
Food Sci Nutr. 2020;8:4919–4928.     |  4919www.foodscience-nutrition.com

1  | INTRODUC TION

Whiteberry (Morus alba L.) and blackberry (Morus nigra L.) (both 
known as mulberry) are deciduous trees belonging to the family 
Moraceae. Whiteberry and blackberry are the most important spe-
cies of the Morus genus (Sánchez-Salcedo, Mena, García-Viguera, 
Martínez, & Hernández, 2015; Zelová et al., 2014). Mulberry fruits 
are highly appreciated by consumers for their aromatic taste. 
Mulberries provide nutrients and micronutrients essential for health 
and contain numerous chemical constituents, including tannins, 
phytosterols, polyphenolics, phytosterols, sitosterols, saponins, trit-
erpenes, benzofuran derivatives, anthocyanins, glycosides, oleanolic 
acid, and volatile oils (Koyuncu, Çetinbas, & Erdal, 2014; Sánchez-
Salcedo et al., 2015).

The aroma is a complex composition of high volatile compounds, 
which are of tremendous great importance in food acceptability to 

consumers and a key indicator for evaluating fruit quality (Farrag, 
Kassem, Bayoumi, Shaker, & Afifi, 2017; Kim, Bae, Na, Dal Ko, & 
Chun, 2013). Due to the complex nature of the volatile profiles, the 
volatile composition is continuously changing in fruit. Many factors 
influence the volatile composition, including cultivar, fruit matu-
rity, and postharvest environment (Forney, Kalt, & Jordan, 2000). 
Maturity is one of the critical factors influencing the abundance of 
volatile compounds in fruit (Lester, 2006). Ripening is a biochemical 
process in fruits, in which physical and chemical characteristics, in-
cluding dramatic bioactive compounds production.

Controlling ripeness is becoming a fundamental issue in the 
fruit industry since ripeness during harvest, storage, and market 
distribution determines the quality of the final product measured 
in terms of customer satisfaction. An alternative strategy for deter-
mining the state of ripeness consists of sensing the aromatic vola-
tiles emitted by fruit using e-nose (Benady, Simon, Charles, & Miles, 
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The estimation of ripeness is a significant section of quality determination since ma-
turity at harvest can affect sensory and storage properties of fruits. A possible tac-
tic for defining the grade of ripeness is sensing the aromatic volatiles released by 
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best structure (10–11-5) can classify the samples in five classes in ANN analysis with 
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PCA analysis characterized 97% and 93% variance in the blackberry and whiteberry, 
respectively. The least correct classification for whiteberry was observed in the LDA 
method.
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1995; Hui et al., 2010; Kim et al., 2013; Llobet, Hines, Gardner, & 
Franco, 1999).

The e-nose is one of the most promising nondestructive meth-
ods which have proven to be good alternatives for common tech-
niques in odor analysis of food (Qiu, Wang, & Gao, 2015). The e-nose 
contains several electronic gas sensors, which have sensitivity and 
selectivity to volatile compounds present in the sample headspace 
of food products. Through the use of a pattern recognition algorithm 
that processes the resistance data from each sensor, the volatile 
compound data are expressed as a thorough via multivariate anal-
ysis (Kim et al., 2013).

The statistical methods employed to multivariate output data 
obtained by the sensor array signals are based on commercial or 
specially designed software using multivariate classification meth-
ods like PCA, LDA, and ANN (Beghi, Buratti, Giovenzana, Benedetti, 
& Guidetti, 2017). The e-nose has had several applications in 
monitoring aroma changes during fruits, such as apple (Pathange, 
Mallikarjunan, Marini, O’Keefe, & Vaughan, 2006), peach (Su et al., 
2013; Zhang, Wang, Ye, & Chang, 2012), mango (Lebrun, Plotto, 
Goodner, Ducamp, & Baldwin, 2008; Zakaria et al., 2012), and to-
mato (Gómez, Hu, Wang, & Pereira, 2006).

Infante, Rubio, Meneses, and Contador (2011) applied an e-nose 
for sensory quality evaluation of ripe nectarines segregated. The 
sensory analysis and the e-nose results were presented through a 
PCA. Breijo, Guarrasi, Peris, Fillol, and Pinatti (2013) and Li, Xue, and 
Chen (2012) studied persimmon fruits to discriminate between two 
different cultivars using a semiconductor commercial e-nose sensor 
array to recognize fruit ripening state and storage life, applying PCA 
and LDA statistical methods.

