

The universal role of adaptive transcription in health and disease

Thomas Lissek (b)

Interdisciplinary Center for Neurosciences, Heidelberg University, Germany

Keywords

adaptation; disease; health; maladaptation; plasticity; transcription

Correspondence

T. Lissek, Interdisciplinary Center for Neurosciences, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany

Tel: +49 6221 5416501

E-mail: lissek@nbio.uni-heidelberg.de

(Received 20 August 2023, revised 25 July 2024, accepted 7 November 2024)

doi:10.1111/febs.17324

In animals, adaptive transcription is a crucial mechanism to connect environmental stimulation to changes in gene expression and subsequent organism remodeling. Adaptive transcriptional programs involving molecules such as CREB, SRF, MEF2, FOS, and EGR1 are central to a wide variety of organism functions, including learning and memory, immune system plasticity, and muscle hypertrophy, and their activation increases cellular resilience and prevents various diseases. Yet, they also form the basis for many maladaptive processes and are involved in the progression of addiction, depression, cancer, cardiovascular disorders, autoimmune conditions, and metabolic dysfunction among others and are thus prime examples for mediating the adaptation-maladaptation dilemma. They are implicated in the therapeutic effects of major treatment modalities such as antidepressants and can have negative effects on treatment, for example, contributing to therapy resistance in cancer. This review examines the universal role of adaptive transcription as a mechanism for the induction of adaptive cell state transitions in health and disease and explores how many medical disorders can be conceptualized as caused by errors in cellular adaptation goals. It also considers the underlying principles in the basic structure of adaptive gene programs such as their division into a core and a directional program. Finally, it analyses how one might best reprogram cells via targeting of adaptive transcription in combination with complex stimulation patterns to leverage endogenous cellular reprogramming dynamics and achieve optimal health of the whole organism.

Introduction

The ability to adapt to complex environments is a hallmark of living systems. Animals in particular have to tune their components at various levels (molecules, cells, tissues, organs, organ systems, whole body) to defined parameters in the environment. At the cellular level, this constitutes a reprogramming mechanism

Abbreviations

AML, acute myeloid leukemia; AP1, activator protein 1; ATF, activating transcription factor; BDNF, brain-derived neurotrophic factor; cAMP, cyclic adenosine monophosphate; CaN, calcineurin; CBP, CREB-binding protein; CREB, cAMP response element-binding protein; CRTC, CREB-regulated transcription coactivator; ECT, electroconvulsive therapy; EGR, early growth response; Fndc5, fibronectin type III domain-containing protein 5; FOS, Fos proto-oncogene; HiK, high potassium chloride depolarization; ICER, inducible cAMP early repressor; IEG, immediate early gene; IL, interleukin; MAPK, mitogen-activated protein kinase; MCT1, monocarboxylate transporter 1; MEF2, myocyte enhancer factor 2; MSN, medium spiny neuron; NFAT, nuclear factor of activated T cells; NF-kB, nuclear factor kappa B; NMDA, *N*-methyl-p-aspartate; NR4A, nuclear receptor subfamily 4A; PDGF, platelet-derived growth factor; Pgc1a, peroxisome proliferator-activated receptor gamma coactivator 1-alpha; PKA, protein kinase A; SRF, serum response factor; TNF, tumor necrosis factor; UTP, uridine triphosphate.

which connects environmental stimulation to changes in cellular physiology (e.g., modifying excitability of a neuron through differential ion channel subunit expression while encoding a memory). In mammals, this cellular reprogramming is regulated by a set of transcription factors that include cAMP response element-binding protein (CREB) and its coactivators (most notably CREB-binding protein (CBP) and CREB-regulated transcription coactivator (CRTC)), serum response factor (SRF), myocyte enhancer factor 2 (MEF2), and immediate early genes (IEGs) such as family members of activator protein 1 (AP1) (e.g., Fos and Jun), early growth response (EGR) (e.g., Egr1), nuclear receptor subfamily 4A (NR4A) (e.g., Nr4a1 and Nr4a3), and activating transcription factor (ATF) (e.g., Atf3) among others. These genes are ubiquitously expressed and their protein products active throughout the mammalian body. They are involved in a wide variety of adaptive processes such as learning and memory, immune defense, skeletal muscle hypertrophy, and metabolic adaptation to nutritional challenge.

