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Abstract

Background

To be transmitted to vertebrate hosts via the saliva of their vectors, arthropod-borne viruses

have to cross several barriers in the mosquito body, including the midgut infection and

escape barriers. Yellow fever virus (YFV) belongs to the genus Flavivirus, which includes

human viruses transmitted by Aedes mosquitoes, such as dengue and Zika viruses. The

live-attenuated YFV-17D vaccine has been used safely and efficiently on a large scale since

the end of World War II. Early studies have shown, using viral titration from salivary glands

of infected mosquitoes, that YFV-17D can infect Aedes aegypti midgut, but does not dis-

seminate to other tissues.

Methodology/Principal findings

Here, we re-visited this issue using a panel of techniques, such as RT-qPCR, Western blot,

immunofluorescence and titration assays. We showed that YFV-17D replication was not

efficient in Aedes aegypti midgut, as compared to the clinical isolate YFV-Dakar. Viruses

that replicated in the midgut failed to disseminate to secondary organs. When injected into

the thorax of mosquitoes, viruses succeeded in replicating into midgut-associated tissues,

suggesting that, during natural infection, the block for YFV-17D replication occurs at the

basal membrane of the midgut.

Conclusions/Significance

The two barriers associated with Ae. aegypti midgut prevent YFV-17D replication. Our study

contributes to our basic understanding of vector–pathogen interactions and may also aid in

the development of non-transmissible live virus vaccines.
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Author summary

Most flaviviruses, including yellow fever virus (YFV), are transmitted between hosts by

mosquito bites. The yellow fever vaccine (YFV-17D) is one of the safest and most effective

live virus vaccine ever developed. It is also used as a platform for engineering vaccines

against other health-threatening flaviviruses, such as Japanese encephalitis, West Nile,

dengue and Zika viruses. We studied here the replication and dissemination of YFV-17D

in mosquitoes. Our data showing that YFV-17D is unable to disseminate to secondary

organs, as compared to a YFV clinical isolate, agree with previous studies. We have

expanded on this knowledge by quantifying viral RNA production, viral protein expres-

sion, viral distribution and infectivity of YFV-17D in the vector midguts. We show that

the midgut is a powerful barrier that inhibits YFV-17D dissemination in mosquitoes. Our

study contributes to our basic understanding of the interactions between viruses and their

vectors, which is key for conceiving new approaches in inhibiting virus transmission and

designing non-transmissible live virus vaccines.

Introduction

Arboviruses, which are transmitted among vertebrate hosts by blood-feeding arthropod vec-

tors, put billions of people at risk worldwide. Viral infection in arthropods is usually persistent.

Following uptake of an infectious blood meal by a female mosquito, arbovirus must initiate a

productive infection of the midgut epithelium, which consists of a single layer of cells [1]. To

develop a disseminated infection, virus must then escape the midgut into the haemocoel and

infect secondary tissues such as the fat body, trachea and the salivary glands [1]. Finaly, the

virus needs to be released into salivary ducts for horizontal transmission to an uninfected ver-

tebrate host [1]. Traditional means of controlling the spread of arbovirus infection include

mosquito control and vaccination of susceptible vertebrates. However, in many cases, these

measures are either unavailable or ineffective. To successfully implement the strategy of block-

ing the virus at the arthropod stage, further knowledge of the virus/vector interactions is

required.

Flaviviruses constitute the most important and diverse group of arthropod-transmitted

viruses causing diseases in humans. They are 50 nm-diameter enveloped viruses harboring a

single positive-strand RNA genome of around 11 kb. The genome encodes a polyprotein that

is cleaved into seven non-structural (NS) proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and

NS5) and three structural proteins: capsid (C), pre-membrane/membrane (prM/M) and enve-

lope (Env). The C, M, and Env proteins are incorporated into virions, while NS proteins are

not [2,3]. NS proteins coordinate RNA replication, viral assembly and modulate innate

immune responses.

Several members of the Flavivirus genus, such as dengue virus (DENV), yellow fever virus

(YFV) and Zika virus (ZIKV) are highly pathogenic to humans and constitute major global

health problems. YFV is responsible for viral hemorrhagic fever resulting in up to 50% fatality

[4]. Despite the existence of the safe and effective live-attenuated vaccine YFV-17D, YFV regu-

larly resurges in the African and South American continents, as illustrated by recent outbreaks

in Brazil and equatorial Africa [5–7]. The YFV-17D vaccine has been used safely and efficiently

on a large scale since the end of World War II [8]. It was developed in the 1930’s by passaging

the blood of a human patient in rhesus macaques and later in mouse and chicken embryo tis-

sues [9]. A single dose confers protective immunity for up to 35 years. During the attenuation
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process, the virus has lost its neurotropic and viscerotropic properties, which account for the

major disease manifestations of yellow fever in primates [10,11]. The molecular determinants

responsible for its virulence attenuation and immunogenicity are poorly understood. We have

recently shown that YFV-17D binds and enters mammalian cells more efficiently than a non-

attenuated strain, resulting in a higher uptake of viral RNA into the cytoplasm and conse-

quently a greater cytokine-mediated antiviral response [12]. This differential entry process

may contribute to attenuation in humans.

