methods section and Supplemental Methods.

Here we conducted 3 rounds of iterations for optimization. The
candidate AMPs generated in each iteration are evaluated using well-
established scoring matrix21 and deepAMP-predict (Fig. 2a–d). We
found that the average results after optimization of allmethods except
deepAMP-TOM in the first iteration were lower than the scores of the
original sequence (Fig. 2a). Although the average scores of all methods
are higher than the original sequence after 3 iterations, the deepAMP-
TOM score is optimal (Fig. 2b, c). Furthermore, the scoring results of
deepAMP-predict showed that deepAMP-TOM has the best AMP
optimization ability (Fig. 2d). The exceptional performance of dee-
pAMP in optimizing AMPs demonstrated its efficiency, accuracy and
ability to identify potential AMPs.

In the Pg-AMP1 fragment optimization task, Porto et al.22

employed a genetic algorithm to optimize the four fragments of Pg-
AMP1 peptide through 400 rounds of iterations and scored using a
fitness function (cf. Methods), which achieved an optimal fitness score
of approximately 0.53. The publicly available dataset includes only the
top 100 guavanin candidates generated (fitness score ranging from
0.245 to 0.393) from the first 100 rounds of iterations. Therefore, we
used these experimentally validated datasets as the baseline (termed
Baseline-G) for our comparisons.Webenchmarked theperformanceof
deepAMP against four differentmethods: RandomMutation, Baseline-
G, PepCVAE, and HydrAMP. For a fair comparison, we used the same
training set proposed by Porto et al. on deepAMP-AOM for fine-tuning
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to obtain deepAMP-GOM. This model was specifically applied to the
optimization task for guavanin antimicrobial peptides.

Our optimization process was conducted over five rounds of
iterations, selecting the top 100 candidates with the highest fitness
scores in each iteration (Supplementary Fig. 1). Specifically, deepAMP-
GOM surpassed the fitness scores of Baseline-G as early as the third
iteration (Supplementary Fig. 1a). Our method improved the top
100 scoring candidates over five rounds of iterations, performing
better than existing methods and achieving the highest score of 0.594
(Fig. 2e). These candidates were then evaluated using the deepAMP-
predict scoring (Fig. 2f). The density of the scores for deepAMP-GOM

also indicate our model’s effectiveness in identifying potent anti-
microbial peptides with greater accuracy and reliability compared to
other computational approaches (Supplementary Methods and
Results).

After fine-tuning deepAMP-AOM using the penetratin pairs, we
generated 92 penetratin-optimized sequences by deepAMP-POM. We
explored the distribution of penetratin sequences in the chemical
space after deepAMP-POM optimization (termed the penetratin opti-
mization model). We utilized the Uniform Manifold Approximation
and Projection24 (UMAP) release to downscale the model output fea-
tures of the sequences. As shown in Fig. 2g, the optimized sequences
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are similar to the chemical spatial distribution of penetratin and its
analogues. The distribution of deepAMP-generated candidate AMPs in
3 parts shows the diversity of themodel generation (the location of the
distribution is determined by the one-dimensional sequence struc-
ture).Meanwhile, we utilized themutation site as an indicator to assess
the top-predictedAMPs (T1-1 to T2-11). FromSupplementaryData 1, we
found that our 28 top-predicted AMPs had mutation distance more

than 1 from the training set, andonly onepredictedAMPshasmutation
distance equal to 1. The average of themutation distances between the
top predicted AMPs and AMPs from the training set is 4, indicating the
chemical novelty of top-predicted AMPs compared to the training set.
The fine-tuned deepAMP-POM is able to identify potential AMPs with
antimicrobial ability and cell permeability (Supplementary Methods
and Results).
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Experimental validation of candidate AMPs
A library of 92 peptide sequences generated by substituting amino
acid residues of the penetratin are provided in the Supplementary
Data 2. The top 18 AMPs, named T1-1 to T1-18, with high predicted
scores based on the deepAMP-predict model, were measured by
minimum inhibitory concentration (MIC; lower value is better) and
minimum bactericidal concentration (MBC; lower value is better). We
tested MIC and MBC against Gram-positive Staphylococcus aureus (S.
aureus), Methicillin-resistant Staphylococcus aureus (MRSA), Gram-
negative Escherichia coli (E. coli), Klebsiella pneumoniae (K. pneumo-
niae), and Pseudomonas aeruginosa (P. aeruginosa) (see Methods). We
found that penetratin exhibited greater antibacterial activity against
Gram-negative E. coli than Gram-positive S. aureus. For E. coli, a total of
16deepAMP identifiedAMPs hadMIC < 62.5μg/mL,which are stronger
than penetratin. In particular, 4 AMPs (T1-2, T1-7, T1-14, and T1-15)
reached MIC of 3.91μg/mL, which are comparable to known FDA-
approved antibiotic levofloxacin (2.93μg/mL). Also, a total of 13 AMPs
reached <125μg/mL in their MIC against P. aeruginosa, revealing
stronger antimicrobial activity than penetratin. Notably, MIC values of
T1-2 and T1-5 are 11.72μg/mL, which was equivalent to levofloxacin
(MIC = 7.8μg/mL) (Table 1). K. pneumoniae is an opportunistic patho-
gen that mostly affects people with weak immune systems and causes
nosocomial infections25. We observed that T1-2, T1-5, and T1-6 showed
potent in vitro activity against K. pneumoniae with a MIC of 15.63μg/
mL, whereas penetratin showed very weak activity (MIC> 1000μg/
mL). In addition, T1-2 and T1-5 are the two best AMPs with 11.72μg/mL
in suppressing of S. aureus effectively.

To further assess the ability of the selected AMPs against
multidrug-resistant (MDR) strains, we performed growth inhibition
assays against difficult-to-treat resistant Gram-positive bacteria,MRSA
strain. We found that antibiotic-resistant bacteria are sensitive to
antimicrobial peptides. 88.8% (16/18) of the peptides that we tested
exhibited greater antibacterial activity than penetratin. Notably, T1-4
and T1-5 were the most effective, with an MIC of 15.63μg/mL, which
was 64-fold lower than that of the penetratin (>1000μg/mL). In par-
ticular, deepAMP-predicted AMPs inhibit both Gram-positive and
Gram-negative bacteria during MIC assays, while vancomycin (the last
line of medication) only targets Gram-positive bacteria. To determine
the bactericidal potency of deepAMP-predicted AMPs, the MBC assay
was applied. As seen in Fig. 3c (Supplementary Data 3), the observed
MBC of multiple deepAMP-predicted AMPs (e.g.T1-4 against E. coli, T1-
11 against S. aureus and MRSA were identical to their MIC, indicating
that they were endowed with minimal tolerance (MBC/MIC) as well as
with both bacteriostatic and bactericidal properties. Additionally, the
detailed CFU count under MIC concentration are shown in Supple-
mentary Fig. 2. We found that T1-8 and T1-11 could fully eliminate
bacteria at their MIC concentrations, preventing them further pro-
liferation. However, bacteria continue to proliferation after stopping
treatment for several other candidate AMPs (T1-2 and T1-7). Further

improving anti-bacterial resistance of candidate AMPs using the
updated deepAMP are highly warranted.