Transcriptional programs which are induced by acute stimulation and control remodeling of cells to adapt to changing environmental conditions are termed adaptive transcription here. Adaptive transcription via the molecules mentioned above thus distinguishes itself from constitutive transcription (e.g., housekeeping genes) or less dynamical transcriptional changes (e.g., inducible but afterward stable expression of cell-type defining genes during development). Adaptive transcription is highly plastic (e.g., different inputs lead to different gene induction patterns) and dynamic (e.g., it can be induced and shut-off on the minute timescale). The primary distinguishing marks of adaptive transcription are that its components are acutely induced by cellular stimulation (i.e., in the absence of relevant cellular stimulation, adaptive transcription programs are not expressed or only at low steady-state levels) and that it is required for certain long-term cellular adaptation mechanisms.

Previous work has identified adaptive gene programs as central to inducible health improvements through physical and cognitive stimulation and has proposed that they represent universal targets to partially rejuvenate adult somatic cells [1]. However, as we will see below, in spite of their important role in maintaining and improving health, these gene programs are also crucially involved in the pathogenesis of many of humanity's gravest diseases including several psychiatric conditions, cancer, cardiovascular disorders, metabolic dysfunction, and autoimmunity. The involvement of transcriptional programs adaptive in processes both beneficial and detrimental to human health

represents an interesting example of the adaptation—maladaptation dilemma [2,3]. How can these molecular programs simultaneously protect against disease as well as drive disease progression? Below, I will outline a potential answer that frames maladaptive disorders as caused by errors in the adaptive logic of organisms and it will be explored how one could correct these logic errors through complexity-preserving reprogramming.

We will focus our discussion on representative molecules, including CREB, SRF, and MEF2 at the level of activity-regulated transcription factors and AP1 members (e.g., Fos and Jun) and Egr1 at the level of IEGs, and explore closely related genes and proteins where indicated (e.g., CRTC, Npas4, Nr4a3). There are additional molecules in the class of adaptive transcription components including NFAT [4], NF-kB [5], and Pgc1a [6] among others that cannot be treated here in detail due to space limitations. Rather the molecules above serve as examples to extract underlying principles that could be extended to more constituents of adaptive transcription programs in future research. Figure 1 gives a brief overview of the mechanism of adaptive transcription.

We will also focus our discussion on a select group of processes in health and disease and note that adaptive transcription has roles in many more bodily processes than are mentioned here. For each organ system or disease entity being discussed, only selected references can be given as comprehensively reviewing each entity would be beyond the scope of the present work.

Adaptive transcription in health

Adaptive transcription programs mediate a wide variety of cellular plasticity processes throughout the whole body (Fig. 2).

Learning, memory, and brain physiology

In the brain, the encoding of memories within neural circuits requires functional and structural changes to their cellular components and adaptive transcription is central to this plasticity. CREB is phosphorylated in the rodent brain *in vivo* through exposure to learning tasks [7] and *in vitro* in neurons in response to stimuli that induce synaptic plasticity [8,9]. Studies in which CREB expression or activity have been reduced have implicated it in various physiological forms of learning and memory [10–13]. Conversely, expression of a constitutively active form of CREB or overexpression of CREB enhances memory in several paradigms [14–19]. At the cellular level, CREB regulates neuronal excitability [14,20,21], dendritic growth [22], and synaptic

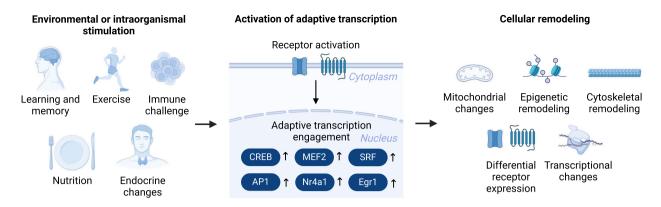


Fig. 1. Adaptive transcription is activated by cellular stimulation and mediates cell remodeling. Environmental or intraorganismal stimulation is translated to stimulation of receptors via signaling molecules or opening of voltage-sensitive ion channels through membrane depolarization which then initiates signaling cascades to the nucleus. In the nucleus, adaptive transcription factors such as cAMP response element-binding protein (CREB), serum response factor (SRF), myocyte enhancer factor 2 (MEF2), activator protein 1 (AP1), and early growth response 1 (Egr1) are activated. Adaptive transcriptional programs mediate diverse cellular remodeling processes such as opening of chromatin, changes in epigenetic marks, tuning mitochondrial metabolism, remodeling cytoskeletal structure, regulating channel and receptor expression and changing transcriptional programs over the long-term. This remodeling at the cellular level translates to changes in organism function and behavior.