YFV-17D is also used as a platform for engineering vaccines against other health-threaten-

ing flaviviruses, such as vaccines against Japanese encephalitis virus (JEV), West Nile virus

(WNV), the four serotypes of DENV, and, more recently, ZIKV [13–16]. These vaccines con-

sist in a YFV-17D backbone in which sequences coding for prM/E proteins are replaced by

those of the selected flavivirus. Some of these live-attenuated chimeric vaccines are commer-

cially available [17,18], with variable success [19]. YFV-17D is thus a key component in con-

trolling flaviviral disease and it must not disseminate in mosquitoes. Early studies have shown,

using almost exclusively viral titration by plaque assays, that YFV-17D can infect Aedes aegypti
midgut [20,21], but does not disseminate to other tissues and fails to be transmitted to a novel

host. Here, we re-visited this question using a variety of techniques and showed that not only

the midgut escape barrier, but also the midgut infection barrier, restrict YFV-17D replication

in its vector.

Materials and methods

Viruses

The YFV-17D vaccine strain (YF-17D-204 STAMARIL, Sanofi Pasteur, Lyon) was provided

by the Institut Pasteur Medical Center. The YFV-DAK strain (YFV-Dakar HD 1279) was pro-

vided by the World Reference Center for Emerging Viruses and Arboviruses (WRCEVA),

through the University of Texas Medical Branch at Galveston, USA. Viral stocks were prepared

on Vero cells, concentrated by polyethylene glycol 6000 (Sigma) precipitation and titrated on

Vero cells by plaque assay as described previously [22].

Cells

The Aag2 mosquito cell lines (provided by the teams of M. Flamand and L. Lambrechts, Insti-

tut Pasteur, Paris) are derived from larvae of Aedes aegypti. They were cultured in a humid

chamber at 28˚C, with no CO2, in Leibovitz medium (Gibco Leibovitz’s L-15 Medium, Life

Technologies) supplemented with 10% fetal bovine serum (FBS), 2% tryptose phosphate buffer

(Gibco Tryptose Phosphate Broth 1X, Life Technologies), 1/100 dilution of the penicillin-

streptomycin (P/S) stock (final concentration of 100 units/mL and 100 μg/mL, respectively)

(Sigma) and non-essential amino acids (GibcoTM NEAA 100X MEM, Life Technologies).

Vero cells, which are African green monkey kidney epithelial cells, were purchased from the

American Type Culture Collection (ATCC) and used to perform viral titration. They were

maintained in Dulbecco’s modified Eagle’s medium (DMEM, Invitrogen), supplemented with

10% FBS and 1% P/S.

Antibodies

Env MAb 4G2 hybridoma cells were kindly provided from P. Desprès (La Réunion University,

Sainte Clotilde). Anti-YFV-NS4B and anti-DENV NS1 17A12 (that recognize YFV-NS1) anti-

bodies, were kind gifts from C.M. Rice (Rockefeller University, NY) [23] and M. Flamand

(Institut Pasteur, Paris) [24], respectively. Anti-actin (A1978, Sigma) and anti-tubulin (T5168,
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Sigma) antibodies were used as loading controls for mosquito organs and Aag2 cells, respec-

tively. Secondary antibodies were as followed: anti-mouse 680 (LI-COR Bioscience), anti-rab-

bit 800 (Thermo Fisher Scientific) and anti-rabbit Cy3 (Life Technologies).

Infection and dissection of mosquito

The Paea strain of Ae. aegypti is a laboratory colony originated from mosquitoes collected in

French Polynesia in 1960 and conserved in the laboratory since 400–450 generations. Adult

mosquitoes were maintained at 25 ± 1˚C and 80% relative humidity with a light/dark ratio of

12 h/12 h. The larvae were provided with brewer’s yeast tablets and adults were given continu-

ous access to 10% sucrose solution. Sucrose was removed 24 h prior to the infectious blood

meal. The infectious blood meal was comprised of half-human blood and half-viral suspension

(4.107 PFU/mL in the mix). The blood donors were randomly selected from a population of

healthy volunteers donating blood at the ‘Etablissement Français du Sang’ (EFS), within the

framework of an agreement with Institut Pasteur. Experimental procedures with human blood

have been approved by EFS Ethical Committees for human research. All samples were col-

lected in accordance with EU standards and national laws. Informed consent was obtained

from all donors. Seven day-old female mosquitoes were allowed to feed for 15 min through a

collagen membrane covering electric feeders maintained at 37˚C (Hemotek system). Blood-

fed females were selected and transferred into cardboard boxes protected with mosquito nets.

Alternatively, ice-chilled mosquitoes were injected intrathoracically with twice 69 nL of viral

stock (2.5x104 PFU) with a micro-injector (Drummond, Nanoject II). Mosquitoes were anes-

thetized on ice at various time-points after infection. They were passed through a 70% ethanol

bath and then in a PBS bath before being dissected in a drop of PBS under a magnifying glass

using tweezers. The midguts, legs and salivary glands were removed and placed in individual

tubes containing sterilized glass beads of a diameter of 0.5 mm (Dutscher) in a suitable lysis

buffer. Experiments were reproduced in triplicate with 5–10 mosquitoes collected at each

time-point for dissection.

RT-qPCR analyses

The mosquito midguts, legs or salivary glands were crushed using a tissue homogenizer

(Ozyme, Precellys Evolution) during twice 15 s at 1000 g. Total RNA was extracted from mos-

quito tissues with the NucleoSpin RNA II kit (Macherey-Nagel). YFV RNA was quantified

using NS3-specific primers and TaqMan probe (NS3-For CACGGCATGGTTCCTTCCA;

NS3-MFAM CAGAGCTGCAAATGTC; NS3-Rev ACTCTTTCCAGCCTTACGCAAA) with

TaqMan RNA-to-CT 1-Step (Thermo Fisher Scientific) on a QuantStudio 6 Flex machine

(Applied Biosystems). Genome equivalent (GE) concentrations were determined by extrapola-

tion from a standard curve generated from serial dilutions of total YFV RNA of a known

concentration.

