$\gamma = 107.088 \ (1)^{\circ}$

V = 892.31 (3) Å³

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

[N'-(4-Methoxy-2-oxidobenzylidene)-4-nitrobenzohydrazidato- $\kappa^3 O, N, O'$]-(pyridine- κN)copper(II)

Nooraziah Mohd Lair, Hapipah Mohd Ali and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 15 December 2008; accepted 16 December 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.028; wR factor = 0.087; data-to-parameter ratio = 14.5.

The pyridine-coordinated Cu^{II} atom in the title Schiff base complex, $[Cu(C_{15}H_{11}N_3O_5)(C_5H_5N)]$, is O,N,O'-chelated by the doubly deprotonated Schiff base ligand. The metal centre is in a square-planar coordination geometry.

Related literature

For the pyridine adducts of copper derivatives of similar ligands, see: Ali *et al.* (2004); Chen & Liu (2004); Das & Pal (2005); Fariati *et al.* (2002); Lu & Liu (2005); Lu *et al.* (2003).

Experimental

Crystal data

 $\begin{bmatrix} Cu(C_{15}H_{11}N_{3}O_{5})(C_{5}H_{5}N) \end{bmatrix}$ $M_{r} = 455.91$ Triclinic, $P\overline{1}$ a = 6.3529 (1) Å b = 9.8409 (2) Å c = 15.1303 (3) Å $\alpha = 98.063$ (1)° $\beta = 92.011$ (1)°

Data collection

```
Bruker SMART APEX
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
T_{min} = 0.807, T_{max} = 1.000
(expected range = 0.757–0.939)
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.087$ S = 1.093942 reflections Z = 2 Mo K α radiation μ = 1.27 mm⁻¹ T = 100 (2) K 0.40 × 0.10 × 0.05 mm