Zakaria et al. (2012) reported the classification of mango 
maturity levels using a fusion of the data of an electronic nose 
and an acoustic sensor. The e-nose evaluated samples and then 
followed by the acoustic sensor. PCA and LDA were able to clas-
sify the mango harvested at week seven and week eight based 
solely on the aroma and volatile gases released from the mangoes. 
Parpinello et al. (2007) used the e-nose to analyze the headspace 
of 10 different apricot cultivars. Applying a single hidden layer 
ANN with 35 neurons, a correlation index higher than 80% on test 
data set was achieved. Lu, Deng, Zhu, and Tian (2015) employed 
an e-nose to classification of rice, and PCA was used to preprocess 
data from electronic systems.

This paper wants to investigate an application of e-nose to de-
tect the ripeness grade of berries, based on an e-nose and proper 
pattern recognition methods (PCA, LDA, ANN), in whiteberry and 
blackberry.

2  | MATERIAL S AND METHODS

2.1 | 1. Electronic nose setup

For detection of the ripeness of fruits, the e-nose machine was de-
signed and fabricated. The e-nose mainly composed of data acqui-
sition card (USB self-designed), sensor array, three two-way valves 
normally closed, vacuum pump, air filter (active carbon), GUI (graphi-
cal user interface) (LabVIEW 2014), power supply, laptop, and sample 
chamber. The schematic of the e-nose apparatus is shown in Figure 1. 
The fruit is set in the sample chamber for collecting adequate gases.

In the e-nose system, the static headspace technique is used to 
collect volatile (unstable) gases emitted from the sample. The vac-
uum pump with flow rate 6 L/min was used to transfer volatile and 
fresh air to the sensor array.

To automatically control the cleaning and obtain the aroma pat-
tern, the e-nose machine was equipped with three two-way valves 
1/4 inch normally closed. As the sample odor enters the sensor 
chamber, depending on the concentration of the sample violet, the 
type of sensor and sensibility of each sensor exhibit a proportional 
response that the sensor response converts into a voltage by its cir-
cuit and transmitted to the data acquisition card (USB self-designed). 
This information is sent to the computer after being received by the 
data acquisition card for recording and display via the GUI (LabVIEW 
2014). After each measurement, both chamber sample and sensor 
array are cleaned with filtered dry air by active carbon. The power 
required by the device is supplied in two ways, while the device is 
connected to the computer, required power is provided through the 
USB port of the computer, but when the e-nose is used for on-site 
experiments, the power (energy) required is supplied by the backup 
lithium-ion battery.

The sensor array is combined with ten different metal oxide sen-
sors. Table 1 shows all the sensors and corresponding applications. 
MOS gas sensors, as a typical commercial sensor, are extensively 
employed in e-nose (Hu et al., 2016; Sun et al., 2017). These sensors 

F I G U R E  1   Schematic of the 
components of the electronic nose device
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are widely used in e-nose machines due to their high chemical con-
sistency, long life, low response to moisture, and reasonable prices 
(Sanaeifar, Mohtasebi, Ghasemi-Varnamkhasti, & Ahmadi, 2016). 
Metal oxide semiconductor sensors need to be heated about 400°C 
before testing to detect the gases accurately. Therefore, sensors 
were equipped with a 5 V DC heating voltage. To omit the effects 
of temperature changes on the sensory array, the temperature of 
samples was held at 30°C.

The measurement procedure was started by placing fruits in the 
sample chamber. Preliminary experiments showed that the head-
space achieved a steady state after the 1800s of equilibration, so 
those experiments were done after the 1800s of equilibration. They 
were designed to reinforce the odor concentration to obtain more 
sensor responses.

The main stages of electronic nose work consist of three phases: 
1—baseline, 2—injection of sample odor into the sensor chamber, 
and 3—clearing the sensor array. The response of the sensors during 
these three-time phases is recorded as voltage versus time.