Western blot analyses

Individual midguts and salivary glands were collected in RIPA buffer (Sigma) containing pro-

tease inhibitors (Roche Applied Science). Tissue lysates were normalized for protein content

with Pierce 660nm Protein Assay (Thermo Scientific), boiled in NuPAGE LDS sample buffer

(Thermo Fisher Scientific) in non-reducing conditions and 32 μg (midgut) or 14 μg (salivary

glands) of proteins (corresponding to around 10 pooled organs) were separated by SDS-PAGE

(NuPAGE 4–12% Bis-Tris Gel, Life Technologies). Separated proteins were transferred to a

nitrocellulose membrane (Bio-Rad). After blocking with PBS-Tween-20 0.1% (PBST) contain-

ing 5% milk for 1 h at RT, the membrane was incubated overnight at 4˚C with primary

Yellow fever vaccine replication and dissemination in its vector

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007299 August 14, 2019 4 / 18

https://doi.org/10.1371/journal.pntd.0007299


antibodies diluted in blocking buffer. Finally, the membranes were incubated for 1 h at RT

with secondary antibodies diluted in blocking buffer, washed, and scanned using an Odyssey

CLx infrared imaging system (LI-COR Bioscience).

Immunofluorescence

After dissection, individual midgut were deposited on slides, fixed in cold acetone for 15 min

and rehydrated in PBS for 15 min. The midguts were then incubated for 2 h in Triton X-100

(0.2%). After washing with PBS, they were incubated for 30 min with PBS + 0.1% Tween 20 +

1% BSA. The slides were then incubated overnight at 4˚C with anti-YFV-NS4B antibodies

diluted 1:1000 in PBS. After washing with PBS, they were incubated for 1 h with secondary

antibodies and washed with PBS. The actin network was visualized with phalloidin Alexafluor

488 (Invitrogen). After washing, nuclei were stained using Prolong gold antifade containing

40,6-diamidino-2-phenylindole (DAPI) (Invitrogen). All preparations were observed with a

confocal microscope (ZEISS LSM 700 inverted) and images were acquired with the ZEN

software.

Deep-sequencing of viral stocks

Viral RNA was extracted from viral stocks (around 1.4x109 genomes for YFV-17D and 3.4x108

for YFV-DAK) using Trizol (Ambion, TRIzol Reagent), were re-suspended in RNAse-free

water and treated with DNAse with the DNA-free kit (Ambion) before being stored at -80˚C.

Synthesis of cDNAs was carried out with the Maxima H Minus First Strand kit (Thermo Fisher

Scientific) from 250 ng of viral RNA. Three fragments of the viral genome were amplified by

25 rounds of PCR using the Phusion High-Fidelity DNA Polymerase kit (NEB) using primers

mainly described previously [25]. New primers targeting the 3’-UTR of the genome were

designed for optimal amplification of YFV-17D and YFV-DAK (Table 1). The PCR products

were purified with the NucleoSpin Gel kit and PCR Clean Up (Macherey-Nagel), resuspended

in RNAse-free water and stored at -20˚C. Libraries were prepared after pooling 400 ng of the

three overlapping amplicons, which had a size between 3725 and 3891 pb. The PCR products

were fragmented randomly with the NEBNext dsDNA fragmentase kit (NEB) and then puri-

fied with the AMPure XP Beads kit (Beckman Coulter, Inc.). The Illumina sequencing libraries

were prepared with the NEBNext Ultra DNA Library Prep kit (NEB) by selecting 400 bp frag-

ments. NEBNext Multiplex Oligos for Illumina primers (NEB) were used. Purification was

performed with the AMPure XP Beads kit. The Qubit dsDNA BR Assay kit (Thermo Fisher

Scientific) was used for quantification. Samples from the library, diluted to 4 nM, were

Table 1. Primers used for YFV sequencing.

Fragment length Forward Reverse

a

3725 pb
AGTAAATCCTGTGTGCTAATTGAGGTG TTGAAAAGGCAGCAATCAACGC

b

3781 pb
GGGTTACAGCTGGAGAAATACATGC TGCTGCGCTTTCATTCCAGGTA

c (1)

3874 pb
TGCTGGAGAAAACCAAAGAGGA GGTCTTTCCCTGGCGTCAATA

c (2)

3891 pb
TGCTGGAGAAAACCAAAGAGGA AAGCAGAGAACCACTCCGGT

Viral genome was amplified in three fragments (a, b and c) of approximately 3000 pb. Different reverse primers were used to amplify the c fragment of the two YFV

strains resulting in c(1) for YFV-17D and c(2) for YFV-DAK. All primers used to amplify fragments a and b were previously described [25].

https://doi.org/10.1371/journal.pntd.0007299.t001
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sequenced on a NextSeq 500 sequencer (Illumina) machine with the NextSeq 500 Mid Output

Kit v2 kit (150 cycles) (Illumina), to generate single-end reads of 150 nt. The PhiX control

library served as a quality and calibration control in sequencing runs (Illumina, FC-110-3001).

