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Determination of biomarkers 
from microarray data using graph 
neural network and spectral 
clustering
Kun Yu1,4, Weidong Xie2,4, Linjie Wang2, Shoujia Zhang2 & Wei Li3*

In bioinformatics, the rapid development of gene sequencing technology has produced an increasing 
amount of microarray data. This type of data shares the typical characteristics of small sample size and 
high feature dimensions. Searching for biomarkers from microarray data, which expression features 
of various diseases, is essential for the disease classification. feature selection has therefore became 
fundemental for the analysis of microarray data, which designs to remove irrelevant and redundant 
features. There are a large number of redundant features and irrelevant features in microarray data, 
which severely degrade the classification effectiveness. We propose an innovative feature selection 
method with the goal of obtaining feature dependencies from a priori knowledge and removing 
redundant features using spectral clustering. In this paper, the graph structure is firstly constructed 
by using the gene interaction network as a priori knowledge, and then a link prediction method based 
on graph neural network is proposed to enhance the graph structure data. Finally, a feature selection 
method based on spectral clustering is proposed to determine biomarkers. The classification accuracy 
on DLBCL and Prostate can be improved by 10.90% and 16.22% compared to traditional methods. 
Link prediction provides an average classification accuracy improvement of 1.96% and 1.31%, and 
is up to 16.98% higher than the published method. The results show that the proposed method 
can have full use of a priori knowledge to effectively select disease prediction biomarkers with high 
classification accuracy.

Microarray data are used in clinical medicine by analyzing genetic differences in tissues and cells. Effective gene 
selection can significantly enhance the disease prediction and diagnosis process, It has also been extensively 
studied in cancer pathogenesis and pharmacology. In bioinformatics, generates nonlinear datasets with multi-
features and high noises. Thousands of gene expression values can be simultaneously detected in one experiment 
by gene chip technology, which in turn generates millions of gene expression data. Likewise, a large number of 
protein expression profile data can be obtained from a particular set of biological samples under different condi-
tions by protein mass-spectrometry. However, the conventional pattern recognition methods are not suitable 
for the data with high dimension and few  samples1. For such data, how to remove redundant features, and mine 
the useful biological information hidden in the massive data has become the key to the research of recognition.

When the number of samples is limited, the computational complexity of the classification will exhibit expo-
nential growth increase along with the addition of features. In this case, “Curse of Dimensionality” will appear. 
Feature selection methods can be used to solve the following  problems2. Effective feature selection can improve 
the generalization performance of learning algorithm and simplify the learning model. Based on the classifica-
tion problem, the classical feature selection methods are mainly divided into Filter, Wrapper, and Embedded 
methods according to the feature evaluation  criteria3.

Some advanced hybrid and ensemble feature selection methods have been reported  in4–7. However, most 
of these methods are based on improvements and combinatorial optimization of existing methods and rarely 
consider the true dependencies between features. Although Lee et al.8 reported the use of probabilistic graphical 
models to describe feature dependencies, however, this method does not introduce a prior knowledge.
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In biological information, the interaction between genes and proteins has been proved to be  effective9–11. 
These features are incomplete and with a lot of noise, which requires pre-processing. Dutta et al.12,13 introduced a 
protein interaction network for genetic algorithm for multivariate optimization and have achieved better results. 
However, the literature only uses IntScore to deal with protein dependence and does not evaluate potential 
feature dependence.

Researchers have proposed to use graph structure data combined with neural networks for biomarker selec-
tion with advanced  results14,15. To further mine the information of graph structure data and to solve the above 
problems, we proposed a link prediction technology based on graph neural network to achieve the improvement 
of gene network, using spectral clustering method combined with feature selection technology to achieve the 
determination of biomarkers, and the experimental results proved the effectiveness and advancement of this 
method.

Related work
Traditional feature selection methods are mainly divided into Filter, Wrapper and Embedded methods. Filter 
method usually evaluates the features according to the inherent characteristics of the dataset, which sorts all the 
features and only reserves an optimal subset of the original  features16. This method usually relies on the general 
characters of data to evaluate and select feature  subset17. When using this method for feature selection, each 
feature is regarded as independent, i.e. there is no relationship between features.