In the baseline stage, the filtered air enters the sensor array by 
passing the vacuum pump and the valve 1 and cleans the sensor 
array to retain a stable voltage change in the sensors and was exited 
from valve 3 (300s). At the injection step, the sample odor enters 
the sensor array through the valve 2 and vacuum pump (300s). In 
the final stage, the filtered air enters the sensor array through the 
vacuum pump and valve 2, on the other hand, exits through the valve 
3 to perform the cleanup process (150s) (Figure 1).

Data prepared from the sensors are applied to create a data-
base required for training the e-nose. Through the data attainment 
card, the sensors’ responses are saved on the computer. The da-
tabase is a matrix whose rows are the responses of the sensors, 
and its columns are the e-nose sensors. Then, signal preprocess-
ing is used for the extraction of data from the obtained responses 
and also for the preparation of the data for pattern analysis (Wall, 
Rechtsteiner, & Rocha, 2003). The significant features of this pre-
processing are (a) baseline identification, (b) compression, and (c) 
normalization.

The fractional method was employed in the current study for 
baseline manipulation. The fractional method is also extensively ap-
plied for MOS chemoresistors (Gutierrez-Osuna, 2002)

where XS (0) is the baseline response, XS (t) is the sensor response, and 
YS (t) is the normalized response of the sensor. In compression prepro-
cessing, the maximum response value for each sensor was individually 
extracted and analyzed. Using the fractional method in MOS sensors 
also, the data are normalized (Hai & Wang, 2006; Heidarbeigi et al., 
2015).

2.2 | Sample preparation

Whiteberry and blackberry samples were collected from 5-year-old 
mulberry trees from Iran. Healthy samples were randomly picked 
from multiple trees and divided into five ripeness grades (RG1 = ripe, 
RG2 = close to ripeness, RG3 = intermediate to ripeness, RG4 = close 
to unripe, and RG5 = unripe) according to the criteria used by expert 
growers (mainly relying on size and surface color distribution) during 
June 2019. The weight of each sample was measured as 10 ± 1 g. The 
120 sample fruits were packaged in an insulated box containing ice 
and immediately transported to the laboratory for analysis.

2.3 | Gas chromatography/mass spectrometry (GC/
MS) analysis

2.3.1 | Sample preparation

A total of 100 g of the frozen mulberry fruit were ground in a com-
mercial blender (Philips, model HR2850) for 30 s. The flesh pulp 
was then thawed for maceration at –4°C for two hours before 

ys(t)=
xs(t)−xs(0)

xs(0)

Name Main application Detection ranges (ppm)

MQ3 Alcohol 0.05–10

MQ5 LPG, CH4, Coal gas 200–10,000

MQ9 CO and combustible gas 20–2,000 (Carbon monoxide), 500–10,000 
(CH4), 500–10,000 (LPG)

MQ135 Air quality control 10–10,000 (Ammonia, Benzene, Hydrogen)

TGS2620 Alcohol, steam organic 
solvents

50–5,000

TGS2610 C4H10, LPG 500–10,000

TGS2611 CH4 500–10,000

TGS813 CH4, C3H8, C4H10 500–10,000

TGS822 Steam organic solvents 50–5,000

TGS2602 Sulfide, hydrogen sulfide, 
ammonia, toluene

1–30

TA B L E  1   Gas sensor array of the 
e-nose
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centrifuged at 4000 × g at 4°C for 20 min. Finally, the sample was 
filtered through a muslin cloth to obtain the clean juice.

Five mililitre of the clean juice, 5 μl of 4-methyl-2-pentanol 
(2.0200 g/L) as an internal standard, and 1 g of NaCl were added 
into a 15 ml vial, which was tightly capped with a polytetrafluoroeth-
ylene–silicon septum and sealed with a polypropylene screw cap. After 
mixing, the sample was equilibrated at 40°C on a magnetic platform 
(PC-400, Supelco) for 30 min, a preconditioned 2 cm long 50/30 μm 
DVB/CAR/PDMS (divinylbenzene/carboxen/polydimethylsiloxane). 
SPME fiber (Supelco) was inserted through the cap and placed 1 cm 
above the juice to extract free volatiles at 40°C for 30 min. The SPME 
fiber was injected into a GC-MS injector for thermal desorption at 
250°C for 8 min. The same extraction procedure was previously em-
ployed for the aroma analysis of mulberry (Chen et al., 2015).