Viral sequence analyses and comparison of diversity

Reads were trimmed for adapters and primer sequences. Low quality reads were filtered using

Trim Galore! (www.bioinformatics.babraham.ac.uk/projects/trim_galore/) with the following

parameters: quality 30, length 75 and stringency 4. Final reads quality was evaluated using

FastQC (www.bioinformatics.babraham.ac.uk/projects/fastqc/). Reads were aligned on the

YFV-Asibi reference genome AY640589.1 using BWA [26] and SAMtools [27]. Consensus

sequences were obtained using SAMtools mpileup, VarScan mpileup2cns (min-var-freq 0.5)

and BCFtools consensus [27]. When mapping YFV-DAK sequencing reads on the YFV-Asibi

sequence, an uncomplete coverage was observed. We reiterated the mapping of YFV-DAK

reads on this intermediate consensus sequence to obtain the final YFV-DAK consensus

sequence. Consensus sequence of YFV-17D and YFV-DAK have been deposited on NCBI (ID

numbers MN10624 and MN106242), and sequencing data have been uploaded on SRA (SRA

accession number PRJNA548475). Variant determination was estimated using VarScan mpi-

leup2snp (min-var-freq 0.01, strand-filter 0) with a cutoff of 3%.

Statistical analyses

Data were analyzed using GraphPad Prism 7. Statistical analyses were performed using two-

tailed Fisher’s exact test or Mann-Whitney test (� p< 0.05; �� p< 0.01; ��� p < 0.001; ����

p< 0.0001, ns, not significant.), as indicated.

Results

YFV-17D, but not YFV-DAK, fails to overcome the midgut barriers of

Aedes aegypti
The replication and dissemination of YFV-17D was studied in the Ae. aegypti strain Paea. The

clinical isolate YFV-Dakar HD 1279 (YFV-DAK), whose replication in rhesus macaque is well

characterised [28], was used as a positive control for these experiments. Virus produced on

Vero cells were mixed with human blood to prepare a meal containing 4x107 PFU/mL of either

YFV-17D or YFV-DAK. Five to ten mosquitoes were collected every 2–3 days until 14 days

post-feeding (dpf). Mosquitoes were dissected to separate the midgut from legs and salivary

glands. Virus production in these tissues was first assayed by calculating the viral titer by pla-

que assays on Vero cells. Several whole mosquitoes were also analyzed 20 minutes after feeding

to ensure that the mosquitoes ingested a similar amount of viral particles of both viral strains

(Fig 1A and 1B, black dots). Around 103 infectious particles of YFV-DAK were detected per

midguts 3 dpf (Fig 1A). Viral titers remained high in midguts until 14 dpf. YFV-DAK infec-

tious particles were present in legs as early as 5 dpf and in salivary glands as early as 7 dpf (Fig

1A). This replication pattern is comparable to that of South American and African YFV iso-

lates in the strain Ae. aegypti AE-GOI [29]. Midgut of mosquitoes infection with YFV-17D

produced 1 to 2 log less infectious particles than YFV-DAK at 3 dpf (Fig 1B). Infectious parti-

cles were detected in a unique leg sample at 14 dpf. No virus was detected in salivary glands of

mosquitoes infected with YFV-17D. Thus, by contrast to YFV-DAK, and in agreement with

previous studies performed with the Ae. aegypti strains Rexville or Rexville-D (Rex-D) [21,30–

32], YFV-17D disseminated poorly in the strain Paea.
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Fig 1. YFV-17D, but not YFV-DAK, fails to overcome the midgut barriers of Aedes aegypti. Mosquitoes were orally infected with 4.107 PFU/mL of

YFV-DAK (A and C) or YFV-17D (B and D). (A and B) The presence of infectious viruses in individual midgut, legs and salivary glands was assessed

by plaque assay on Vero cells at 3, 5, 7, 10, 12 and 14 day post feeding (dpf). Several whole mosquitoes were also analyzed 20 minutes after feeding

(black dots). Each data point represents the YFV titers of a single organ. (C, D) The relative amounts of organ-associated viral RNA were determined by

RT-qPCR analysis and are expressed as genome equivalents (GE) per organ at 3, 5, 7, 10, 12 and 14 dpf. Total RNA was also extracted from several

whole mosquitoes the same day of the feeding (black dots). (A-D) The dashed lines indicate the limit of detection. One representative RT-qPCR

experiments out of three independent ones is shown. The other two are shown in S1 Fig. YFV infection rates among midguts (E), YFV dissemination

rate among legs (F) and YFV dissemination rate among salivary glands (G) were determined by RT-qPCR analysis at 7, 10 and 14 dpf. (E-G) Data were

obtained from 3 independent experiments. Error bars indicate the means ± SD. Statistical analyses were performed using a two-tailed Fisher’s exact test

(� p< 0.05; �� p< 0.01; ��� p< 0.001; ���� p< 0.0001).

https://doi.org/10.1371/journal.pntd.0007299.g001
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Viral replication was assessed in the midguts, legs and salivary glands by measuring viral

RNA quantity over-time by RT-qPCR (Figs 1C, 1D and S1). Total RNA was also extracted

from several whole mosquitoes the same day of the feeding to insure that they had ingested

similar amount of infectious particles from both viral strains (Fig 1C and 1D, black dots).