Wrapper method takes feature selection algorithm as a part of the learning algorithm, which uses classifica-
tion performance as a standard to evaluate the importance of  features18.

Some classification algorithms embed feature selection into learning algorithm, which are called Embed-
ded method. Embedded method is different from Filter method and Wrapper method. There is a clear differ-
ence between the process of feature selection and the process of model training in Filter method and Wrapper 
 method19.

In recent years, hybrid and ensemble methods have achieved better results in the feature selection of microar-
ray data. A feature selection algorithm called Nested-GA has been proposed  recently20. This method combines 
T-test with two nested genetic algorithms, one of which is used to analyze gene microarray data and the other is 
used to process DNA data. A two-stage classification model based on feature selection and difference represen-
tation paradigm is  proposed21, the first stage generates a subset of best genes by ReliefF algorithm, the second 
stage constructs the classifier by using the different spaces formed by the selected gene. Peng et al.’s method is 
proposed for high-dimensional microarray data, the method combines genetic algorithm and RFE  algorithm16. 
It has used two-category datasets and multi-category datasets. Ooi et al. proposes a two-stage sparse logistic 
regression  method22. This method first retains the genes that are highly correlated with cancer levels by a feature 
selection method in the first stage. In the next stage, solve the problem that the genes selected are highly cor-
related in the first stage by adaptive lasso algorithm.

Genes with similar patterns of  expression23, synthetic  lethality24, or chemical  sensitivity25 often have similar 
functions. Additionally, function tends to be shared among genes whose gene products interact  physically26, are 
part of the same  complex27, or have similar  structures28.

Graph Neural Network  GNN29 provides support to process non-Euclidean structure data. It has been maturely 
applied to social  science30,31, protein interaction  network32, knowledge  graph33, and other research  fields34. Link 
prediction based on graph has been widely  used35,36, but we have not found any research that applies this tech-
nique to feature selection previously.

The flow of our proposed method is shown in Fig. 1. Firstly, a graph neural network is used to achieve the 
propagation and fusion of information from the nodes of the gene network. Link prediction techniques are used 
to complement the potential dependencies in the network. Subsequently spectral clustering techniques are used 
to divide the whole graph into sub-clusters to achieve clustering of features. Finally, a linear model is used in 
each subcluster to evaluate feature weights and output feature rankings.

The main contributions of our method are: 

Figure 1.  The flow of our proposed method. The aggregation process takes the first-order neighborhood of 
orange node as an example.
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1. A gene network is used as prior knowledge in the feature selection process.
2. Proposal to enhance the feature dependencies of gene networks using a link prediction method based on 

graph neural networks.
3. Combining spectral clustering into feature selection for improving disease prediction accuracy.

The rest of this article is organized as follows: The Method section introduces the data sets and methods used in 
this article, including the establishment of graph structures, link prediction and spectral clustering. The Experi-
ment section is the experimental part of this article. We compared traditional methods, tested the effect of link 
prediction, and compared advanced methods to prove the effectiveness and advancement of our method. The 
Conclusion section summarizes the full text.

Methodology
Datasets and evaluation. Microarray data can be mathematically represented as matrix X =

(

xij
)

n×d
 . 

Each column represents a gene and each row represents a sample for  diagnosis21. The value of xij can be expressed 
as the expression value of a particular gene j

(

j = 1, . . . , d
)

 on a particular sample i(i = 1, . . . , n) . For a given 
training set 

(

xi , yj
)n

i=1
 ,where xi =

(

xi,1, xi,2, . . . , xi,d
)

 represents the expression value vector of the i-th gene, and 
yi ∈ {0, 1}(i = 1, . . . , n) (taking the binary classification task as an example) is the sample label.

The dataset used includes DLBCL(GSE68895) and Prostate(GSE68907). DLBCL is the gene data of diffuse 
large B-cell  lymphoma37. Prostate is a prostate cancer  dataset38. Each dataset in the experiment was referenced 
to a corresponding GPL platform file, which allowed the conversion of probe numbers to gene names to create 
graph networks.

The evaluation indexes we adopted are widely used by researchers at present, which include Accuracy, Speci-
ficity, Sensitive and Auc values, in which Auc value is the area covered by ROC curve. In order to make the 
experimental results more clearly, we use Acc as the main evaluation. More detailed experimental results can be 
obtained from Supplementary Material.