2.3.2 | GC-MS analysis

An Agilent GC/MSD (7890A-5975C) equipped with an HP-INNOWax 
capillary column (60 m × 0.25 mm i.d. × 0.25 μm film thickness) from 
J&W Scientific (Folsom, Calif., U.S.A.) was used for the GC-MS anal-
ysis. Helium was used as the carrier gas with a flow rate of 1 ml/
min. The oven temperatures were programmed as follows: 50°C 
with a 1 min holding time, followed by an increase to 220°C at a 
rate of 3°C/min with a 5 min holding time. The HS SPME extract 
was injected in a splitless mode at 250°C. The temperatures of the 
detector and transfer line were maintained at 230 and 280°C, re-
spectively. Mass spectra were acquired in electron impact (EI) mode 
at 70 eV with the m/z range of 40 to 250. Three replications of each 
sample were made in all cases.

2.4 | Data analysis

One uncontrolled (PCA) and two controlled (ANN and LDA) pattern 
recognition models were used to classify fruit samples to varying 
degrees of ripening.

PCA is the best descriptor of differences between the samples. 
It has been mostly employed in the paper to display an embodiment 
of clusters and outliers of the e-nose response to aroma (Li, Li, et al., 
2012). Also, PCA helps to detect which principal components de-
rived from the initial variances show the most differences.

LDA is one of the most used classification methods (Maugis, 
Celeux, & Martin-Magniette, 2011). This technique minimizes the 
variance within categories and maximizes the variance between-cat-
egory differences (Patel, 2014). So, LDA can gather data from all sen-
sors to amplify the groups.

In this research, a three-layer feed forward neural network has 
been used that maps input data onto a set of proper outputs. In this 
research, the input layer of the network consisted of several neurons 
corresponding to sensors. The output layer had neurons according 
to grades of ripening fruits. Best number of neurons for the hidden 
layer were chosen basis on experiment and error. The data were 

divided into two subsets: 75% were applied for training, and 25% 
were used for testing. The hyperbolic tangent (tansig) and the linear 
(purelin) transfer functions were employed in the neurons of the hid-
den and output layers. The Levenberg–Marquardt training algorithm 
was used to train the network. Precision was applied as the classifi-
cation performance function to find the optimal architecture for the 
neural network (Sokolova & Lapalme, 2009). For preparing the net-
work, different numbers of neurons in the hidden layer were tested. 
In this work, an MSE of 10−8, a minimum gradient of 10−10 and a 
maximum epoch of 1000 were used. The primary weights and biases 
of the network were generated by using the netting function by the 
program. The values of the learning rate and momentum coefficient 
were 0.02 and 0.9, respectively. Neural network classification per-
formance by the percentage of accuracy and precision of the con-
fusion matrix was determined, using the following equations (Ayari, 
Mirzaee-Ghaleh, Rabbani, & Heidarbeigi, 2018):

where NTP, NTN, NFP, and NFN are the number of samples that are clas-
sified as true positive, true negative, false positive, and false negative, 
respectively.

3  | RESULT AND DISCUSSION

3.1 | GC results

In this study, GC-MS was used for the determination of different vol-
atile in berries. The volatile aroma compounds found in whiteberry 
and blackberry (Table 2) can be grouped into six chemical groups: 
aldehydes, esters, alcohols, furanone, sulfide compounds, and terpe-
nes. These results are in similar with most of the results obtained in 
other studies (Du, Kurnianta, McDaniel, Finn, & Qian, 2010).

More than 40 aroma compounds have been identified in black-
berry, while around 30 aroma compounds have been found in white-
berry. Alcohols and esters have been described as the major aroma 
compounds of the Morus genus. The concentration of these volatile 
compounds is generally low, and they can be affected by several 
agronomic such as ripening stage and technological factors (Calín-
Sánchez et al., 2013).

3.2 | Comparison of sensor array responses and 
GC results

The response of the sensory array for whiteberry is shown in 
Figure 2. As it is known, RGs have different response patterns. This 
is due to change in volatile aroma compounds during maturation.