We next turned to conduct the second generationof optimization
to identify more potent AMPs using our deepAMP-POM model. We
generated a library of 11 deepAMP-predicted candidate peptides
(termed T2-1 to T2-11) by substituting amino acid residues of T1-5, the
best candidate AMP with potent in vitro activity against both Gram-
negative and Gram-positive, includingmultidrug-resistance. We found
the effective AMP proportion in the second-generation was higher
than the first generations (Table 1). Notably, the second-generation
AMPs showed more potent MIC than penetratin against E. coli and P.
aeruginosa (10 AMPs among 11 [90.9%]), and K. pneumoniae, S. aureus,
andMRSA (all 11 AMPswith 100%) (Fig. 3e). The averageMICmaximum
value decreases 7.9 folds as compared with the first generations
(343.75 /43.32, against K. pneumoniae). In particular, among 11 AMPs,
T2-9 is the most potent peptide with the MIC value of 10.6 ~ 64-fold
lower than that of the penetratin (2.93μg/mL for E. coli, 15.63μg/mL
for K. pneumoniae, 11.72μg/mL for P. aeruginosa, 15.63μg/mL for S.
aureus and 23.44μg/mL for MRSA). In summary, combining deepAMP
prediction and systematic experimental validation, we identified
highly potent candidate AMPs (such as T2-9) for follow-up studies.

To evaluate the safety of AMPs in our study, we conducted
hemolytic activity test and MTT (3-[4,5-dimethylthiazol-2-yl]-2,5
diphenyl tetrazolium bromide) assay. As shown in Fig. 3d, our dee-
pAMP framework identified candidate AMPs exhibited wide variability
in red blood cell (RBC) hemolysis. Among all candidates, T1-6, T1-14,
T2-9 and T2-10 not only exhibited high antibacterial activity, but also
possessed potent biological compatibility with low RBC hemolysis
(<20%). And the concentration for 50% of maximal effect (EC50) of
Penetratin, T1-2, T1-5 and T2-10 was more than 100μM (230μg/mL,
Supplementary Fig. 3a and 3b). Furthermore, Penetratin, T1-2, T1-5 and
T2-10 showed low cytotoxicity to both Normal Human Dermal Fibro-
blasts (NHDF) cells and stem cells from human exfoliated deciduous
teeth (SHED) cells. According to Supplementary Fig. 3c and 3d, the IC50

of these peptides exceeds 50 μg/mL, which is more than their MIC
values. Taken together, the deepAMP identified candidate AMPs with
potent anti-bacterial activity and low toxicity.

Structural activity relationship analysis of deepAMP-
designed AMPs
To investigate the structure activity relationship (SAR) of candidate
AMPs predicted by deepAMP and their biological activities (such as
MIC), we calculated a series of physicochemical properties26, such as
hydrophobicity, hydrophobic moment and Boman index. The results
showed moderate correlations between the calculated parameter
values and MIC. For example, the correlation between the hydro-
phobic moment and MIC value was 0.47 towards K.pneumoniae
(Supplementary Figs. 4–8). We found that among peptides with lower
hemolysismost possessed lower hydrophobic fraction (under 0.4) and

Fig. 2 | Performance of deepAMP. a Temporin-Ali optimised performance in
matrix score, comparing deepAMP-TOM (purple), Baseline-T (orange), Random
mutants (blue), PepCVAE (green) and HydrAMP (red) in one iteration (n = 91 can-
didate sequences), b the second iteration (n = 91 candidate sequences) and c the
third iteration (n = 91 candidate sequences). The dashed line represents the matrix
score for Temporin-Ali (matrix score is −0.17). Boxplots show the median (center
line), and 1st and 3rd quartiles (Q1 and Q3, respectively). The whiskers (error bars)
indicate the range of the data, defined as the range between Q1-1.5*IQR and
Q3+ 1.5*IQR. d Temporin-Ali optimised performance in deepAMP-predict score
(n = 91 candidate sequences). The dashed line represents the predict score for
Temporin-Ali (predict score is 0.93). Violin plots show the median (white point),
and 1st and 3rd quartiles (Q1 and Q3, respectively). The upper and lower bounds of
the violin represent the minimum and maximum values of the data. e Pg-AMP1
optimised performance in fitness score, comparing deepAMP-GOM (purple),

Random mutants (blue), PepCVAE (green) and HydrAMP (red) to the 100 candi-
dateswith the highest fitness scores in iteration (n = 100 candidate sequences). The
dashed line represents the fitness score for four fragments of Pg-AMP1 (fitness
score are 0.075, 0.049, 0.046, 0.012, respectively). Boxplots show the median
(center line), and 1st and3rdquartiles (Q1 andQ3, respectively). Thewhiskers (error
bars) indicate the range of the data, defined as the range between Q1 and 1.5*IQR
and Q3 + 1.5*IQR. f Pg-AMP1 optimized performance in deepAMP-predict score
(n = 100 candidate sequences). The dashed line represents the predict score for
four fragments of Pg-AMP1 (predict score are 0.57, 0.40, 0.07, 0.04, respectively).
Violin plots show the median (white point), and 1st and 3rd quartiles (Q1 and Q3,
respectively). The upper and lower bounds of the violin represent the minimum
and maximum values of the data. (g) The visualization of sequences under the
UMAP 2-dimensional space (Source data are provided as a Source Data file).
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hydrophobic moment (under 0.5). Both hydrophobic fraction and
hydrophobic moment rose tomore than 0.5 in the second generation,
indicating that these two properties may contribute to the hemolysis
(SupplementaryData 4). Boman indexeswere calculated to predict the
physical binding of peptides. We found that except for T2-7 and T2-8,
the Boman indexes of deepAMP-predicted AMPs were higher than
2.48, suggesting strong binding potential of our designed candidate
AMPs27 (Supplementary Data 4).