Establishment of gene relationship graph structure. We first use prior knowledge to build gene net-
work. GeneM ANIA provides a large amount of functional association data that can help us find other genes 
related to a set of input genes. These association data include interactions, pathways, co-expression, co-locali-
zation, and protein domain  similarity39. In a gene network, physical interactions reflects a direct association of 
the functional products of genes, i.e., proteins among each other. These products often work together or even 
form a complex structure, which are important for carrying out biological processes. In most cases, one of these 
genes changes can alter or affect the activity of the other. In this study, we use physical interaction to represent a 
relationship between two gene candidates.

In order to apply the information data provided by GeneMANIA, we first need to obtain the GEO platform 
data file and convert the corresponding gene probe into a gene name. The construction process of the graph 
structure is as follows.

Firstly, the gene microarray data can be defined as S = {S1, S2, S3, . . . , SN } , N represents the number of sam-
ples. The feature set (gene ID set) corresponding to each sample is defined as F = {F1, F2, F3, . . . , FM} , M repre-
sents the number of features. Therefore, the expression value of any sample Si on feature Fj can be expressed as 
Xij . Next, the physical interaction between features is obtained from GeneMANIA as the relationship matrix R, 
which contains the relationship coefficients between any known two features Fi and Fj . Finally, use the obtained 
weight matrix R to construct a gene relationship graph G = (V ,E) , where V = {V1,V2,V3, . . . ,VM} , each node 
Vi corresponds to a vector Fi , and the edge relationships E are determined by the relationship matrix R.

Graph neural network message propagation (information aggregation). Before link prediction, 
the GNN framework is first used to implement the node information propagation and aggregation operations, 
so that the global information representation of a single node can be used for better link prediction. The idea of 
message propagation and aggregation comes from  GraphSAGE40, and we add the edge attention for processing 
the link weights between different nodes. The flow of this framework is shown in Fig. 2. The detailed implemen-
tation process is as follows.

Define a hidden state variable hLvi for each node Vi , L = 1, 2, . . . ,K , . . . , L denotes the number of layers of the 
graph neural network. Initialize hidden state vector h0vi = {Xi1,Xi2,Xi3, . . . ,XiN } for any node. N(vi) is used to 
represent the nodes in the first-order neighborhood of Vi . The aggregation function shown in Eq. (1) is used to 
update the hidden state vector at the next level of each node.

where AGGREGATE K (∗) represents the aggregation function of the K − th layer. The strategy of averaging 
aggregation combined with the edge attention mechanism is used, i.e., the vector of each node belonging to the 
first-order neighborhood node of that node is stitched, and then each dimension is averaged and multiplied by the 
edge weight coefficient. The K − th level hidden state vector of this node is subsequently updated using Eq. (2).

(1)hKN(vi)
← AGGREGATE K

({

hK−1
N(vi)

, ∀vi ∈ N(vi)
})

(2)hKvi ← σ
(

WK · COUNCAT
(

hK−1
vi

, hKN(vi)

))

http://genemania.org/
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where σ(∗) represents the nonlinear activation function, WK represents the weight matrix of the K − th layer, 
and COUNCAT (∗) represents the splicing function. Finally, Eq. (3) is used to normalize the node vector to avoid 
discarding too small values and to update the hidden state vector hKvi of each node.

In the complete GNN message propagation and aggregation process, set i = 1, 2, . . . ,m,K = 1, 2, . . . , L . Repeat 
the above steps to obtain the hidden state vector representation H of all nodes at the L− th level, which is shown 
in Eq. (4).

where L denotes the number of layers, hLvi denotes the L− th level hidden state vector of node Vi . The process of 
node information propagation and aggregation has been completed so far, and each node Vi can be considered 
to have a hidden state vector hLvi capable of global information representation.

Link prediction. The link prediction process uses node hidden state vectors as node information. The pur-
pose of link prediction is to predict the existence of edges between two nodes in the graph, which is essentially 
a binary classification task. Therefore, we take the edges that exist in the graph as positive samples, negatively 
sample some edges that do not exist in the graph as negative samples, and divide the positive and negative sam-
ples into a training set and a test set. The specific procedure is as follows.