Accuracy=
NTP+NTN

NTP+NTN+NFP+NFN

Precision=
NTP

NTP+NFP
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TA B L E  2   Identified volatile compounds of whiteberry and blackberry detected by GC-MS (mg/kg)

Compounds Blackberry Whiteberry

Esters

Methyl butanoate 0.22 ± 0.02 0.19 ± 0.01

Ethyl butanoate 1.2 ± 0.02 0.61 ± 0.01

Ethyl-2-methyl butanoate 0.71 ± 0.01 0.45 ± 0.01

Methyl hexanoate 0.02 ± 0.01 0.1 ± 0.01

Ethyl hexanoate 0.14 ± 0.02 0.11 ± 0.01

2-Hexyl acetate 0.03 ± 0.01 0.01 ± 0.01

Ethyl acetate 0.1 ± 0.01 0.05 ± 0.01

Methyl salicylate 0.01 ± 0.01 0.02 ± 0.01

Butyl acetate 0.001 ± 0.06 ND

Isoamyl acetate 1.2 ± 0.03 0.67 ± 0.01

Hexyl butanoate 0.01 ± 0.01 0.03 ± 0.03

Octyl-2-methyl butanoate ND 0.1 ± 0.01

Methyl acetate 0.33 ± 0.03 0.1 ± 0.03

Benzyl acetate 0.52 ± 0.02 0.32 ± 0.02

Hexyl hexanoate 0.12 ± 0.02 0.82 ± 0.01

Ethyl cinnamate 0.02 ± 0.02 ND

Pentyl Propyl hexanoate ND ND

Terpenoids

Linalooll 
(3,7-dimethylocta-1,6-dien-3-ol)

1.2 ± 0.03 0.42 ± 0.02

Nerolidol (3,7,11-trimethyl-1,6,10-
dodecatrien-3-ol)

0.10 ± 0.02 0.32 ± 0.02

α-Terpineol 93 ± ± 0.01 86.01 ± 0.15

L-α-Terpinolene 13.9 ± 0.2 10.61 ± 0.12

Geraniol 30 ± ± 0.01 41.02 ± 0.02

trans-Linalool oxide 30 ± ± 0.03 59.02 ± 0.02

Borneol 8.6 ± 0.8 5.02 ± 0.01

l-carvone 3.8 ± 0.5 1.02 ± 0.02

Nerol 3.8 ± 0.3 1.8 ± 0.02

Nopol 2.8 ± 0.2 0.82 ± 0.02

Linalyl formate ND ND

Aldehydes

Nonanal ND 0.07 ± 0.04

 (E)-2-nonenal ND 0.08 ± 0.02

trans-2-Hexenol 0.32 ± 0.03 ND

Hexanal 0.06 ± 0.08 5.3 ± 0.02

cis-3-Hexenol 0.08 ± 0.05 0.09 ± 0.02

€-2-hexenal 3.08 ± 0.02 2.01 ± 0.03

Benzaldehyde 0.79 ± 0.01 0.35 ± 0.02

Alcohols

1-Octanol 0.08 ± 0.02 0.04 ± 0.02

2-Heptanol 0.35 ± 0.05 0.23 ± 0.05

1-Octen-3-ol 1.1 ± 0.03 0. 5 ± 0.02

Benzyl alcohol 1.9 ± 0.05 0.95 ± 0.02

(Continues)
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Many rapid qualitative and quantitative changes in berry fruit vol-
atiles during ripening is related to steam organic solvents such as es-
ters, furaneol and mesifurane, acids, lactones, terpenes, and alcohols 
(Forney et al., 2000; Jetti, Yang, Kurnianta, Finn, & Qian, 2007; Ménager, 
Jost, & Aubert, 2004).These important volatile compounds were de-
tectable by MQ3 and TGS822 sensors as well as GC-MS (Table 1 and 
Table 2). Volatile sulfur compounds can be presented in many differ-
ent chemical forms, including hydrogen sulfide, methanethiol, dimethyl 
sulfide, dimethyl disulfide, dimethyl trisulfide, methyl thioacetate, and 
methyl thiobutyrate that have been identified by GC-MS (Table 2) and 
TGS2602 sensors (Table 1) in whiteberry and blackberry fruits.

The harvest maturity plays a pivotal role in the volatile de-
velopment of berries. C6 aldehydes were identified as the major 
compounds in immature white fruit, while furanone and esters are 
present in three quarters or fully red fruit (Ménager et al., 2004).