```
6268 measured reflections
3942 independent reflections
3605 reflections with I > 2\sigma(I)
R_{\text{int}} = 0.013
```

272 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.45$ e Å⁻³ $\Delta \rho_{min} = -0.32$ e Å⁻³

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2009).

We thank the University of Malaya for funding this study (Science Fund grants 12–02-03–2031, 12–02-03–2051).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2838).

References

- Ali, H., Khamis, N. A., Basirun, W. J. & Yamin, B. M. (2004). Acta Cryst. E60, m982–m983.
- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Chen, W.-H. & Liu, S.-X. (2004). Chin. J. Inorg. Chem. 20, 668–670.

- Das, S. & Pal, S. (2005). J. Mol. Struct. 753, 68–79.
- Fariati, F., Caruso, U., Centore, R., Marcolli, W., De Maria, A., Panunzi, B., Roviello, A. & Tuzi, A. (2002). *Inorg. Chem.* 41, 6597–6603.

Lu, W.-G., Feng, X.-L., Liu, H.-W. & Wang, S.-L. (2003). Chin. J. Inorg. Chem. 19, 206–210.

- Lu, W.-G. & Liu, H.-W. (2005). Chin. J. Struct. Chem. 24, 1078–1082.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2009). publCIF. In preparation.

supplementary materials

Acta Cryst. (2009). E65, m121 [doi:10.1107/S1600536808042803]

$[N'-(4-Methoxy-2-oxidobenzylidene)4-nitrobenzohydrazidato-\kappa^3O, N, O']$ (pyridine- κN)copper(II)

N. Mohd Lair, H. Mohd Ali and S. W. Ng

Comment

(type here to add)

Experimental

N'-2-Hydroxy-3-methoxybenzylidene)-nitrobenzohydrazide (0.30 g, 1 mmol) and copper acetate (0.20 g, 1 mmol) were heated in a ethanol (50 ml) for 2 hours. The solvent was removed and the resulting compound recrystallized from pyridine.

Refinement

Hydrogen atoms were placed at calculated positions ($C_{aromatic}$ -H 0.95 Å, C_{methyl} -H 0.98 Å) and were treated as riding on their parent carbon atoms, with U(H) set to $1.2Ueq(C_{aromatic})$ or $1.5Ueq(C_{methyl})$.

Figures

Fig. 1. Displacement ellipsoid plot (Barbour, 2001) of $Cu(C_5H_5N)(C_{15}H_{11}N_3O_5)$ at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.

$[N'-(4-Methoxy-2-oxidobenzylidene)-4-nitrobenzohydrazidato- \kappa^3O, N, O']$ (pyridine- κN)copper(II)

Crystal data	
[Cu(C ₁₅ H ₁₁ N ₃ O ₅)(C ₅ H ₅ N)]	Z = 2
$M_r = 455.91$	$F_{000} = 466$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.697 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 6.3529(1) Å	Cell parameters from 3716 reflections
b = 9.8409 (2) Å	$\theta = 2.4 - 29.2^{\circ}$
c = 15.1303 (3) Å	$\mu = 1.27 \text{ mm}^{-1}$
$\alpha = 98.063 \ (1)^{\circ}$	T = 100 (2) K
$\beta = 92.011 \ (1)^{\circ}$	Block, brown
$\gamma = 107.088 \ (1)^{\circ}$	$0.40\times0.10\times0.05~mm$
$V = 892.31 (3) \text{ Å}^3$	

Data collection

Bruker SMART APEX diffractometer	3942 independent reflections
Radiation source: fine-focus sealed tube	3605 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.013$
T = 100(2) K	$\theta_{\text{max}} = 27.5^{\circ}$
ω scans	$\theta_{\min} = 1.4^{\circ}$