Hydrophobic profile was related to the amphiphilicity of α-helical
peptides28. The increased hydrophobic moment indicated that the
deepAMP-predicted AMPs improved the spatial amphiphilicity
(designed AMPs with average value of 0.50 vs. penetratin 0.37) (Sup-
plementaryData 4). To inspect thatdeepAMP identifiedAMPs adoptα-
helix structures, we performed de novo structural reconstruction for
T1-2 using Discovery Studio (see Methods) and found the similar
helical structure as penetratin (Supplementary Fig. 9a). In terms of the
peptide sequence, the helical wheels showed that they had the same
positively charged amino acid residues (Supplementary Fig. 9b). The
peptides were further experimentally characterized using CD spec-
troscopy. Both T1-2 and penetratin formed an α-helix in DOPC/DOPG
large unilamellar vesicles (LUVs) (Supplementary Fig. 9c). From the CD
spectra, the α-helicity of T1-2 is stronger than that of penetratin,

suggesting that its stronger hydrophobic profile may allow better
disruption of the bacterial membrane (Supplementary Data 4).

Mechanism-of-Action of AMPs designed by deepAMP
Previous studies have shown that AMP inactivates pathogenic
microbes primarily by interfering with and damaging their cell
membranes17. Based on CD spectroscopy of T1-2, we first investigated
AMPs in the presence of the membrane using all-atom molecular
dynamics simulation. Our findings showed that the peptide was
embedded into the cell membrane (Supplementary Fig. 9d–e), with its
hydrophilic region facing the lipid headgroup, and its hydrophobic
portion facing the membrane. The peptide maintained its helical
conformation throughout the 500 ns simulation, with its distance to
the membrane center ranging between 2.2-2.6 nm (Supplementary
Fig. 9f). Our analysis revealed key interactions between the peptide
and the lipid molecules, including aromatic amino acids (phenylala-
nine and tryptophan) interacting with the lipid glycerol group and
cholesterol, and the positively charged arginine and lysine interacting
with the phosphatidylcholine headgroup. As a result of peptide
insertion, the lipid acyl chains in the vicinity of the peptide experi-
enced significant disorder (Supplementary Fig. 9g), which could lead
to excessive pressure, membrane rupture, and ultimately cell lysis.

Table 1 | The sequence of all the peptides and antibiotics, as well as their minimum inhibitory concentration values

Antimicrobial activity (MIC in µg/ml)

Peptide Sequence E. coli ±SEM S. aureus ±SEM K. pneumoniae ±SEM P. aeruginosa ±SEM MRSA ±SEM

Penetratin RQIKIWFQNRRMKWKK 62.50 0.00 250.00 0.00 1000.00 0.00 125.00 0.00 1000.00 0.00