First, it is necessary to construct positive and negative samples for training the prediction model, mark the 
edges that already exist in the gene relationship graph G as positive samples, and the set of all positive samples 
is called the positive sample set Pos.

In the process of constructing negative samples, the existing links between any pair of nodes (vj , vr) in the 
gene relationship graph G are deleted, perform random sampling operations with nodes vj and vr as the starting 
nodes. For example, taking a node vj as the starting node, γ nodes are randomly selected in the genetic relation-
ship graph G and the links with the node vj are established respectively to form a new edge, the new edge is 
marked as a negative sample. The set of all negative samples is called the negative sample set Neg. Next, Eq. (5) 
is used to calculate the similarity between any two nodes vj and vr.

(3)hKvi ← hKvi/
∥

∥hKvi

∥

∥

2
, vi ∈ v

(4)H =
{

hLv1 , h
L
v2
, . . . , hLvm

}

(5)sim
(

vj , vr
)

=

∑π
ϕ=1 z

ϕ
vj ×

∑π
ϕ=1 z

ϕ
vr

√

∑w
ϕ=1

(

z
ϕ
vj

)2
×

√

∑w
ϕ=1

(

z
ϕ
vr

)2
, ϕ = 1, 2, . . . ,̟

S1 S2 … SN

F1 X11 X12 … …

F2 X21 X22 … …
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… … … … …
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Figure 2.  Flow chart of GNN framework visualization. The initial information of nodes is obtained from 
microarray data, and the edge information is obtained from GeneMANIA. L denotes the number of layers, 
and AT denotes the attention layer, which is used to process the edge weights. The figure shows a three-
layer information propagation aggregation framework. node Vi i obtains a hidden state vector h2vi with global 
representation capability after continuously aggregating information from first-order neighborhood nodes.
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In the Eq. (5), zϕvj represents the value of the feature vector zvj in the ϕ-th dimension, and w represents the dimen-
sion of the feature vector zvj . Then use the average similarity of all node pairs in the positive sample set and the 
average similarity of all node pairs in all negative sample sets to construct the loss function shown in Eq. (6).

In the Eq. (6), L represents the loss value, E represents the averaging operation, 
(

vj , vr
)

∈ Pos represents the two 
nodes in the positive sample set Pos, vj represents the node selected for the random collection operation with 
node vj as the starting node, and vr represents the node vr is the node selected by the starting node for random 
sampling operation, and 

(

vj , vr
)

∈ Neg represents two nodes in the negative sample set Neg. Use the random 
gradient descent method to train the loss function, and calculate the loss value L during each training. When 
the absolute value of the difference between the loss values during two adjacent trainings is less than the given 
threshold δ , the iteration is stopped.

Finally, Eq. (7) is used to calculate the Mean reciprocal rank(MRR) of the link prediction model generated 
during each training process, and use the link prediction model with the highest average reciprocal rank as the 
optimal link prediction model.

In the Eq. (7), MRR represents the average reciprocal rank, and rank represents the rank number of the scores 
from highest to lowest when the ε-th edge in the positive sample set scores the corresponding τ-th edge in the 
negative sample set. In the training process, we use the optimal model parameters as the prediction model, 
and perform link prediction on the graph G, generate new edges, and obtain a new gene relationship graph G∗.

Feature selection method based on spectral clustering. After getting the gene relationship graph 
G∗ , we can use spectral clustering technology to cluster and select features. Firstly all nodes in the new gene rela-
tionship graph G∗ are defined as E =

(

e1, e2, . . . , eζ
)

 , where ζ represents the total number of nodes in the gene 
relationship graph G∗ . Equation (8) is applied to calculate the similarity wρ1,ρ2 between any two nodes eρ1, eρ2 , 
wρ1,ρ2 is composed into an ζ -dimensional similarity matrix W.

where � represents the neighborhood width used to control the node. Next, the sum of all elements in each 
row of the similarity matrix W is calculated to get d =