Absorption correction: Multi-scan (SADABS; Sheldrick, 1996)	$h = -6 \rightarrow 8$
$T_{\min} = 0.807, \ T_{\max} = 1.000$	$k = -12 \rightarrow 12$
6268 measured reflections	$l = -19 \rightarrow 19$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.028$	H-atom parameters constrained
$wR(F^2) = 0.087$	$w = 1/[\sigma^2(F_0^2) + (0.0494P)^2 + 0.535P]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.09	$(\Delta/\sigma)_{\text{max}} = 0.001$
3942 reflections	$\Delta \rho_{max} = 0.45 \text{ e } \text{\AA}^{-3}$
272 parameters	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Cu1	1.14506 (4)	0.70062 (2)	0.728016 (14)	0.01312 (9)
N1	0.9381 (3)	0.64556 (17)	0.62386 (11)	0.0150 (3)
N2	1.0273 (3)	0.68298 (18)	0.54424 (10)	0.0159 (3)
N3	1.7555 (3)	0.93172 (18)	0.27544 (11)	0.0189 (4)
N4	1.3792 (3)	0.78081 (17)	0.82931 (11)	0.0145 (3)
O1	0.9305 (2)	0.61658 (15)	0.80405 (9)	0.0163 (3)
O2	0.2533 (2)	0.39329 (16)	0.90700 (9)	0.0199 (3)
O3	1.3444 (2)	0.77637 (15)	0.64095 (9)	0.0159 (3)
O4	1.6632 (3)	0.91481 (17)	0.20033 (9)	0.0247 (3)
O5	1.9560 (3)	0.9856 (2)	0.29243 (11)	0.0311 (4)
C1	0.7183 (3)	0.5521 (2)	0.78294 (13)	0.0139 (4)
C2	0.5869 (3)	0.5009 (2)	0.85092 (13)	0.0152 (4)
H2	0.6540	0.5120	0.9097	0.018*
C3	0.3615 (3)	0.4346 (2)	0.83442 (13)	0.0149 (4)
C4	0.2562 (3)	0.4147 (2)	0.74829 (13)	0.0151 (4)
H4	0.1016	0.3693	0.7371	0.018*
C5	0.3837 (3)	0.4630 (2)	0.68048 (13)	0.0146 (4)

Н5	0.3142	0.4495	0.6219	0.018*
C6	0.6124 (3)	0.5313 (2)	0.69468 (12)	0.0140 (4)
C7	0.7290 (3)	0.5785 (2)	0.61964 (12)	0.0149 (4)
H7	0.6471	0.5592	0.5631	0.018*
C8	0.0219 (3)	0.3204 (3)	0.89270 (15)	0.0247 (5)
H8A	-0.0352	0.2939	0.9492	0.037*
H8B	-0.0038	0.2333	0.8484	0.037*
H8C	-0.0540	0.3840	0.8707	0.037*
C9	1.2393 (3)	0.7493 (2)	0.56222 (12)	0.0140 (4)
C10	1.3714 (3)	0.79538 (19)	0.48671 (12)	0.0142 (4)
C11	1.2684 (3)	0.7902 (2)	0.40223 (13)	0.0162 (4)
H11	1.1119	0.7555	0.3927	0.019*
C12	1.3932 (3)	0.8352 (2)	0.33284 (13)	0.0174 (4)
H12	1.3242	0.8321	0.2755	0.021*
C13	1.6204 (3)	0.8849 (2)	0.34864 (12)	0.0149 (4)
C14	1.7277 (3)	0.8905 (2)	0.43096 (13)	0.0162 (4)
H14	1.8844	0.9243	0.4396	0.019*
C15	1.6016 (3)	0.8457 (2)	0.50049 (12)	0.0146 (4)
H15	1.6720	0.8492	0.5576	0.017*
C16	1.3332 (3)	0.7615 (2)	0.91374 (13)	0.0189 (4)
H16	1.1851	0.7146	0.9246	0.023*
C17	1.4910 (3)	0.8068 (2)	0.98487 (13)	0.0219 (4)
H17	1.4524	0.7913	1.0435	0.026*
C18	1.7074 (3)	0.8753 (2)	0.96950 (14)	0.0210 (4)
H18	1.8197	0.9079	1.0175	0.025*
C19	1.7569 (3)	0.8955 (2)	0.88305 (13)	0.0189 (4)
H19	1.9041	0.9416	0.8707	0.023*
C20	1.5893 (3)	0.8476 (2)	0.81504 (13)	0.0161 (4)
H20	1.6239	0.8625	0.7559	0.019*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.01168 (13)	0.01707 (13)	0.00996 (13)	0.00263 (9)	0.00095 (8)	0.00366 (8)
N1	0.0165 (8)	0.0172 (8)	0.0117 (7)	0.0044 (6)	0.0032 (6)	0.0046 (6)
N2	0.0166 (8)	0.0193 (8)	0.0109 (7)	0.0027 (7)	0.0034 (6)	0.0048 (6)
N3	0.0245 (9)	0.0184 (8)	0.0147 (8)	0.0060 (7)	0.0075 (7)	0.0047 (6)