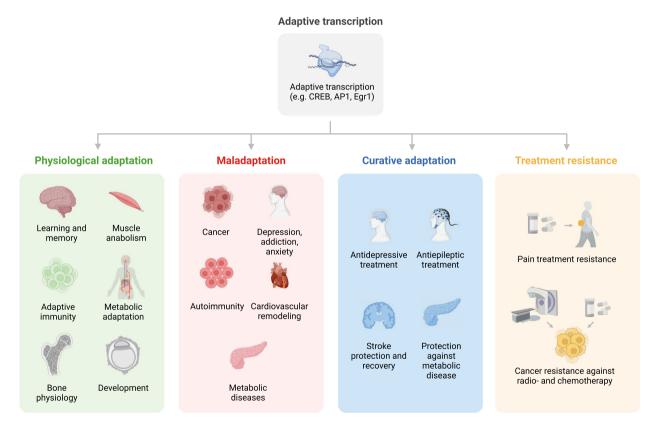


Fig. 2. Adaptive transcription mediates diverse physiological, pathological, and treatment-relevant adaptation processes. Adaptive transcription mediates a diverse set of physiological and pathological plasticity processes. In health, these include learning and memory, immune defense, muscle hypertrophy, metabolic plasticity, skin adaptation and wound healing, as well as bone physiology. Adaptive transcriptional programs also mediate maladaptive processes such as addiction, depression and anxiety, cancer, cardiovascular diseases, autoimmune diseases, and metabolic disorders. In treatments, adaptive transcription can both mediate curative effects (e.g., effects of antidepressants) and treatment resistance (e.g., resistance against radiotherapy).

function [21,23] among other parameters. SRF is induced by neuronal depolarization or neurotransmitter application [24] and is involved in memory formation [25] and synaptic plasticity [25,26]. MEF2 is implicated in learning and memory [27] and synapse formation [28]. Fos is induced in the rodent brain in vivo through learning tasks [29-31] and has been shown to be causally involved in memory formation [32–34] as well as experience-dependent neural circuit remodeling [35,36]. Similarly, Egr1 is induced by learning tasks [30] and involved in memory formation [37,38] as well as synaptic plasticity [38]. Npas4 is induced by memory tasks and involved in memory formation [39] and shapes neural circuit function [40–42]. In the brain, adaptive transcription hence mediates the transition from environmental stimulus to the recoding of neural network function and structure that represents memory formation. It enhances overall cellular plasticity but also directs cell function changes into concrete directions (e.g., see Npas4's function in different cell types [40]).

Skeletal muscle plasticity and regeneration

A critical function in mammals is adaptation of motor function to high demand, in part through skeletal muscle hypertrophy and regeneration after injury. Human studies have shown that exercise activates or increases adaptive transcriptional components in skeletal muscle, including CREB [43], MEF2 [44], and several IEGs [45,46]. In rodents, CREB is involved in muscle regeneration [47], CRTC2 mediates muscle anabolism [48], and SRF is required for adaptive muscle hypertrophy [49,50]. Expression of constitutively active MEF2 induces muscle hypertrophy [51], and MEF2 is required for skeletal muscle regeneration after injury [52]. Fos is involved in muscle regeneration after injury [53] and Junb regulates muscle mass in rodents with its overexpression inducing hypertrophy [54]. Nr4a3 is induced in human muscle through exercise [45] and regulates the molecular response of muscle cells to exercise-mimicking stimuli in vitro [55]. Nr4a3 overexpression increases type 2 muscle fibers and fatigue resistance in mice in vivo [56].

Immune function

Immune cells have to constantly reprogram themselves in the course of immune defense and adapt to changing antigen exposure, for which they employ adaptive transcription programs. In mice, CREB is needed for thymocyte proliferation and IL-2 induction [57], physiological Th cell function [58], and B-cell function [59].

MEF2 family members are involved in various immune cell processes such as T-cell cytokine regulation [60], T-cell apoptosis [61], Treg cell activation [62], B-cell development [63], B-cell proliferation [64], and macrophage polarization [65]. SRF is required for thymocyte-positive selection and the development of T reg cells [66], as well as various other functions during lymphocyte development [67]. AP1 opens chromatin during T-cell activation [68] and Fos has been proposed to carry a short-term memory signal in T cells [69]. Egr1 is involved in B-cell function [70,71] and in Th2 cell IL-4 transcription [72].