Around 107 copies of viral RNA were detected in midguts of mosquitoes infected with YFV--

DAK since 3 days (Figs 1C, S1A and S1C). The viral RNA copy number per midgut remained

high until 14 dpf, indicating that viral replication had already reached a plateau at an early

stage of infection (Figs 1C, S1A and S1C). In agreement with titration assays (Fig 1A), YFV--

DAK RNA was detected in legs and salivary glands of mosquitoes around 7 dpf. The quantity

of viral RNA detected in these secondary organs increased over time to reach on average 107

copies RNA in legs and 106 copies in salivary glands at 14 dpf (Figs 1C, S1A and S1C). Around

5x105 copies of YFV-17D RNA was detected in 2 out of 5 midguts of blood-feed mosquitoes at

3 dpf (Fig 1D). At 12 dpf, around 107 copies of YFV-17D RNA was detected in 4 out of 8 mos-

quitoes, which is 10 time less than in YFV-DAK infected moquitoes. YFV-17D RNA was

found in legs of 2 mosquitoes among the 46 blood-fed mosquitoes collected during 14 days

(Figs 1D, S1B and S1D). No virus was dectected in the salivary glands of these 46 mosquitoes

(Figs 1D, S1B and S1D). Therefore, in agreement with our titration assays (Fig 1B) and with

previous studies performed with Rexville strains of Ae. aegypti [30–32], YFV-17D dissemi-

nated poorly in the strain Paea. The RT-qPCR analyses also revealed that the vaccine strain

replicated less efficiently than YFV-DAK in its vector.

The percentage of mosquitoes that were positive for viral RNA among the mosquitoes that

had taken blood was calculated based on RT-qPCR data obtained from 3 independent experi-

ments (Fig 1E). Significantly less midguts were postivive for YFV-17D RNA than YFV-DAK

RNA at days 7 and 14 post-feeding, suggesting that the midgut infection barrier restricts the

replication of the vaccine strain. Viral dissemination to legs was defined by the presence of

viral RNA in the legs of mosquitoes whose midguts were infected (Fig 1F). YFV-DAK had dis-

seminated in around 40% of infected mosquitoes at 7 dpf and in around 90% of mosquitoes at

14 dpf. At this time, YFV-17D had disseminated in around 10% of them (Fig 1F). YFV-DAK

dissemination rates are consistent with the ones reported for the YFV-Asibi strain [32] or clin-

ical isolates from Peru [31] in Rexville mosquitoes. YFV-DAK RNA was detected in salivary

glands of approximately 75% of mosquitoes whose midguts were infected, revealing that the

virus had efficiently reach these secondary organs (Fig 1G). By constrast, no dissemination in

salivary glands was observed in mosquitoes infected with YFV-17D.

To investigate the replication ability of the two viral strains further, the presence of viral

antigens in pooled midguts and salivary glands of mosquitoes fed on blood containing 4.107

PFU/mL of either YFV-17D or YFV-DAK was analyzed by Western blots at days 7 and 14

post-feeding using antibodies against Env and NS1. The Env protein was detected at both

time-points in the midgut of mosquitoes infected with the strain YFV-DAK, in a majority

form of around 45 kDa and a minor form of around 35 kDa (Fig 2A). The Env protein was not

detected in the salivary glands 7 days after the blood meal but was present as a 45 kDa form 14

days after the blood meal (Fig 2A). These data are in good agreement with the titration and

RT-qPCR data presented in Figs 1 and S1. Like the Env protein, the NS1 protein was detected

in the midguts of mosquitoes infected with the YFV-DAK strain at both 7 and 14 dpf (Fig 2A).

In midguts, NS1 was detected at the expected size of 45 kDa, but also as heavier forms of

around 80 kDa. These forms could represent NS1-2A, a polyprotein precursor consisting of

NS1 and a portion of NS2A. This NS1-2A form was previously reported in human SW-13 cells

infected with YFV-17D [23] and maybe generated by alternative cleavage sites in the NS2A

region upstream from the cleavage site generating the N-terminus of NS2B. Alternatively, they

could represent glycosylated versions of NS1 monomer or dimer. NS1 was also detected in the
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salivary glands of mosquitoes infected with YFV-DAK for 14 days (Fig 2A). No or very little

signal was detected by the anti-NS1 or anti-Env antibodies in organs of mosquitoes infected

with YFV-17D (Fig 2A). In order to ensure that the antibodies directed against the NS1 and

Env proteins recognize YFV-17D proteins, control experiments were performed with the Ae.
aegypti Aag2 cells infected for 24 or 48 hours at an MOI of 0.1 with both viral strains. Both pro-

teins were well detected in cells infected for 48 hrs, independently of the viral strain used (Fig

2B). Thus, absence of detection of YFV-17D Env and NS1 proteins in the mosquito organs at 7

and 14 dpf is not due to poor recognition of the viral antigens, nor the antibodies used, but

reflects a low-level replication. These data confirm our titration and RT-qPCR analyses (Fig 1).

Of note, the YFV-DAK Env was detected as 2 forms in Aag2 cells infected for 48 hours while

the YFV-17D Env was detected as a unique form. No YFV-17D proteins were detected at 24

Fig 2. YFV-DAK produces detectable levels of viral proteins in infected mosquitoes. (A) Mosquitoes were fed with

human blood containing 4.107 PFU/mL of YFV-DAK or YFV-17D or no virus (NI). The presence of viral antigens in

10 pooled midguts and salivary glands was analyzed by immunoblotting at 7 and 14 dpf using antibodies recognizing

actin, viral NS1 or Env proteins. (B) Aag2 cells were infected at a MOI of 1. Whole-cell lysates were analyzed by

immunoblotting at the indicated times post-infection using antibodies recognizing human tubulin, viral NS1 or Env

proteins. Non-reducing condition were used to detect the Env proteins.

https://doi.org/10.1371/journal.pntd.0007299.g002
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hours post-infection, suggesting that the replication of the vaccine strain is slower in Aag2

cells than the one of YFV-DAK, as in Ae. aegypti (Fig 1).