N4	0.0133 (8)	0.0162 (8)	0.0137 (8)	0.0039 (6)	0.0007 (6)	0.0032 (6)
O1	0.0109 (6)	0.0234 (7)	0.0136 (6)	0.0025 (5)	0.0012 (5)	0.0057 (5)
O2	0.0136 (7)	0.0297 (8)	0.0154 (7)	0.0027 (6)	0.0032 (5)	0.0082 (6)
O3	0.0139 (7)	0.0218 (7)	0.0110 (6)	0.0028 (5)	0.0006 (5)	0.0046 (5)
O4	0.0325 (9)	0.0307 (8)	0.0127 (7)	0.0103 (7)	0.0053 (6)	0.0074 (6)
O5	0.0224 (8)	0.0431 (10)	0.0229 (8)	-0.0003 (7)	0.0092 (7)	0.0092 (7)
C1	0.0131 (9)	0.0140 (8)	0.0154 (9)	0.0050 (7)	0.0014 (7)	0.0030 (7)
C2	0.0143 (9)	0.0192 (9)	0.0130 (9)	0.0056 (8)	0.0009 (7)	0.0041 (7)
C3	0.0156 (9)	0.0160 (9)	0.0141 (9)	0.0048 (7)	0.0042 (7)	0.0046 (7)
C4	0.0125 (9)	0.0156 (9)	0.0157 (9)	0.0025 (7)	0.0007 (7)	0.0018 (7)
C5	0.0167 (9)	0.0141 (8)	0.0124 (8)	0.0041 (7)	-0.0001 (7)	0.0011 (7)

supplementary materials

C6	0.0156 (9)	0.0133 (8)	0.0127 (8)	0.0040 (7)	0.0021 (7)	0.0021 (7)
C7	0.0164 (9)	0.0153 (9)	0.0115 (8)	0.0027 (7)	-0.0009 (7)	0.0024 (7)
C8	0.0126 (10)	0.0395 (13)	0.0216 (10)	0.0032 (9)	0.0058 (8)	0.0122 (9)
C9	0.0169 (9)	0.0146 (9)	0.0116 (8)	0.0055 (7)	0.0025 (7)	0.0038 (7)
C10	0.0171 (9)	0.0129 (8)	0.0130 (9)	0.0046 (7)	0.0022 (7)	0.0034 (7)
C11	0.0146 (9)	0.0202 (9)	0.0135 (9)	0.0045 (7)	0.0005 (7)	0.0033 (7)
C12	0.0211 (10)	0.0199 (9)	0.0111 (9)	0.0057 (8)	0.0007 (7)	0.0033 (7)
C13	0.0197 (10)	0.0138 (9)	0.0116 (8)	0.0048 (7)	0.0055 (7)	0.0035 (7)
C14	0.0154 (9)	0.0159 (9)	0.0166 (9)	0.0035 (7)	0.0019 (7)	0.0021 (7)
C15	0.0168 (9)	0.0163 (9)	0.0111 (8)	0.0050 (7)	0.0014 (7)	0.0037 (7)
C16	0.0148 (10)	0.0249 (10)	0.0147 (9)	0.0021 (8)	0.0019 (7)	0.0031 (8)
C17	0.0193 (10)	0.0293 (11)	0.0125 (9)	0.0008 (9)	0.0010 (8)	0.0029 (8)
C18	0.0186 (10)	0.0248 (10)	0.0149 (9)	0.0007 (8)	-0.0034 (8)	0.0013 (8)
C19	0.0143 (9)	0.0197 (10)	0.0199 (10)	0.0008 (8)	0.0009 (8)	0.0033 (8)
C20	0.0156 (9)	0.0176 (9)	0.0143 (9)	0.0033 (7)	0.0026 (7)	0.0036 (7)

Geometric parameters (Å, °)

Cu1—O1	1.8922 (14)	C6—C7	1.435 (3)
Cu1—N1	1.9239 (16)	С7—Н7	0.9500
Cu1—O3	1.9320 (14)	C8—H8A	0.9800
Cu1—N4	1.9989 (16)	C8—H8B	0.9800
N1—C7	1.293 (3)	C8—H8C	0.9800
N1—N2	1.399 (2)	C9—C10	1.485 (3)
N2—C9	1.312 (3)	C10-C15	1.397 (3)
N3—O5	1.229 (2)	C10-C11	1.403 (3)
N3—O4	1.227 (2)	C11—C12	1.382 (3)
N3—C13	1.467 (2)	C11—H11	0.9500
N4—C20	1.343 (3)	C12—C13	1.381 (3)
N4—C16	1.347 (2)	C12—H12	0.9500
01—C1	1.316 (2)	C13—C14	1.385 (3)
O2—C3	1.363 (2)	C14—C15	1.387 (3)
O2—C8	1.427 (2)	C14—H14	0.9500
O3—C9	1.299 (2)	C15—H15	0.9500
C1—C2	1.403 (3)	C16—C17	1.375 (3)
C1—C6	1.434 (3)	C16—H16	0.9500
C2—C3	1.385 (3)	C17—C18	1.386 (3)
С2—Н2	0.9500	С17—Н17	0.9500
C3—C4	1.405 (3)	C18—C19	1.384 (3)
C4—C5	1.380 (3)	C18—H18	0.9500
C4—H4	0.9500	C19—C20	1.381 (3)
C5—C6	1.404 (3)	С19—Н19	0.9500
С5—Н5	0.9500	С20—Н20	0.9500
O1—Cu1—N1	93.57 (6)	O2—C8—H8B	109.5
O1—Cu1—O3	174.58 (6)	H8A—C8—H8B	109.5
N1—Cu1—O3	81.17 (6)	O2—C8—H8C	109.5
O1—Cu1—N4	92.67 (6)	H8A—C8—H8C	109.5
N1—Cu1—N4	172.51 (7)	H8B—C8—H8C	109.5
O3—Cu1—N4	92.68 (6)	O3—C9—N2	125.19 (17)

C7—N1—N2	117.25 (16)	O3—C9—C10	117.01 (17)
C7—N1—Cu1	127.41 (13)	N2-C9-C10	117.79 (16)