T1-1 RWIKIWFQIRRWKWKK 11.72 5.52 15.63 0.00 31.25 0.00 31.25 0.00 23.44 11.05

T1-2 RQIKIWFQIRRWKWKK 3.91 0.00 11.72 5.52 15.63 0.00 11.72 5.52 31.25 0.00

T1-3 RQIKIWFQNKKWKWKK 62.50 0.00 250.00 0.00 1000.00 0.00 125.00 0.00 1000.00 0.00

T1-4 RWIKIWFQIRRWKNKK 7.81 0.00 15.63 0.00 23.44 11.05 31.25 0.00 15.63 0.00

T1-5 RQIKIWFQWRRWKWKK 5.86 2.76 11.72 5.52 15.63 0.00 11.72 5.52 15.63 0.00

T1-6 RQIKIWLQIRRWKNKK 7.81 0.00 31.25 0.00 15.63 0.00 15.63 0.00 62.50 0.00

T1-7 RWIKIQLQIRRWKNKK 3.91 0.00 31.25 0.00 62.50 0.00 62.50 0.00 93.75 44.19

T1-8 RWIKIWFQNRRWKWKK 31.25 0.00 15.63 0.00 375.00 176.78 93.75 44.19 62.50 0.00

T1-9 RWIKIWFQWRRWKWKK 15.63 0.00 31.25 0.00 62.50 0.00 62.50 0.00 46.88 22.10

T1-10 RQIKIWFQNRKWKWKK 31.25 0.00 250.00 0.00 500.00 0.00 62.50 0.00 250.00 0.00

T1-11 RQIKIWFQNKRWKWKK 31.25 0.00 250.00 0.00 500.00 0.00 125.00 0.00 500.00 0.00

T1-12 RQIKIWFQNRRWKWKK 15.63 0.00 125.00 0.00 500.00 0.00 93.75 44.19 250.00 0.00

T1-13 RWIKIWFQNRRWKNKK 15.63 0.00 23.44 11.05 500.00 0.00 187.50 88.39 125.00 0.00

T1-14 RQIKIWFQIRRWKNKK 3.91 0.00 31.25 0.00 23.44 11.05 31.25 0.00 62.50 0.00

T1-15 RWIKIQFQIRRWKNKK 3.91 0.00 15.63 0.00 62.50 0.00 46.88 22.10 62.50 0.00

T1-16 RQIKIWFQNRRWRWKK 15.63 0.00 62.50 0.00 500.00 0.00 93.75 44.19 125.00 0.00

T1-17 RWIKIQLQNRRWKNKK 62.50 0.00 250.00 0.00 1000.00 0.00 500.00 0.00 1000.00 0.00

T1-18 RWIKIQFQNRRWKNKK 31.25 0.00 125.00 0.00 1000.00 0.00 375.00 176.78 500.00 0.00

T2-1 RWIKIWFQWRKIRWKK 7.81 0.00 23.44 11.05 31.25 0.00 31.25 0.00 46.88 22.10

T2-2 RQIKIWFIWRKWRWKK 15.63 0.00 31.25 0.00 23.44 11.05 62.50 0.00 62.50 0.00

T2-3 RWIKIWFQIRRWKWRK 15.63 0.00 23.44 11.05 31.25 0.00 62.50 0.00 31.25 0.00

T2-4 RWIKIWFQIRRWRWKK 15.63 0.00 31.25 0.00 46.88 22.10 62.50 0.00 31.25 0.00

T2-5 KWIKIWFQWRRWRWKK 7.81 0.00 15.63 0.00 31.25 0.00 46.88 22.10 31.25 0.00

T2-6 KWIKIWFQWRRWKWKR 15.63 0.00 23.44 11.05 31.25 0.00 31.25 0.00 31.25 0.00

T2-7 KWIKIWFIWRRIKWRK 15.63 0.00 15.63 0.00 46.88 22.10 46.88 22.10 31.25 0.00

T2-8 KQIKIWFIWRRIKIKK 7.81 0.00 31.25 0.00 62.50 0.00 31.25 0.00 62.50 0.00

T2-9 RQIKIWFQWKRIKWRR 2.93 1.38 15.63 0.00 15.63 0.00 11.72 5.52 23.44 11.05

T2-10 RQIRIWFQWKRWKWKR 5.86 2.76 23.44 11.05 31.25 0.00 23.44 11.05 31.25 0.00

T2-11 RWIKIWFIWRRWRWRK 62.50 0.00 62.50 0.00 125.00 0.00 187.50 88.39 125.00 0.00

Vancomycin 125.00 0.00 0.98 0.00 1000.00 0.00 1000.00 0.00 0.98 0.00

Levofloxacin 2.93 1.38 0.09 0.04 0.06 0.00 7.81 0.00 0.48 0.00
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To test the mechanism-of-action of deepAMP-predicted candi-
date AMPs further, we conducted four complementary experiments:
(i) propidium Iodide (PI) staining detected by confocal and flow
cytometry, (ii) scanning electron microscopy (SEM), (iii) membrane
depolarization assay, and (iv) permeabilization of the outermembrane
assay. We first used PI (only stains dead cells) andHoechst (stains both
live and dead cells) to conduct live and dead assays under AMPs
treatment. We found that both E. coli and S. aureus emitted red
fluorescence after treatment with T1-2 and T2-10, suggesting that the
AMPs induce pore formation on the bacterial membrane and enable
the PI dye to enter the bacteria (Fig. 4a). Similar fluorescence was also
observed in K. pneumoniae, P. aeruginosa, and MRSA (Supplementary
Fig. 10). The elevated PI intensity in flow cytometry assay provided
additional evidence that AMPs caused damage to the bacterial mem-
branes (Fig. 4b and Supplementary Fig. 11).

The effects of treatment on bacteria with AMPs were further
determined by scanning electron microscopy (SEM). As shown in Sup-
plementary Fig. 12, untreated S. aureus showed a spherical shape and
smooth surface. While after AMP treatment (T1-2, T1-5, T2-9, and T2-10),
the bacteria had a significant influence on the morphology of the bac-
terial cell surface with membrane damage and wrinkled surface frag-
ments. Similar observations were obtained for E. coli and P. aeruginosa.
We next assessed the ability of AMPs to damage and depolarize the
bacterial cytoplasmicmembrane. 3,3′-dipropylthiadicarbocyanine iodide

(DiSC3(5)) is a potentiometric fluoroprobe. Upon changes in the cyto-
plasmic membrane transmembrane potential, the fluorophore transfers
from the cytoplasmic membrane to the outer environment, generating
fluorescence.We found the DiSC3(5) fluorescence under AMP (T1-2, T1-5,
and T2-10) treatment was 2-4 times that of untreated samples. In parti-
cular, the fluorescence of T2-10 was 1.9 times higher than polymyxin B, a
positive control (Fig. 5b). This result illustrates that AMPs may inhibit
bacteria by breaking the cytoplasmic membrane. A fluorescent probe 1-
N-phenylnaphthylamine (NPN) uptake assay was further performed to
assess whether AMPs permeabilized the outer membrane. NPN does not
penetrate the bacterial outer membrane unless it is broken. When bac-
teria were treated with deepAMP identified AMPs, the fluorescence was
twice as high as untreated, which is comparable to the positive control of
polymyxin. These observations suggest that AMPs exhibited high
potency to permeabilize the outer membrane (Fig. 5c).

In summary, these comprehensive assays suggested that
deepAMP-designed candidate AMPs not only influence the cyto-
plasmicmembrane of bacteria but also exert their inhibitory effects by
permeabilizing the outer membrane, indicating potency to overcome
antibacterial resistance by targeting bacterial membranes.

deepAMP-design AMPs reduce antibiotic resistances
We next turned to test whether deepAMP identified AMPs stimulate
bacterial resistance. We performed a resistance-acquisition test on S.
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aureus in the presence of ciprofloxacin (an FDA-approved quinolone
antibiotics), T1-2, T1-5, and T2-10. We found that three peptides T1-2,
T1-5, and T2-10 did not induce resistance after 25 passages (Fig. 5d),
whereas S. aureus began to develop resistance to the antibiotic
ciprofloxacin after only 10 passages. Bacterial biofilm helps antibiotics
tolerance29, thus, we next test the ability of our AMPs to inhibit biofilm
formation using crystal violet staining. As shown in Fig. 5e and Sup-
plementary Fig. 13, we found that three deepAMP-designed AMPs (T1-
2, T1-5, and T2-10) were effective in preventing biofilm formation
towards both S. aureus and E. coli. Altogether, these experimental
observations indicate that T1-2, T1-5, and T2-10 have therapeutic

potential for treating resistant strains and hence demand further
experimental and clinical investigation in the future.

AMPs are effective against skin wound infection in vivo
Dermis wound infection is one of the health problems caused and
exacerbated by the invasion of pathogenic organisms30. We harnessed
a mouse wound infection model with P. aeruginosa, one of the most
common causes of chronic wound infections, to evaluate the in vivo
efficacy of T1-2, T1-5 and T2-10. As shown in Fig. 6b and Supplementary
Fig. 14a, 107 CFU bacteria were decreased to about 0 CFU after 24 h
treatment of AMPs, achieving the curative effect of Levofloxacin
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(0 CFU). In contrast, more than 105 CFU bacteria were detected on PBS
treated skin surface. A qualitative test H&E staining was used to reflect
the antimicrobial effects after 3 d treatment. Despite it wasn’t quanti-
fied, it is evident that mice in the PBS group exhibited a higher degree
of neutrophil infiltration compared to the three other groups treated
with T1-2, T1-5, and T2-10, respectively (as indicated by the green
arrows in Supplementary Fig. 14b). In addition, we did not observe
organ-specific toxicity in mice after treatments in the tissue immuno-
histology section images (Supplementary Fig. 15). Blood test results
showed no obvious changes among different treatment groups (Sup-
plementary Fig. 16). In summary, these mouse model observations
reveal that the deepAMP-identified AMPs display potent in vivo effects
to treat P. aeruginosa skin infection and exhibit good biocompatibility.

Discussion
Antibiotic resistance crisis is sweeping the world and the steadily
declining productivity of new clinical antibiotics due to the high risk of
early discovery and poor return on investment is exacerbating this
problem. AMPs as potential alternatives to antibiotics with low risk of
drug resistance has attracted growing attention. In this study, we
created a language model-based antimicrobial peptide discovery fra-
mework (termed deepAMP) and experimentally validated the candi-
date peptides for broad-spectrum antimicrobial action and treating
resistant bacteria using both in vitro and in vivo models.