{

d1, d2, . . . , dη , . . . dζ
}

 , where dη represents the sum of 
all elements in the n− th row, The parameter d is used to construct a diagonal matrix D with dimension ζ , and 
calculate the Laplacian Matrix Lreym = D−1/2(D −W)D−1/2 and its eigenvalues. The eigenvalues in ascending 
order, according to the number µ of clusters. The first µ eigenvalues and calculate the corresponding eigenvector 
{

χ1,χ2, . . . ,χµ
}

 . µ eigenvectors 
{

χ1,χ2, . . . ,χµ
}

 are used to form a matrix U with ζ row and µ column, that is, 
the matrix U =

{

χ1,χ2, . . . ,χµ
}

.
Finally, the spectral clustering algorithm is used to cluster the eigenvectors in each row of the matrix U to obtain 

C =
{

C1,C2, . . . ,Cv , . . . ,Cµ

}

 , where Cv represents the clusters of the eigenvectors in the v-th row. According to 
the obtained cluster C, all the nodes in the new gene relationship graph G∗ are divided into µ groups, and µ sub-
graphs are obtained, denoted as G∗ =

[

G1,G2, . . . ,Gv , . . . ,Gµ

]

=
[(

v′1, ε
′
1

)

,
(

v′2, ε
′
2

)

, . . . ,
(

v′v , ε
′
v

)

, . . . ,
(

v′µ, ε
′
µ

)]

.
To apply the feature selection method for biomarker selection on the clustered subgraphs, we converted the 

graph structure to a matrix format and used an Embedded feature selection method (linear regression) to feature 
select the matrix data corresponding to each subgraph to obtain the final feature ranking. The feature with the 
highest weight corresponding to each subgraph is used as the final biomarker. Our method also supports dif-
ferent feature selection models to evaluate the node weight of each subgraph, which will be described in detail 
in the experimental section.

Ethical approval. This study was performed using available datasets, as per my compliance with ethical 
standards there were no human or animal participants, and therefore, the study did not require ethics approval.

Research involving human and animal participants. This article does not contain any studies with 
human participants or animals performed by any of the authors.

Experimental results and analysis
The proposed method compared with traditional methods. We compared the proposed method 
with the traditional feature selection method on two public data sets (DLBCL and Prostate). The dataset details 
can be found in Table 1.

We first used the David tool for gene ID conversion to obtain gene association information from the Gene-
MANIA website, used the association information to build graph structure data, and used the gene expression 
values as the initial state vectors of the nodes with the same dimensionality as the number of samples. The GNN 

(6)L = E(vj ,vr)∈Pos



− log
�

σ
�

sim
�

vj , vr
���

−
�

(v̄j ,v̄r)∈Neg

log
�

σ
�

sim
�

vj , vr
���





(7)MRR =
1

ε

ε
∑

τ=1

1

rankτ
τ = 1, 2, . . . , ε

(8)wρ1,ρ2 =

ζ
∑

ρ1=1,ρ2=1

exp
−
∥

∥eρ1 − eρ2
∥

∥

2

2�2
, eρ1, eρ2 ∈ E
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was set to 10 layers in the experiment, and SVM was used as the classifier, and the 5-fold cross-validation average 
classification accuracy was used as the final result. To find the effect of different number of features on the results, 
we set the number of clusters (the number of features in the final output) to 1–15, respectively. The results for 
more number of features and more evaluation metrics are provided in Supplementary Material.

It should be noted that the proposed method defaults to a linear model in the evaluation of sub-cluster nodes, 
which can be replaced according to the data. It allows a flexible combination of different feature selection methods 
with the proposed method. In order to prove the effectiveness of the proposed method, in the last step of spectral 
clustering, we set the sub-cluster feature evaluation method as a contrast method. The experimental results are 
shown in Figs. 3 and 4. More detailed results and evaluation indicators on figures 3 and 4 can be found in the 
supplementary files.

It can be seen from Figs. 3 and 4 that the proposed method can significantly improve the feature selection 
effect and remove redundant features. The proposed methods have good classification accuracy under different 
numbers. Especially in the linear model, the average classification accuracy of DLBCL and Prostate have been 
improved by 10.90% and 16.22% respectively. We noticed that in Figs. 3a, d and 4a, the traditional feature selec-
tion method continuously adds redundant features, and the classification accuracy is slowly improved, while the 
method we proposed can significantly remove redundant features and quickly improve classification accuracy.