N2—N1—Cu1	115.34 (12)	C15-C10-C11	119.71 (17)
C9—N2—N1	108.05 (15)	C15—C10—C9	119.31 (16)
O5—N3—O4	123.25 (17)	C11—C10—C9	120.98 (18)
O5—N3—C13	118.27 (16)	C12-C11-C10	120.41 (18)
O4—N3—C13	118.47 (17)	C12—C11—H11	119.8
C20—N4—C16	117.86 (17)	C10-C11-H11	119.8
C20—N4—Cu1	121.38 (13)	C11—C12—C13	118.53 (17)
C16—N4—Cu1	120.64 (14)	C11—C12—H12	120.7
C1—O1—Cu1	127.54 (12)	C13—C12—H12	120.7
C3—O2—C8	117.33 (15)	C12—C13—C14	122.62 (18)
C9—O3—Cu1	110.23 (12)	C12—C13—N3	119.26 (17)
O1—C1—C2	118.11 (17)	C14—C13—N3	118.12 (18)
O1—C1—C6	124.11 (17)	C15-C14-C13	118.62 (18)
C2-C1-C6	117.78 (17)	C15—C14—H14	120.7
C3—C2—C1	121.55 (17)	C13—C14—H14	120.7
С3—С2—Н2	119.2	C14—C15—C10	120.11 (17)
C1—C2—H2	119.2	C14—C15—H15	119.9
O2—C3—C2	115.33 (17)	C10—C15—H15	119.9
O2—C3—C4	123.65 (18)	N4—C16—C17	122.91 (19)
C2—C3—C4	121.01 (18)	N4—C16—H16	118.5
C5—C4—C3	118.12 (18)	С17—С16—Н16	118.5
C5—C4—H4	120.9	C16—C17—C18	118.84 (19)
C3—C4—H4	120.9	C16—C17—H17	120.6
C4—C5—C6	122.53 (17)	C18—C17—H17	120.6
C4—C5—H5	118.7	C19—C18—C17	118.81 (19)
С6—С5—Н5	118.7	C19—C18—H18	120.6
C5—C6—C1	119.00 (17)	C17—C18—H18	120.6
C5—C6—C7	117.98 (17)	C20-C19-C18	119.05 (19)
C1—C6—C7	123.02 (17)	С20—С19—Н19	120.5
N1—C7—C6	124.30 (17)	C18—C19—H19	120.5
N1—C7—H7	117.9	N4—C20—C19	122.52 (18)
С6—С7—Н7	117.9	N4—C20—H20	118.7
O2—C8—H8A	109.5	С19—С20—Н20	118.7
O1—Cu1—N1—C7	1.77 (18)	C5—C6—C7—N1	178.35 (18)
O3—Cu1—N1—C7	-179.56 (18)	C1—C6—C7—N1	-1.0 (3)
O1—Cu1—N1—N2	-178.07 (13)	Cu1—O3—C9—N2	1.5 (2)
O3—Cu1—N1—N2	0.60 (12)	Cu1—O3—C9—C10	-177.59 (12)
C7—N1—N2—C9	-179.91 (17)	N1—N2—C9—O3	-1.0 (3)
Cu1—N1—N2—C9	-0.05 (19)	N1—N2—C9—C10	178.08 (15)
O1—Cu1—N4—C20	174.53 (15)	O3—C9—C10—C15	9.0 (3)
O3—Cu1—N4—C20	-4.54 (15)	N2-C9-C10-C15	-170.09 (17)
O1—Cu1—N4—C16	-1.39 (16)	O3—C9—C10—C11	-170.48 (17)
O3—Cu1—N4—C16	179.54 (15)	N2—C9—C10—C11	10.4 (3)
N1—Cu1—O1—C1	-2.34 (16)	C15—C10—C11—C12	-0.4 (3)
N4—Cu1—O1—C1	173.51 (16)	C9—C10—C11—C12	179.15 (17)
N1—Cu1—O3—C9	-1.01 (12)	C10—C11—C12—C13	0.1 (3)
N4—Cu1—O3—C9	-176.72 (13)	C11-C12-C13-C14	0.4 (3)

supplementary materials

Cu1—O1—C1—C2	-178.09 (13)	C11-C12-C13-N3	179.37 (17)
Cu1—O1—C1—C6	1.7 (3)	O5—N3—C13—C12	174.64 (18)
O1—C1—C2—C3	178.63 (17)	O4—N3—C13—C12	-5.6 (3)
C6—C1—C2—C3	-1.1 (3)	O5—N3—C13—C14	-6.3 (3)
C8—O2—C3—C2	-178.07 (18)	O4—N3—C13—C14	173.44 (18)
C8—O2—C3—C4	2.8 (3)	C12-C13-C14-C15	-0.6 (3)
C1—C2—C3—O2	-178.47 (17)	N3-C13-C14-C15	-179.62 (16)
C1—C2—C3—C4	0.7 (3)	C13-C14-C15-C10	0.4 (3)
O2—C3—C4—C5	179.17 (17)	C11-C10-C15-C14	0.1 (3)
C2—C3—C4—C5	0.0 (3)	C9-C10-C15-C14	-179.40 (17)
C3—C4—C5—C6	-0.4 (3)	C20-N4-C16-C17	-0.1 (3)
C4—C5—C6—C1	-0.1 (3)	Cu1—N4—C16—C17	175.93 (16)
C4—C5—C6—C7	-179.44 (17)	N4-C16-C17-C18	0.0 (3)
O1—C1—C6—C5	-178.95 (17)	C16-C17-C18-C19	-0.1 (3)
C2—C1—C6—C5	0.8 (3)	C17—C18—C19—C20	0.4 (3)
O1—C1—C6—C7	0.4 (3)	C16—N4—C20—C19	0.4 (3)
C2-C1-C6-C7	-179.86 (17)	Cu1—N4—C20—C19	-175.60 (15)
N2—N1—C7—C6	179.34 (16)	C18-C19-C20-N4	-0.6 (3)
Cu1—N1—C7—C6	-0.5 (3)		

Fig. 1