Several computational approaches15,17 have been developed for
virtual screening for AMP discovery. These methods are limited by the
small data that only identify potential AMPs in the restricted chemical
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space. Although generative models18,19,23 were proposed for de novo
AMPs design, unconstrained generation results in difficult synthesis
and high experimental cost of the generated AMPs. Our deepAMP
framework learned a universal representation of peptide sequences in
an unsupervisedmanner from a large and varied sequence database of
peptides, ensuring the diversity of the generated AMP candidates.
Existing methods might not be able to effectively capture high-
dimensional features leading to poor optimization results and low
efficiency16,21. DeepAMP was fine-tuned on few-shot data to learn the
key to AMP switching between low and high antimicrobial activities.
Both in vitro and in vivo assays confirmed that the deepAMP identified
candidate AMPs are tens of times more potent than the original
sequence, and less susceptible to antibacterial drug resistance.

We acknowledged several potential limitations. One-dimensional
peptide sequence generation implemented in the current deepAMP
framework cannot capture three-dimensional (3D) structural infor-
mation. Integrating 3D conformational informations derived from
existing approaches, such as alphFold331, may further improve per-
formanceof deepAMP. Thepeptide languagemodel is also a black-box
model by lacking interpretability, which hinders feature characteriza-
tion of bioactive peptides. In the future, we will develop multimodal
peptide generation methods to capture both sequence and 3D struc-
tural information of peptides and improve model interpretability.
While the initial experimental validation was limited to 29 candidates,
this represents a relatively small size. More experimental validations
for a large number of candidate AMPs are warranted in the future.
Furthermore, given the potent antibacterial effects observed with the
three lead AMPs (T1-2, T1-5, and T2-10) in the wound mouse model,
more in vivo observations of these promising AMPs using additional
animal models, such as those for deep thigh infection and pneumonia
mouse models, are warranted as well.

In summary, our study demonstrates a practical application of
using large-scale languagemodels for the discovery of AMPs with high
potent antimicrobial activities and low antibiotic resistance. As the
proof of concept, we demonstrated that more than 90% of the
designed candidate AMPs showed a better MIC (minimal inhibitory
concentration) than penetratin8–11. AMP T2-9 showed the highest
antimicrobial activity against five types of bacteria, with 10 ~ 64 times
of higher potency than penetratin. Confocal microscopy and flow
cytometry assays showed strong membrane permeability of designed
AMPs and three candidates (T1-2, T1-5 and T2-10) displayed a low
propensity to induce resistance in S. aureus compared to ciprofloxacin
(an FDA-approved antibiotic). Mechanistic observations revealed that
designed AMPs selectively disrupt cell membrane of bacteria and

overcomes antibiotic resistance. In summary, our deepAMP frame-
work offer a powerful deep generative model for discovery of potent
AMPs and other types of therapeutic biologics if broadly applied.

Methods
Model pre-training and fine-tuning
We follow the idea of pre-training andfine-tuning (network parameters
in Supplementary Tables 1, 2), which has been shown to work well on
tasks with small datasets. To better fit the task requirements, we divi-
ded the model into 3 parts, (1) the peptide generative model (dee-
pAMP-general), (2) the antimicrobial peptide optimization model
(deepAMP-AOM), and (3) the penetratin optimization model (dee-
pAMP-POM). The model details are described in the following.

Data sets of AMPs
Initially, we aimed to obtain a training dataset de novo that was inex-
pensive, chemically diverse, and did not require sophisticated
laboratory resources. This would allow for the development of a
robustmodelwithwhichnewAMPs could bepredicted andoptimized,
without the practical hurdles that can be associated with large-scale
antibiotic screening efforts.

We trained the three parts of the model separately with different
datasets (Supplementary Table 3). (1) We constructed a pre-trained
peptide dataset using the database Uniprot, which contains a large
amount of protein and peptide data from different organisms and
different sources, thus providing a diverse data resource for peptide
research. From this, data with sequence lengths as close to peptides as
possible (length range 10 ~ 50) are filtered, including 300,000 peptide
sequences. (2) In order to meet the demand for antimicrobial peptide
optimization, the model needs to use paired data. However, the opti-
mized peptides in the available data differ significantly from the ori-
ginal peptides, in addition, there are rarely paired data samples with
equivalent length and sequence similarity. For this reason, we
designed an antimicrobial peptide sequence degradation method to
degrade the high-activity samples into low-activity samples. We
selected 321 antimicrobial peptides with relatively high activity (for E.
coli MIC below 2.5) for degradation in the GRAMPA19 dataset, where
each sequence was randomly masked with up to 30% of the length of
the site and was sampled 100 times. Finally, we generated 24,928 pairs
containing <low activity, high activity> antimicrobial peptide optimi-
zation data set. (3) Since penetratin has been shown to have good cell
permeability and average antimicrobial activity, our ultimate goal is to
optimize penetratin to achieve high activity antimicrobial effect.
Nevertheless, there is currently no constructed dataset for penetratin.
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Here we use a data mining approach to collect data on penetratin,
which includes both the original and the penetratin-optimised analogs.
The data of 54 peptides against eight bacterial species were collected.
After screening this part of the dataset, 29 penetratin sequences with
high activity (MIC value lower than 150μg/ml) and sequence length
within 20 were selected. Then, sequence degradation was performed
on these 29 sequences to generate an optimized dataset of 1009 pairs
of <low activity, high activity> samples. The distribution of the pre-
dicted scores for the training set is shown in Supplementary Fig. 48.

Generalized Peptide Generative Model (deepAMP-general)
The framework of the generative model is composed of an encoder
and a decoder, where we use the Transformer module based on a self-
attention mechanism for the encoder and a dense network for the
decoder. In the polypeptide generative model, the model uses a con-
structed dataset containing 300,000 peptides to train the generative
model in an unsupervised manner. Since our final task requirement is
to optimize the antimicrobial peptide sequences, which means only
the amino acids at specific sites in the sequence need to be changed to
alter the activity of the sequence, we use the masked language model
(MLM) training through similar to the BERT model. Suppose the
existing samples Si = s0,s1, . . . ,sn

� �
, we randomly mask no more than

30% of the tokens in the sequence, and the input samples of the
maskedmodel areMi = m0,m1, . . . ,mn

� �
, the training goal is to encode

the input samples and then decode the masked token mk into the
original oneby thedecoder. By decoding the tokenmk into theoriginal
token sk , and the objective function of this part is:

L Sð Þ=
X
i

X
k

logP sk jm0, . . . ,mn;θ
� �

, ð1Þ

where n denotes the sequence length, k denotes the token position of
the mask, 0≤ k ≤n

� �
, the number of k ranges from ð0,d30%*neÞ, and

the conditional probability P is a generative model function with
parameter θ.