Finally, to confirm RT-qPCR and Western blot data, immunofluorescence analyses were

performed on midgut of mosquitoes fed since 7 days using antibodies againt the viral protein

NS4B. YFV-DAK antigens were evenly distributed in foci over the entire epithelium at this

time (Fig 3A). By contrast, YFV-17D antigens were found in one or two localized foci in

infected midguts. In an attempt to investigate further this uneven distribution of YFV-17D

replication sites, the midgut of mosquitoes infected with both viral strains for 3 or 7 days were

cut longitudinally into two equal parts. The presence of viral RNA was determined by RT-

qPCR analyses performed on individual half midguts (Fig 3B). Among 18 mosquitoes that

ingested blood containing YFV-17D, 3 half midguts were positive for YFV-17D RNA at day 3

post-infection and only 2 at day 7 post-infection. This is in agreement for our previous results

(Fig 1E). Among these five positive midguts, only one contained YFV-17D RNA in both sec-

tions (Fig 3B). As expected based on previous results (Fig 1E), it was easier to obtain midguts

positive for YFV-DAK. Twelve out of the 15 midguts that were positive for YFV-DAK RNA

contained viral RNA in both sections. These experiments revealed that YFV-17D replication

in Ae. aegypti midgut is more confined than YFV-DAK replication.

Together, these data show that, by contrast the clinical isolate YFV-DAK, the vaccine strain

replicated poorly in, and disseminated poorly from Ae. aegypti midgut.

YFV-17D and YFV-DAK replicate in the midgut when mosquitoes are

inoculated intra-thoracically

To assess whether YFV-17D could infect Ae. aegypti when delivered via a non-oral route, mos-

quitoes were inoculated intra-thoracically with 2.5x104 PFU of YFV-17D or YFV-DAK, which

corresponds to around 10 times less PFU than when mosquitoes are taking around 5 μL of a

blood meal containing 4x107 PFU/mL. The presence of viral RNA was analyzed by RT-qPCR

10 days after injection. Mosquitoes infected via a blood meal served as controls. Several whole

mosquitoes were also analyzed 20 minutes after feeding or injection to ensure that a similar

amount of viral particles of both viral strains were delivered in mosquitoes (Fig 4, black boxes).

In good agreement with our previous experiments (Fig 1E), around 35% of midguts (8 out 22)

were positive for YFV-17D RNA, whereas 81% (18 out 22) were positive for YFV-DAK RNA

at day 10 post feeding (Fig 4A). Moreover, significantly less viral RNA (around 10 times) was

found in YFV-17D-infected midguts as compared to YFV-DAK-infected midguts (Fig 4A).

YFV-DAK RNA was detected in legs and salivary glands of around 50% of these mosquitoes.

By contrast, YFV-17D was detected in the legs of a unique mosquito out of 22 and was not

detected in salivary glands (Fig 4A), confirming the inability of the vaccine strain to spread to

secondary organs when orally delivered. When the midgut barriers were bypassed by injecting

Ae. aegypti mosquitoes in the thorax, 100% of midguts were positive for both viral strains and

similar amounts of YFV-17D and YFV-DAK RNA were detected in this organ, indicating that

both viral strains successfully replicated in midgut-associated tissues when bypassing the

lumen (Fig 4B). All legs and salivary glands were positive for YFV-17D and YFV-DAK RNA

(Fig 4B), revealing that the two viruses were efficiently infecting secondary tissues once the

midgut was bypassed. Of note, significantly more (around 10 times) YFV-DAK RNA was

detected in salivary glands than YFV-17D RNA (Fig 4B), suggesting that YFV-17D is sensitive

to the salivary gland infection barrier.

To ensure that viral RNA detected in secondary organs of injected mosquitoes represented

replicative RNA and not input viral RNA, UV-treated viral RNA was also injected into the tho-

rax of several mosquitoes. A signal, slightly above the detection threshold, was detected in two
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PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007299 August 14, 2019 10 / 18

https://doi.org/10.1371/journal.pntd.0007299


Fig 3. Replication of YFV-17D in midguts is localized to confined area. Mosquitoes were fed with human blood containing 4x107 PFU/mL of

YFV-DAK, YFV-17D or no virus (NI). (A) Midguts were dissected at 7 dpf and stained with DAPI to visualize nuclei (blue), Phalloidin Texas Red

to visualize actin (green) and with antibodies recognizing the viral protein NS4B (red). Images were acquired with a confocal microscope
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organs out of 39 tested (Fig 4B). These data confirm the ability of YFV-17D to replicate as effi-

ciently as YFV-DAK in midgut and secondary organs when mosquitoes were inoculated intra-

thoracically.

Sequencing and single-nucleotide polymorphism frequency of YFV-17D

and YFV-DAK

To determine the consensus sequence of the two viral strains, we performed next generation

sequencing (NGS) analysis of the two viral stocks. Average coverage depths for these align-

ments were around 1000x (S1 Table) and homogeneous along their references. The compari-

son of the two consensus sequences identified 333 synonymous mutations (Fig 5A and 5B,

blue bars) and 60 non-synonymous ones (Fig 5B, red bars). These differences were scattered

along the genome. Single nucleotide variants (SNVs) and their frequency were identified all

along the two genomes (Fig 5C). Only the SNVs representing a minimum of 3% of all observa-

tions were considered. The genome of YFV-17D contained more SNVs than the one of YFV--

DAK (50 against 18). A SNV that lies in the NS2A gene of YFV-17D is represented in 44% of

the population, but does not induce amino acid change.