Link prediction performance evaluation. In this section, we mainly evaluate the gains of the proposed 
link prediction method for improving the effect. The experiment was performed on DLBCL and Prostate data. 

Table 1.  Data set description and introduction, UR denotes unbalance rate.

Datasets Samples Features Distribution UR

DLBCL 77 7129 DLBCL:58, FL:19 3.05

Description: DLBCL patients (58) and follicular lymphoma (19)

Prostate 102 12625 Tumor:52, Normal:50 1.31

Description: Prostate (52) and non-prostate (50)
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Figure 3.  The proposed method is compared with the traditional method in the DLBCL dataset. Figures (a) 
to (d) compare logistic regression model (LR), random forest (RF), Pearson correlation coefficient (Corr) and 
recursive feature elimination method (RFE).
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Figure 4.  The proposed method is compared with the traditional method in the Prostate dataset. Figures (a) to 
(d) compare logistic regression model (LR), random (RF), Pearson correlation coefficient (Corr) and recursive 
feature elimination method (RFE).
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We selected the number of features from 1 to 15 respectively and compared the classification accuracy after link 
prediction with or without graph neural network model. The detailed results are shown in Figure 5.

It can be seen from Figure 5 that after link prediction, the average classification accuracy of the model has 
been partially improved, and the average classification accuracy of DLBCL and Prostate have been improved by 
1.96% and 1.31% ,respectively. Among them, the highest classification accuracy rate on the Prostate dataset has 
been significantly improved. This shows that the link prediction method we proposed has a significant effect on 
improving the effect of spectral clustering.

Comparison with published advanced methods. In this section, we compare the proposed method 
with the methods used in a variety of published literature on the DLBCL dataset. The detailed results are shown 
in Table 2. It can be seen from the results that our proposed method is better than the advanced hybrid feature 
selection method. When the number of features is the same, the classification accuracy is improved by 16.98% 
compared to SFS-MB46.

Biomarker analysis. In this section, we analyzed the six most important genes selected by our method in 
the DLBCL data set, these genes were from the top six genes of the GNNSC results. The corresponding probe IDs 
and gene names are shown in Table 3. In order to analyze the distribution of genes among different samples, we 
draw the expression distribution of genes on positive and negative samples. The purpose is to observe the differ-
ence in gene expression in different groups and to obtain clues about gene function. The expression distribution 
of the six genes is shown in Figure 6. It can be found that the six genes selected by the proposed method can 
effectively distinguish the positive and negative samples.

Conclusions
This paper proposes a feature selection method based on graph neural network and spectral clustering technol-
ogy for microarray data analysis. The method effectively uses prior knowledge to construct a gene relationship 
network and uses graph neural network and link prediction technology to improve feature dependence. Then, 
it uses spectral clustering technology to cluster redundant features, and uses a linear model to evaluate the 
features of each subcluster, and output important features. The experimental results show the effectiveness and 
advancement of the proposed method. Our method can also be combined with different feature selection models 
to evaluate subcluster features and handle different data flexibly.

In the future research, we will pay more attention to the multiple dependencies in the gene network, and 
improve the gene relationship network by fusing multiple dependencies. At the same time, we will consider 
combining the feature selection model with spectral clustering technology for feature selection, rather than 
applying feature selection after spectral clustering technology.

Table 2.  Comparison with published advanced methods.

Papers Method Feature numbers Acc

Jinthanasatian et al.41 Neuro-fuzzy 13 83.31

Salem et al.42 IGGA 110 94.80

Agarwalla et al.43 MFDPSO 15 90.01

Wang et al.44 IWSSr 15 93.60

Medjahed et al.45 BDF 15 89.44

Yang et al.46 SFS-MB 15 80.90

Jian et al.47 TSVM 15 91.83

Apolloni et al.48 BDE-X Rankf 15 92.90

Our method GNNSC 15 94.64

Table 3.  The six most important genes and their probe IDS selected by the proposed method.

Number 1 2 3 4 5 6

Probe ID J02783_at D38751_at U20979_at X65463_at Z18951_at U01877_at

Gene name P4HB KIF22 CHAF1A RXRB CAV1 EP300
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