Cardiovascular physiology and adaptation

The cardiovascular system has to continuously adapt to changes in the environment (e.g., heightened requirements for exercise) and organism (e.g., stress hormone levels). In the heart, CREB maintains ventricular function [73], cardiomyocyte electrophysiology [74], and mitochondrial function [75]. In humans, the CREB1 gene sequence is a genetic predictor of the heart rate response to regular exercise [76], and in mice, CREB has been linked to adaptive hypertrophy after exercise [77]. In vascular smooth muscle cells, CREB regulates hypertrophy in response to angiotensin II [78], as well as proliferation under basal conditions [79] and in response to PDGF [79], angiotensin II [80], and thrombin [81]. It also controls vascular smooth muscle cell migration in response to TNF-alpha [82] and UTP [83]. In cardiomyocytes, SRF regulates genes that are known to be involved in hypertrophy [84], its overexpression leads to cardiac hypertrophy [85], it regulates the function of the contractile apparatus [86], and its deletion in adult cardiomyocytes in vivo leads to dilated cardiomyopathy [87]. MEF2 protects cardiomyocytes from cell death [88,89] and regulates mitochondrial and cytoskeletal physiology [90]. Nr4a1 protects against various forms of adverse cardiac remodeling [91–93].

Pancreas, liver, and adipose tissue physiology

Pancreas and liver cells have to adapt their function to the nutritional status of the organism, especially with regard to glucose regulation. In pancreatic beta cells, CREB is induced by glucose stimulation and promotes cell survival [94] and proliferation [95] and mediates cAMP-induced transcriptional changes [96]. In the liver, CREB is regulated by glucagon and insulin *in vivo* and controls gluconeogenesis [97]. CRTC regulates hepatic gluconeogenesis [98] and adrenergic signaling in adipose tissue [99]. SRF controls in beta cells

the transcription of insulin [100]. Fos is upregulated in beta cells in response to stimulation with glucose and cAMP [101] and is a critical regulator of beta cell insulin secretion and cell proliferation [102]. Similarly, Egr1 is induced in beta cells by metabolic stimulation [101,103] and regulates insulin gene transcription [104]. Nr4a1 and Nr4a3 were shown to regulate beta cell mitochondrial physiology and insulin secretion [105], as well as proliferation [106]. Npas4 protects beta cells against cytotoxic stimuli [107], is involved in metabolic maintenance *in vivo*, and exerts protection against diabetes [108].

Skin physiology and wound healing

The skin has to undergo complex adaptations in response to external and internal stressors, including melanogenesis after UV exposure or wound healing after injury. Melanogenesis in mice is regulated by the CREB-associated protein CRTC [109,110]. SRF in keratinocytes is involved in correct skin development [111]. AP1 complex proteins are induced in wound healing in humans in vivo [112] and in mice regulate target genes that are known to be involved in wound healing [113]. Junb has been shown to be important in physiological wound healing [114] and for the physiology of the epidermo-pilosebaceous unit in the skin [115]. cJun is important in regulating the epidermal leading edge [116]. AP1 proteins are induced in human keratinocyte differentiation [117]. Egr1 is required for skin fibroblast migration and wound healing [118].

Bone and cartilage physiology

Bone tissue is continuously remodeled in mammals in line with hormone status and environmental demands. CREB in chondrocytes is critical for hypertrophy and bone formation [119]. MEF2 is involved in cartilage function in mice and regulates chondrocyte hypertrophy and bone length [120]. Fos is a critical regulator of osteoclast development [121] and bone remodeling [121,122]. In mice, Fosl1 knockout produces an osteopenia phenotype in part due to a reduction in bone matrix formation [123]. Fosl2 in osteoblasts mediates differentiation and Fosl2 overexpression produces an osteosclerotic phenotype [124]. AP1 has been implicated in chondrocyte hypertrophy [125]. Atf3 regulates osteoclast precursor proliferation and bone remodeling [126].

Development

Most of the examples above were given for functions in adult tissues and in the following section a few examples of the role of adaptive transcription in development will be given. CREB is involved in general embryonic and nervous system development [127,128], MEF2 in the development of skeletal muscle [129,130], the cardiovascular system [131–133], and bone tissue [120]. SRF is involved in development of the neural crest [134], neuronal tissue [135], and the heart [136], while Fos is involved in brain development [137] and bone development [122].