Discussion

Studies conducted shortly after the development of YFV-17D showed that Ae. aegypti fed on

vaccinated volunteers or rhesus monkeys were unable to transmit YFV-17D to susceptible

monkeys [33]. These results were confirmed five decades later by showing that suckling mice

equipped with a x40 objective. Scale bars are 0,5 mm. (B) The midguts of infected mosquitoes were cut longitudinally into two parts at 3 or 7 dpf.

The presence of viral RNA was determined by RT-qPCR analysis performed on individual half midguts. The data are expressed as genome

equivalents (GE) per organ. The dashed line indicates the limit of detection.

https://doi.org/10.1371/journal.pntd.0007299.g003

Fig 4. YFV-17D and YFV-DAK replicate in secondary organs when inoculated intra-thoracically. (A) Mosquitoes were orally infected via a blood

meal containing 4.107 PFU/mL of YFV-DAK, YFV-17D or no virus. Alternatively (B), mosquitoes were inoculated intra-thoracically with 2.5x104 PFU

of YFV-17D or YFV-DAK or with the same amount of UV-treated viruses. The relative amounts of organ-associated viral RNA were determined by

RT-qPCR analysis 10 days after infection and are expressed as genome equivalents (GE) per organ. Several whole mosquitoes were also analyzed the

day of the feeding or injection to ensure that a similar amount of viral particles of both viral strains were delivered in mosquitoes (black boxes). The

number of organs (n) analyzed is indicated. The dashed lines indicate the limit of detection. Three independent experiments were performed with

untreated viruses. Control experiments with UV-treated viruses were performed once. Statistical analyses were performed using a Mann-Whitney test

(� p< 0.05; �� p< 0.01; ��� p< 0.001; ���� p< 0.0001).

https://doi.org/10.1371/journal.pntd.0007299.g004
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bitten by Ae. aegypti infected with YFV-17D did not exhibit sign of disease [31]. Poor dissemi-

nation of YFV-17D to mosquito heads was shown by examining head tissues by immunofluo-

rescence or immunohistochemical studies [31,34]. Consistently, titration assays performed on

organs of the Rex-D strain of Ae. aegypti revealed that YFV-17D infects the midgut, but does

not spread to secondary organs [21,32]. Our RT-qPCR, immunofluorescence and titration

analyses document the inability of YFV-17D to disseminate in the Paea strain of Ae. aegypti.
Our analysis also revealed that YFV-17D replicates poorly in the midgut, as compared to the

clinical isolate YFV-DAK. Among the mosquito with midgut positive for YFV-17D RNA, only

10% had viruses that disseminated to their legs and none had viral RNA in their salivary

glands. Thus, our data suggest that the YFV-17D strain is not only sensitive to the midgut

escape barrier, but also to the midgut infection barrier when orally delivered. When injected

into the thorax of mosquitoes, YFV-17D replicated in midgut tissues as efficiently as YFV-

DAK. These data suggest that the restriction of YFV-17D replication in the midgut occur at

the level of epithelial cells. Our RT-qPCR analyses suggest that the major restriction occurs at a

stage prior to viral RNA production. Several mechanisms, not mutually exclusive, could

explain this restriction.

First, the restriction could occur during viral entry in midgut epithelial cells. The low num-

ber of loci revealed by immunofluorescence analysis of YFV-17D-infected midguts suggests

that only few cells were initially infected by the vaccine strain and thus supports the hypothesis

of an entry defect. Flavivirus entry mechanisms are poorly described in mosquito cells. Neither

attachment factor(s) nor entry receptor(s) are identified yet. As in mammalian cells, the

domain III of Env is involved in attachment and entry of flavivirus in mosquito cells [35].

Thus, it is conceivable that YFV-17D Env would have a lower affinity for cell entry factors than

YFV-DAK Env. Our NGS analysis revealed that the consensus sequence of the two Env pro-

teins differs from 75 mutations, including 14 non-synonymous mutations. Seven of these non-

synonymous mutations lie within the domain III. Finally, in Aag2 cells infected for 48 hours,

we detected two forms of YFV-DAK Env under non-reducing conditions and a single form of

YFV-17D Env. These differences may reflect a different conformation and may explain a

Fig 5. Sequencing and single-nucleotide polymorphism frequency of YFV-17D and YFV-DAK. (A) Schematic representation of YFV genome. (B) Single-nucleotide

polymorphism (SNP) frequency between YFV-Dakar and the consensus sequence of YFV-17D are shown. Blue and red bars represent synonymous and non-

synonymous variants, respectively. The table shows the number of SNP per coding or non-coding region. Only SNPs of more than 3% were represented. (C) Genomic

intra-variability of YFV-17D and YFV-DAK. SNP frequency were obtained using the respective consensus sequence of each strain as a reference.

https://doi.org/10.1371/journal.pntd.0007299.g005
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different affinity for a cell entry receptor. In agreement with this hypothesis, when domain III

of the Env gene of a YFV able to disseminate was replaced by domain III of the Env gene of

YFV-17D, the dissemination of the chimeric virus was strongly inhibited, suggesting an

important role in Domain III in this process [21]. These results, however, may be the conse-

quence of chimerization, as it is known that flavivirus chimeras replicate less efficiently than

parental viruses [36]. We have recently shown that the YFV-Asibi enters a panel of human

cells by canonical endocytosis mechanisms involving clathrin, while YFV-17D enters cells in a

clathrin-independent manner [12]. We have shown that the 12 mutations differentiating

YFV-Asibi Env from YFV-17D Env are responsible for the differential internalization process.