Yang, Wang, Wu, Fang, and Li (2011) reported that all the organic 
compounds such as alcohols and carbonyls, along with most of the 

C6 compounds and terpenoids, were evident before veraison in three 
different flavor table-grapes, while most of the esters were detected 
at or after veraison. C6 compounds increased in the early period of 
maturation and then decreased. Most alcohols and carbonyls tended 
to decrease during ripening continuously. Some esters continued to 
increase after maturation and, terpenoids increased until maturation, 
then reduced. Du, Song, and Rouseff, (2011) reported with increasing 
degree of maturity, volatile sulfur concentrations increased and at 
full ripe and overripe maturity stages increased exponentially.

3.3 | PCA results

The first two main components of PCA showed more than 90% of 
the variance of data; therefore, these two components were used for 
PCA plots (Figure 3). The PCA score plots of PC1–PC2 explained 97% 
and 93% of the variance for blackberry and whiteberry, respectively.

Compounds Blackberry Whiteberry

Phenethyl alcohol 0.06 ± 0.05 0.25 ± 0.05

Sulfide compounds

Hydrogen sulfide 0.03 ± 0.01 0.05 ± 0.01

Methanethiol 0.08 ± 0.02

Dimethyl sulfide 0.02 ± 0.01 0.08 ± 0.02

Dimethyl disulfide 0.01 ± 0.001 ND

Dimethyl trisulfide 0.01 ± 0.001 ND

Methyl thioacetate ND ND

Methyl thiobutyrate ND 0. 01 ± 0.001

Acids

2-Methylbutanoic acid 0.05 ± 0.01 0.02 ± 0.01

Hexanoic acid 0.75 ± 0.05 0.09 ± 0.03

Acetic 0.72 ± 0.01 0.63 ± 0.01

Nonanoic ND ND

2-Methyl-3-hydropropanoic ND 0.21 ± 0.02

Furanone

Mesifurane 0.13 ± 0.01 0.85 ± 0.01

Furaneol 1.65 ± 0.01 2.01 ± 0.01

Lactones

γ-Decalactone 2.5 ± 0.05 3.35 ± 0.01

γ-Dodecalactone 2.05 ± 0.01 1.05 ± 0.01

γ-Octalactone 3.8 ± 0.1 ND

γ-Nonalactone ND 0.06 ± 0.02

γ-Undecalactone 1.3 ± 0.03 0.6 ± 0.02

sigma-Decalactone 1.4 ± 0.2 0.6 ± 0.02

Others

2-Heptanone 3.3 ± 0.01 1.8 ± 0.04

Eugenol 3.8 ± 0.5 2.8 ± 0.01

Isoeugenol 5.4 ± 0.01 7.8 ± 0.06

aND   Not detected 

TA B L E  2   (Continued)
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In Figure 3a, PC1 and PC2 described 87% and 10%, respectively, 
of the variance between samples. All of the RG were clustered well 
by PCA (Figure 3a). In Figure 3b, PC1 and PC2 described 85% and 
8%, respectively, of the variance between samples. RG4 and RG5 
and RG1 and RG2 overlapped.

To determine the contribution of each sensor in the pattern rec-
ognition analysis, a loading plot was used. The sensors are displayed 
in the loading plot with specific coefficient values. The high coeffi-
cient value for a sensor in the loading plot indicates the important 
role of this sensor in detecting RGs of berries. Also, by eliminating 

F I G U R E  2   Whiteberries 
grouped in five ripening grades 
(RG1 = ripe, RG2 = close to ripeness, 
RG3 = intermediate to ripeness, 
RG4 = close to unripe, and RG5 = unripe)

F I G U R E  3   Score plot of PCA analysis 
for detection ripeness of (a) blackberry 
and (b) whiteberry
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the sensors that play the least role in detecting RGs, in addition to 
reducing the complexity of the data analysis process, the cost of the 
fabricated array of sensors is reduced.

In the case of whiteberry, all sensors gave an excellent contribu-
tion. However, MQ9 and TGS2611 have the lowest response than 
to other sensors in whiteberry (Figure 4b). According to Figure 4a, 
sensors MQ3 and TG2602 showed the highest contribution, and 
sensors MQ9 and TGS2610 had the lowest response. Calín-Sánchez 

et al. (2013) reported that black and white mulberry species dis-
played significantly different characteristics.