Adaptive transcription in disease

In general, the potential type of involvement of adaptive transcription in disease is twofold. First, in some disorders, adaptive transcription could simply be downregulated or inhibited leading to a lack of its adaptation and pro-survival functions and to a degradation of physiological organism function. As the treatment approaches are fairly straightforward, at least in theory, we will not discuss this category in detail here. Second, adaptive transcription could mediate maladaptation, that is, it functions 'correctly' or is overactivated but reprograms cells into dysfunctional states. This group of diseases is more interesting as it uses the same adaptive mechanisms that are used during physiological remodeling, just seemingly in a wrong direction, leading to overall organism dysfunction. We will focus here on one or a few representative diseases for each organ system. For instance, in the nervous system, we discuss addiction, depression, and anxiety as models for maladaptation while noting that adaptive transcription is implicated in several other psychiatric disease entities.

Addiction

Addiction can be seen as a pathological form of learning and, not surprisingly, adaptive transcription plays a central role in this form of maladaptation. CREB has a complex role in addiction, with its activity in the nucleus accumbens being inversely correlated to cocaine conditioned place preference [138] but its overexpression being positively correlated with cocaine self-administration [139]. In transgenic mouse models, CREB activity antagonizes the rewarding effects of cocaine [140] and a decrease in CREB activity attenuates morphine withdrawal symptoms [141]. SRF regulates cocaine-induced spine remodeling in medium spiny neurons (MSNs) and the locomotor response to cocaine [142] as well as deltaFosb expression after cocaine treatment [143]. MEF2 regulates cocaine-induced spine density changes in MSNs and the locomotor response to cocaine [144]. For regulates cocaine-induced dendritic remodeling of MSNs and cocaine-related long-term behavioral changes [145]. DeltaFosb, an alternative splice variant of Fosb, regulates cocaine-induced locomotor behavior [146] and reward [140]. Npas4 controls several parameters of medium spiny neuron physiology and cocaine-induced locomotor responses [147], as well as conditioned place preference [148].

Depression and anxiety

Depression and anxiety are oftentimes the result of maladaptation. In animals for instance, learned help-lessness is a model system for depressive states. Over-expression of CREB in the nucleus accumbens of mice enhances depression-like behavior whereas expression of mCREB exerts antidepressant-like properties [149]. Similar observations have been made in rats [150]. CREB deletion has been shown to confer resilience to stress [151], and CREB overexpression in the amygdala can exert depressive and anxiety-like effects [152]. SRF deletion in glutamatergic neurons induces a reduction in anxiety-like behavior in mice [153]. Npas4 mediates anxiety-like behavior at least in part through regulating hippocampal interneuron electrophysiology [154].

Cancer

A primary hallmark of cancer cells is their adaptability which allows them to evade immune attacks and treatment efforts (e.g., through drug resistance), as well as survive in changing conditions within the body in the course of metastasis. In human acute myeloid leukemia patients, CREB expression is associated with worse outcomes [155] and CREB promotes myeloid cell proliferation and survival in AML cells [156]. CREB promotes survival and cell growth in lung cancer cells [157,158] and in esophageal squamous cell carcinoma cells [159]. CREB expression is associated with worse clinical outcomes in epithelial ovarian cancer [160] and hepatocellular carcinoma [161] and drives hepatocellular carcinoma progression [162]. In renal cell carcinoma, CREB promotes cell proliferation [163] and metastasis [164]. CREB has been implicated in pancreatic cancer progression and clinical outcome [165], as well as carcinogenesis in colorectal cancer [166,167], bladder cancer cells [168], mesothelioma cells [169], melanoma cells [170,171], and glioma cells [172]. MEF2 activity is implicated in T-cell acute lymphoblastic leukemia [173], AML invasiveness [174], pancreatic cancer cell proliferation [175], and promotion of tumorigenicity in rhabdomyosarcoma cells [176]. Fos is able to transform cells in vitro [177,178] and drive tumorigenesis in vivo [179,180]. It drives

proliferation, migration, and invasion of osteosarcoma cells [181], mediates radioresistance in glioma [182], is involved in the development of skin cancer [183], and enhances mammary carcinoma cell invasiveness [184]. AP1 promotes tumorigenesis *in vivo* [185], proliferation and migration in breast cancer cells and breast cancer growth [186]. Egr1 is involved in prostate cancer cell migration [187].