Based on these data, we hypothesized that YFV-17D and YFV-Asibi use different cell receptors

[12]. It is therefore possible that the YFV-17D and YFV-DAK strains also use different recep-

tors in mosquito cells and that the receptor used by YFV-17D is poorly expressed at the apical

surface of midgut epithelial cells, as compared to the one used by the clinical strain. This

hypothesis is consistent with our data showing that YFV-17D succeeded in replicating into

midgut-associated tissues when inoculated intra-thoracically. Alternatively, the glycosylation

status of the Env protein could play a role in the differential entry abilities of the two strains.

Flavivirus Env proteins possess a conserved N-glycosylation motif at amino acid 153/154. This

modification is involved in important viral replication and pathogenesis functions [37]. Muta-

genesis studies on many flaviviruses, including the DENV, WNV and ZIKV, indicate that the

loss of this N153/154-glycosylation impairs viral replication in the midgut [38–40]. Unlike most

flaviviruses, the YFV Env lacks the N153/154-glycosylation canonical site. A second non-canoni-

cal N-glycosylation site exists at position 470. However, it is unlikely that this site is functional

because it is located in the hydrophobic carboxy-terminal domain and is therefore inserted

into the endoplasmic reticulum membrane. The absence of an accessible N-glycosylation site

in YFV-DAK Env therefore indicates that such motif is probably not necessary for replication

and dissemination in mosquitoes. We therefore believe that mutations in Env, rather than its

glycosylation status, are involved in vector competence.

Another mechanism that could explain the low replication of YFV-17D in the midgut of

mosquitoes is its inability to escape the antiviral mechanisms in midgut epithelial cells. The

RNA interference pathway (RNAi), is a major antiviral defense initiated by the recognition of

viral replication intermediates by the Dicer-2 protein [41]. Its efficacy differs within organs,

both in Anopheles gambiae [42] and Aedes aegypti [43]. One can envisage that the pathway is

particularly efficient against YFV-17D in midgut epithelial cells. This pathway inhibits the rep-

lication of DENV and ZIKV viruses in the midgut and salivary glands of mosquitoes [44–46].

Interestingly, Myles and colleagues recently showed that the YFV C protein counteracts the

RNA interference pathway in Ae. aegypti by protecting double-stranded viral RNA from

Dicer-2-induced cleavage [47]. No amino acid sequence responsible for this effect has been

identified. Our NGS analysis revealed that the consensus sequence of the C gene of our two

strains of interest differ by 10 mutations, including a non-synonymous one. This unique muta-

tion in C could modulate its RNA interference suppression activity.

The NS1 protein, which is a highly conserved glycoprotein secreted by flavivirus-infected

cells, enhances DENV and JEV replication in their vectors [48]. It does so by allowing them to

escape two important antiviral mechanisms: the production of reactive species of oxygen

(ROS) and the JAK/STAT pathway [48]. One can envisage that, like the NS1 proteins of

DENV and JEV, YFV-DAK NS1 protein could be a potent suppressor of these two antiviral

strategies. The NS1 protein of YFV-DAK could also be more expressed and/or secreted than

the one of YFV-17D.

Our NGS analysis detected more than 60 non-synonymous nucleotide differences along the

genome of the two viral strains. These, together with the 8 nucleotide differences in the 3’
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untranslated region (UTR) between the 2 viral strains, could have functional consequences.

The higher abundance of variants in YFV-17D genome as compared to YFV-DAK genome

was unexpected since a recent study showed that the vaccine strains YFV-17D and YFV-FNV

contained fewer variants than their respective parental strains [49]. However, our observations

do not inform on the general variability of the genomes since they concern only a small num-

ber of nucleotides. Further analysis would be warranted to compare the genetic diversity of

YFV-17D and YFV-DAK. Deep sequencing analysis of YFV-17D genome coupled to indepen-

dent diversity measurements, such as the Simpson 1-D and Shannon entropy indexes, revealed

that the vaccine strain lacks quasispecies diversity as compared to its parental strain Asibi [25].

This loss of genetic diversity has been proposed to contribute to YFV-17D attenuation in vac-

cinated patients [25]. Moreover, recent studies with Venezuelan equine encephalitis virus

(VEEV), which belongs to the genus Alphavirus, have revealed that viruses able to disseminate

in mosquitoes have an higher diversity than the ones that did not disseminate [50]. Thus, the

poor genetic diversity of YFV-17D may contribute to its inability to infect and spread in Ae.
aegypti.

Additional studies will be needed to identify the molecular mechanism(s) responsible for

the low replication and dissemination of the YFV-17D vaccine strain in Aedes mosquito.

These studies are essential to better understand the interactions between viruses and their vec-

tors and can also contribute to the development of non-transmissible live-attenuated vaccines.
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S1 Fig. YFV-17D, but not YFV-DAK, fails to overcome the midgut barriers of Aedes
aegypti (second and third replicates). Mosquitoes were orally infected with 4x107 PFU/mL of

YFV-DAK (A and C) or YFV-17D (B and D). The relative amounts of organ-associated viral

RNA were determined by RT-qPCR analysis and are expressed as genome equivalents (GE)

per organ at 3, 5, 7, 10, 12 and 14 day post feeding (dpf). Total RNA was also extracted from

several whole mosquitoes the same day of the feeding (black dots). Each data point represents

the YFV titers of a single organ. The dashed lines indicate the limit of detection. Experiments

were done three times independently. One representative experiment is shown in Fig 1 and

the other two replicates are shown here.
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