The AMPs optimization model (deepAMP-AOM)
deepAMP-AOM is fine-tuned using deepAMP-general and initialized
using the deepAMP-general parameters, in the fine-tuning stage, due
to the difference in the amount of training sample data. To avoid
overfitting themodel and not learning effectively small data, it is often
necessary to set a lower learning rate and increase the decay rate of
weights compared to the pre-training phase. Finally, several training
hyperparameters are applied to the antimicrobial peptide optimiza-
tionmodel AOM: a batch size of 128, number of training rounds of 200,
initial learning rate of 6 × 10�5, and weight decay of 1 × 10�3. The
deepAMP-AOM model is different from the unsupervised training of
deepAMP-general. In this step we utilize pairs of <low activity, high
activity> training samples, the string of the input mask is the low
activity sample, and the target string in decoding is the string of the
maskposition corresponding to thehigh activity sample. Anoptimized
training set < Si,Ti > is used, where Si = s0,s1, . . . ,sn

� �
is the low-activity

antimicrobial peptide and Ti = t0,t1, . . . ,tn
� �

is the high-activity anti-
microbial peptide. The model randomly masks no more than 30% of
the tokenof lowactivity antimicrobial peptides, and themaskedmodel
input is Mi = m0,m1, . . . ,mn

� �
. The goal of training is to encode the

whole input sample, and after the decoder can decode the masked
token mk back to the corresponding position of high activity anti-
microbial peptide token tk . The objective function is:

L Sð Þ=
X
i

X
k

logP tk jm0, . . . ,mn;θ
� �

, ð2Þ

where n denotes the sequence length, k denotes the token position of
the mask, 0≤ k ≤n

� �
, the number of k ranges from ð0,d30%*neÞ, and

the conditional probability P is a generative model function with
parameter θ.

Penetratin optimized model (deepAMP-POM)
The antimicrobial peptide containspenetratin, andwithdeepAMP-AOM
as an intermediate layer, the model is already capable of the task of
generating high-activity antimicrobial peptides, at which point we again
fine-tune the parameters (Supplementary Data 5) in deepAMP-AOM to
beused in the initializationof deepAMP-POM. In the trainingprocesswe
also classify penetratin sequences into two categories, high activity and
low activity. The process and objective function are the same as dee-
pAMP-AOM, but the data set of penetratin is small, so we need to use a
smaller learning rate to learn. By adjusting the training process, we
finally get a batch size of 32. The number of training rounds is 200, the
initial learning rate is 1 × 10�5 and the weight decay is 1 × 10�3 .

Temporin-Ali optimized model (deepAMP-TOM). For the optimiza-
tion task of Temporin-Ali, we fine-tuned deepAMP-AOM on the
Temporin-Ali analog dataset to achieve better optimization. In the
training process, we also classify Temporin-Ali sequences into two
categories, high activity and low activity. The process and objective
function are the sameasdeepAMP-AOM, but the data set of Temporin-
Ali is small, so we need to use a smaller learning rate to learn. By
adjusting the training process, weget a batch size of 32. The number of
training rounds is 200, the initial learning rate is 1 × 10�5 and the
weight decay is 1 × 10�3.

Guavanin antimicrobial peptide optimized model (dee-
pAMP-GOM)
For the optimization task of Pg-AMP1 fragment, we fine-tuned dee-
pAMP-AOM on the guavanin antimicrobial peptide analog dataset22 to
achieve better optimization. In the training process, we also classify
guavanin antimicrobial peptide sequences into two categories, high
activity and low activity. The process and objective function are the
same as deepAMP-AOM. By adjusting the training process, we get a
batch size of 32. The number of training rounds is 200, the initial
learning rate is 1 × 10�5 and the weight decay is 1 × 10�3.

DeepAMP-based Virtual Screening
Evaluating the optimization capability of a model through virtual
screening is a general method, and we used the Support Vector
Machine (SVM) classifier to evaluate the antimicrobial activity of the
data generated by the optimization model in advance of the wet
experiment. The model is trained to distinguish the activity of anti-
microbial peptides based on transforming amino acid strings into a
400-dimensional feature vector representation using the RECM fea-
ture extraction method. We collected GRAMPA19 data as positive
samples with antimicrobial activity and Uniprot peptide data as
negative samples without antimicrobial activity, resulting in an anti-
microbial peptide identification dataset of 6,760 positive and 6760
negative samples. Among them, 500 positive samples and 500 nega-
tive samples are assigned to the test set, and the other is the training
set. The final AUC of the model is 0.96 using five-fold cross-validation,
which indicates that the activity of peptide sequences canbe evaluated
to some extent by virtual screening.

Sequence degradation
Since optimization requires paired samples for learning, however, such
data is lacking in the existing dataset. The deepAMP-general we trained is
a peptide generative model, in which most of the trained peptides are
inactive. Therefore, we resorted to deepAMP-general to degrade the
activity of highly active sequences. Specifically, the steps of degenerating
a highly active sequence are (1) random masking of the highly active
sequence, the number of masks ranges from [1, length*30%). For exam-
ple, for a sequence of length 10, the number of masks is at least 1 and at
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most 3, themaskpositions are randomly combined among tenpositions;
(2) the sequence obtained after masking will be mapped to the hidden
space of peptide by the encoder of deepAMP-general. Finally, the amino
acid symbols at the mask positions will be parsed by the decoder of
deepAMP-general. In this study, the process will be repeated more than
100 times for each sequence.

Fitness function
This function is used to evaluate the amphipathic α-helices of the
peptide and is designed based on the ratio of Eisenberg’s hydrophobic
scale32 and the sum of exponential α-helix propensity in Pace–Schols
scale33, as in Eq. 3:

Fitness =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPI
i= 1

Hi × cos δi

� �� �2
+

PI
i= 1

Hi × sin δi

� �� �2s

PI
i= 1

eHxi

, ð3Þ

where δ represents the angle between the amino acid side chains (100°
for α-helix, on average); i the residue number in the position i from the
sequence; Hi the ith amino acid’s hydrophobicity on a hydrophobicity
scale; Hxi the ith amino acid’s helix propensity in Pace–Schols scale;
and I the total number of residues present in the sequence.