In a research conducted by Pokhum, Chawengkijwanich, and 
Maolanon (2009), the use of e-nose for identification of the ripeness 
stage of durian was investigated. PCA technique was applied for 
data analysis. The PCA result showed that volatile durian profile at 
unripe, ripe, and overripe stages was significantly classified. The re-
sults of PCA characterized a clear distribution in the groups; it cited 

F I G U R E  4   Loading plot of PCA analysis for detection ripeness of (a) blackberry and (b) whiteberry

F I G U R E  5   LDA analysis for detection 
ripeness of (a) blackberry and (b) 
whiteberry

1 2 3 4 5 Precision Accuracy

Correct 
classification 
percentage

Blackberry

1 12 0 0 0 0 100 100 100%

2 0 12 0 0 0 100 100

3 0 0 12 0 0 100 100

4 0 0 0 12 0 100 100

5 0 0 0 0 12 100 100

Whiteberry

1 12 0 0 0 100 99.8 88.3%

2 0 12 0 0 0 100 96.22

3 0 0 12 0 0 100 95.8

4 0 0 0 8 4 66.6 85.54

5 0 0 0 3 9 75 87.6

TA B L E  3   Confusion matrix obtained to 
five ripeness of berries
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that the selected sensors can reverberate the difference in volatile 
compound released from samples.

3.4 | LDA results

For blackberry, LDA could distinguish RGs well, but RG4 and RG5 
and RG2 and RG3 have little overlap. The accuracy of the analysis 
was 96.67% (Figure 5a). LDA was not able to identify RGs of white-
berry well, because RG4 and RG5 and RG1 and RG2 have a great 
overlap. The accuracy of the analysis was 85% (Figure 5b). In two 
berries was seen overlap between RG4 and RG5; therefore, it can 
be concluded that there is no clear difference in the aromatic com-
pounds of these two groups especially in whiteberry.

Qiu et al. (2015) were studied about discrimination and charac-
terization of strawberry juice based on electronic nose and tongue. 
LDA, PLSR, RF, and SVM methods were applied for data analysis. 
The result showed LDA is useful tool for discrimination.

3.5 | ANN results

To minimize ANN training time, only one hidden layer was consid-
ered. The best network was found with 10–11-5 topology, that is, a 
network having 11 neurons in the hidden layer for all berries. Table 3 
shows the confusion matrices. Samples were classified with correct 
classification percentage of 88.3% and 100% for whiteberry and 
blackberry. The lowest classification and precision were seen for 
RG4 and RG5 of whiteberry which can be due to the slight differ-
ence in violate compounds. Most fruit flavor volatiles are secondary 
metabolites and absent during the early grades of fruit formation. 
Therefore, fruits in first grades of maturity are not separated and 
could not be differentiated using volatile compounds. These results 
are in agreement with the results of LDA.

The results of Du et al. (2011) indicated that volatile sulfur con-
centrations were mostly absent at the early maturity grades, such as 
the white and red half grades.

Brezmes, Llobet, Vilanova, Saiz, and Correig (2000) investigated 
fruit ripeness monitoring using an e-nose. Based on the neural net-
work as a pattern recognition technique, the system designed was 
able to categorize fruit samples into three different grades of ripe-
ness green, ripe, and overripe with prefect accuracy.

4  | CONCLUSION

In this research, a fabricated electronic nose with ten metal oxide 
semiconductor sensors with LDA, PCA, and ANN to determine the 
ripeness grades of whiteberry and blackberry was used.

Three pattern recognitions were able to classify the RGs of 
berries well. But ANN and PCA for blackberry with the correct 
classification percentage 100% and explanation 97% of the vari-
ance of samples are the best methods. According to the study, it 

can be expressed that an e-nose is a useful tool for detecting the 
ripeness grades of berries and can be used with less time and cost 
to determine the appropriate harvest time. MQ3 and TGS2602 
sensors showed the highest contribution and MQ9, TGS2611, and 
TGS2610 sensors showed the lowest response in identifying the 
RGs of berries.
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