Peptide novelty calculation
To calculate the number of mutation sites we use the Hamming Dis-
tance, which represents the number of amino acids at different posi-
tions between two polypeptide sequences (for unequal sequences we
use left-alignment for comparison). Assuming that there are two equal
length peptide sequences A and Bwhich are of length L, the number of
mutation sites (Mutation Count) can be expressed as:

Mutation Count =
XL
i = 1

δ Ai,Bi

� �
+ lenðAÞ � lenðBÞ
		 		, ð4Þ

where δ Ai,Bi

� �
denotes that at position i. Whether the amino acids of

peptide sequences A and B are different. If different, δ Ai,Bi

� �
is equal

to 1, and if the same δ Ai,Bi

� �
is equal to 0, lenðAÞ denotes the length of

the peptide sequence A, and lenðBÞ denotes the length of the peptide
sequence B. The number of mutation sites is derived from the sum of
all positions plus the difference in sequence lengths.

Peptide synthesis
Standard Fmoc solid-phase peptide synthesis was used to synthesize all
peptides via a CSBio 163 peptide synthesizer. The resin-bound peptide
underwent cleavage using a cocktail of TFA/thioanisole/H2O (95:2.5:2.5)
for 3 h. Collecting the filtrate and the resin mixture was washed with
excess TFA. The crude peptide was obtained by concentrating and
precipitating the filtrate with cold ether. Subsequently, crude peptide
purificationwasperformed through reversephaseHPLC (Elite P230A/P)
using a semi-preparative C18 column. After that, all peptides were lyo-
philized and analyzed via analytical HPLC and ESI (+) mass.

Minimal inhibition concentration (MIC)
The bacteria S. aureus (ATCC 25904), E. coli (ATCC BAA-1025), K. pneu-
moniae (ATCC27736), P. aeruginosa (ATCC 47085) and MRSA (ATCC
BAA-1717)were kindly donatedby Prof. Xinxin Feng’s group. 100 µLof 5 ×
105 CFU/mL bacteria in Mueller Hinton Broth (MHB, Hopebio, HB6231-1)
or MHB (bacteria free) was added to a 96-well. 20mg/mL peptide stock
solution was added to the first well and given serial twofold dilutions to
obtain final concentrations of 0.97, 1.95, 3.90, 7.81, 15.63, 31.25, 62.5, 125,
250, 500, and 1000 µg/mL. Plates were incubated at 37 °C for 20h. Bac-
teria growth was monitored by measuring the OD600 using a microplate
reader (Molecular Devices, Spectra Max M5). The MIC value was the

minimum corresponding concentration at which the OD600 value was
equal to the negative control (bacteria-free MHB). Then, 20μL of the
bacterial suspension or diluent was evenly spread on an LB plate (BD
Diagnostics, 221994) and incubated at 37 °C overnight, followed by col-
ony counting. After MIC assay, 20 µL of samples under greater than or
equal to MIC concentrations were sub-cultured overnight at 37 °C on LB
Agar plates. The MBC value was the minimum concentration corre-
sponding to no bacteria growth.

Cell Viability
An MTT assay was employed to assess in vitro cytotoxicity of AMPs.
NHDF and SHEDcellswere seeded aplated in 96well plates at a density
of 5000 cells/well and allow to adhere overnight at 37 °C, 5% CO2. The
culture medium DMEM with 10% FBS and 1% P/S was replaced with
culture medium containing 1, 2.5, 5, 10, 25, 50 µg/mL peptides. Blank
medium was used as a negative control. After 24 h incubation period,
cells were washed and added 10 µL of MTT solution and samples
incubated for 3 h to formformazan. After that, the culturemediumwas
replased with 100 µL DMSO for absolutely dissolved formazan.
Absorbance was recorded at 570 nm using a microplate reader
(Molecular Devices, Spectra Max M5). The percent viability was cal-
culated as follows: (Absorbance peptide-treated cells-Absorbance
blank) / (Absorbance untreated cells-Absorbance blank) ×100. Graph-
Pad Prism9 softwarewas used to fit cytotoxicity curves and IC50 values
were calculated with non-linear regression model.

Hemolytic Assay
Human whole red blood cells were centrifuged to obtain RBCs that
were then washed and resuspend in PBS to 0.25% (v/v). In a 96-well
plate, 75 µL of the RBCs solutionwasmixedwith an equal volumeof 2 ×
peptide dissolved in PBS to initiate the assay. Blank or 1% Triton - X100
containing PBS were used as negative and positive controls, respec-
tively. Samples were incubated for 1 h with gentle shaking, followed by
centrifugation at 2200 g for 10min at 4 °C.100 µL of the supernatant
from each well was added to an empty 96-well plate. The hemolysis
was detected by absorbance at 415 nm using a microplate reader
(Molecular Devices, Spectra Max M5), and calculated using the fol-
lowing equation:

ððAbsorbancetreated hRBC�Absorbanceuntreated hRBC Þ
=ðAbsorbancetriton�X100treated hRBC�Absorbanceuntreated hRBCÞÞ× 100:

Circular Dichroism (CD) Spectroscopy
DOPC andDOPSweremixed equally and dried to a filmwith argon and
subsequently lyophilized overnight. After that, suitable PBS was added
and the liposome with a size of 100 nm (2.5mM) was formed by
ultrasound, vortex, and extrusion techniques. Peptide solutions (50
μM) were used to yield a peptide/lipid ratio of 1:50. CD wavelength
spectra of the peptides were measured from 260 to 200nm using a
1mm path length quartz cell at 37 °C. Mean residue ellipticity, [θ], was
calculatedusing the following equation: [θ] = (θobs/10lc)/r, whereθobs
is the observed ellipticity inmillidegrees, l is the length of the cell (cm),
c is the concentration (M), and r is the number of residues.

Morphology study by SEM imaging
A suspension of bacteria in the exponential growth phase was incu-
bated with AMPs (1 × MIC) for 12 h. A bacterial suspension without any
treatment was used as the negative control. After centrifuging (1500 g,
12min) and removing the supernatants, bacteriawerefixed at4 °Cwith
PBS containing 2.5% glutaraldehyde (Sinopharm, 30092436). Samples
were washed three times with PBS and then dehydrated using a series
of ethanol solutions (30, 50, 70, 90, and 100%). The samples were
sputter-coated with gold for observation using a Hitachi S-4800 field
emission scanning electron microscope.
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Effects of AMPs on bacterial membrane permeability
Bacteria were collected and washed three times with PBS. Then bac-
teria were resuspended to a working concentration (OD600 = 0.1) and
treated with AMPs at 1 ×MIC for 5 h at 37 °C. After staining with 20μg/
mL PI for 15min, the samples were transferred to a glass slide for
confocal imaging (FV1200, Olympus) or detected red fluorescence of
PI on FL2-PE via flow cytometry (Accuri C6 Plus, Becton Dickinson).
Seven pictures were taken for each treatment group, and the percen-
tage of PI-stained bacteriawas calculated using the following equation:

PI� stained bacteria% = Number of bacteriaStained with PI

=Number of bacteriaStained with DAPI × 100:
ð5Þ

Molecular dynamics simulations of peptide T1-2 with a model
membrane
We used the original PDB ID: 1OMQ as a starting point for the peptide
structure and mutated it to the current sequence (T1-2). The bacterial
membranewasmodeledusing a compositionof 60%POPC, 20%POPG,
and 20% cholesterol, which mimics the key components of the mem-
brane. At the beginning of the simulation, the peptide was placed onto
themembranewith its helical axis parallel to themembrane plane. The
simulations were performed for 500 ns using NAMD v2.14, with a
1.2 nmcut-off for interactions and 150mMNaCl ion concentration. The
CHARMM36m forcefieldwas used throughout the simulations34,35. The
lipid order parameter (Szz) was measure as Szz =<

3cos2θ�1
2 >, where θ is

the angle between the Ca�1 � Ca+ 1 vector and the z-axis.

Membrane depolarization assay
The cytoplasmicmembranedepolarization activity of the peptideswas
determined by measurements of fluorescence of the membrane-
potential-sensitive dye DiSC3(5). Briefly, E. coli was centrifuged and
washed three times with washing buffer (20mMglucose, 5mMHEPES,
pH 7.2). Then resuspended to a working concentration (OD600 = 0.05)
OD600 in the working buffer (20mMglucose, 5mMHEPES, 0.1M KCl,
pH 7.2). Thereafter, 100μL bacteria were incubated with 20 nmol/L
DiSC3(5) (53213-94-8, Aladdin) until a stable reduction of fluorescence
was achieved (about 15min). Samples were treated with 1 × MIC AMPs
and membrane depolarization was then monitored by observing the
change in the fluorescence emission intensity of DiSC3(5)
(λex = 622 nm, λem = 670nm).

Permeabilization of outer membranes
The membrane permeability of the peptides was determined by using
the NPN uptake assay. E. coli was grown to an OD600 of 0.5, cen-
trifuged (9168 g at 4 °C for 10min), washed, and re-suspended in
buffer (5mMHEPES, 5mMglucose, pH7.4) to aworking concentration
(OD600 = 0.05). Then, samples were treated with 10μM NPN solution
(P110559, Aladdin) in a 96-well plate. The backgroundfluorescencewas
recorded at λex = 350nm and λem = 420nm. 100μl peptide solution
was added to the 96-well plate and reached 1 × MIC as a final con-
centration. Fluorescence was recorded as a function of time until no
further increase in fluorescence was observed.

Bacterial resistance development assays
For serial passage evolution, S. aureus was grown overnight in 3mL
MHB and diluted 1/10,000 by fresh MHB. 100μL of bacteria were
added to a 96-well plate, in the presence of varying concentrations of
AMPs or ciprofloxacin (C861180, Maclin) at two-fold serial dilutions.
Plates were incubated at 37 °C without shaking for 24 h, at which time
they were read at 600nm using a microplate reader (Molecular Devi-
ces, Spectra MaxM5). After 24 h, bacteria that grew in the presence of
the highest concentration of AMPs or ciprofloxacin were diluted 1/
10,000 by fresh MHB, and once again introduced to varying

concentrations of AMPs or ciprofloxacin at two-fold serial dilutions.
This procedure was performed every 24h over 25 days.

Antibiofilm assays
100μL 106 CFU/mL bacteria suspension in MHB was treated with 1 ×
peptide solutions in a 96-well plate and incubated at 37 °C for 72 h.
Then, the culturing medium in the wells was discarded and washed
with PBS 3 times. Then fixed with 100 µl methanol (C861180, Sino-
pharm) for 30min. The biofilm was air-dried and subsequently stained
with 0.1% (w/v) crystal violet (C861180, Solarbio) for 30min and then
further washed with PBS. Thereafter the crystal violet was solubilized
in 100 µL 30% acetic acid and the absorbance at 595 nmwas measured
with a microplate reader (Molecular Devices, Spectra Max M5).

Wound Mouse Model
Animal experiments were carried out complying with National Insti-
tutes of Health (NIH) guidelines for the Care and Use of Laboratory
Animals, and the study protocol was approved by the Institutional
Animal Care and Use Committee of Hunan University (HNU-IACUC-
2021-102) under Dr. Junfeng Shi. Female ICR mice (6 to 8 weeks) were
obtained from the SJA Laboratory Animal Co Ltd (Hunan, China).
Themiceweremaintainedunder controlled conditions of temperature
22 °C ± 2 °C, relative humidity 50± 10%, and light–dark cycle 12 h.

Forty female ICR mice (6 to 8 weeks, each weighing 28 to 35 g)
were anesthetized with an intraperitoneal injection of chloral hydrate
(50mg/kg). A 1.0 cm2 open excision wound was created on the dorsal
side of the skin of each mouse, reaching the depth of the loose sub-
cutaneous tissue. P. aeruginosa suspensions (107 CFU) were inoculated
on the excision wound area to establish the wound infection model.
Mice were separated into five groups (PBS, T1-2, T1-5, T2-10, and
levofloxacin),N = 8mice per group. The treatment dose and frequency
were 10mg/kg and twice a day for 3 days, respectively. Treatments
were started 1 h after infection by applying 60 μL of compound solu-
tions or PBS to the wound area. On day 2, the bacterial load on the
wound surface of the survivedmice was determined by wiping the full
wound surface with a sterile swab to transfer the bacteria to PBS and
plating the PBS agar plate (supplemented with 20 μg/ml of ampicillin)
for CFU determination. On day 3, mice were euthanized. The wound
area and organ (liver, spleen and kidney) were collected for H&E
staining analysis. Blood was withdrawn for evaluation of RBC para-
meters after treated with PBS, T1-2, T1-5, T2-10 and levofloxacin for
24 h by intraperitoneal injection. The statistical significance of differ-
ences in surface bacterial loadwas determined by the one-way ANOVA
with Tukey’s multiple comparison test…

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data used in this paper are publicly available and can be accessed at
https://github.com/jimmyrate/deepAMP. The source data for all fig-
ures and tables in the manuscript and in the Supplementary Informa-
tion are provided in Source Data Files. Source data are provided with
this paper.

Code availability
All codes and the trained models are available at https://github.com/
jimmyrate/deepAMP.
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