Pathological cardiovascular adaptation

The cardiovascular system can develop several maladaptations including pathological cardiac hypertrophy and changes in the tissue structure of blood vessels (e.g., atherosclerosis). The endogenous CREB inhibitor Inducible cAMP early repressor (ICER) is a negative regulator of isoproterenol- and phenylephrine-induced cardiac hypertrophy [188]. In mice, MEF2 is a critical mediator of cardiac hypertrophy in response to pressure overload and chronic adrenergic stimulation [189]. SRF in cardiomyocytes is involved in the induction of genes known to regulate cardiac hypertrophy [84] and SRF overexpression in the heart results in pathological cardiac remodeling including cardiac hypertrophy [85]. SRF has also been implicated in hypertensionassociated changes in vascular smooth muscle cell stiffness [190]. Fos has been implicated in the formation of atherosclerosis [191]. Inhibition of cJun activity in cardiomyocytes inhibits hypertrophy induced by endothelin 1 and phenylephrine [192] and cJun is required in vivo for pressure overload-induced hypertrophy while protecting against fibrosis and myocyte apoptosis [193]. AP1 is involved in alpha-adrenergic hypertrophy of cardiomyocytes [194] and inhibition of JunD, a negative regulator of AP1 activity, leads to heightened pressure overload-dependent apoptosis, angiogenesis, and hypertrophy in the heart [195]. Egr1 is involved in cardiac hypertrophy in response to adrenergic stimulation [196] and has been implicated in atherosclerosis [197]. Nr4a1 is involved in cardiac remodeling after pressure overload [91] and in response to angiotensin II [198].

Autoimmune disorders

In autoimmune disorders, immune cells start attacking the body's own tissues which is oftentimes mediated by the acquisition of faulty cellular programming. CREB has been found to be central to certain autoimmune processes by positively regulating Th17 and negatively regulating Treg cell differentiation [199] and it is involved in mediating T-cell-dependent colitis in an animal model [199]. CRTC2 similarly promotes Th17 cell

differentiation and its downregulation protects against autoimmune encephalitis in a mouse model [200]. CBP inhibition decreases IL-17A secretion in human cells derived from patients with ankylosing spondylitis or psoriatic arthritis [201]. MEF2 is involved in macrophage polarization and Th1 responses and its downregulation protects against dextran sulfate sodium-induced colitis *in vivo* [65]. Fos is involved in arthritic joint destruction [202,203], and Fosl2 drives autoimmunity by influencing Treg development [204].

Diabetes and obesity

In type 2 diabetes, one of the hallmarks is acquired insulin resistance. In obesity, adipocyte CREB drives insulin resistance and transgenic mice expressing dominant-negative CREB show increased insulin sensitivity [205]. Constitutively active CRTC2 increases hepatic insulin resistance and gluconeogenesis [206]. SRF is involved in diabetic nephropathy through the induction of an endothelial–mesenchymal transition of glomerular endothelial cells [207]. Egr1 mediates retinal vascular dysfunction in diabetes mellitus [208] and proliferation of glomerular mesangial cells in response to high glucose [209]. Egr1 knockout mice show protection from diet-induced obesity, fatty liver, hyperinsulinemia, and hyperlipidemia [210] suggesting that Egr1 is a causal factor in these symptoms.

Curative adaptation and treatment resistance

So far, we have seen that adaptive transcription mediates various aspects of healthy organism function and that it is involved in the pathogenesis of several diseases. It also has important roles in various treatment approaches and has been shown to bring diseased organism function back to healthy levels. However, adaptive transcription components were also found to counteract various treatment efforts by mediating tolerance and resistance to chemotherapy and radiation therapy. In this section, we will explore the role of adaptive transcription in therapeutic approaches.

Adaptive transcription exerts protective and curative effects

Adaptive transcription components can exert powerful curative and protective effects when overexpressed or activated by themselves and they mediate the effects of several treatment modalities. CREB overexpression in the dentate gyrus of rats induces an antidepressant

effect [211] and its overexpression in CA1 counteracts age-related long-term memory deficits [212]. CREB overexpression in the nucleus accumbens reduces anxiety in socially isolated animals [213], and nucleus accumbens CREB mediates the effects of antidepressant treatment [214]. In mice, AP1 activity mediates the antidepressant effect of fluoxetine [215] and BDNF has been shown to exert antidepressant effects [216]. CREB also enhances neural circuit and behavioral recovery after stroke [217] and several IEGs protect against stroke-induced neurodegeneration [218], including Npas4 [218,219]. Npas4 protects against chemically induced epilepsy [220], and MEF2 is induced in the brain by environmental enrichment and mediates resilience to neurodegeneration [221]. Tumor-suppressive effects are mediated by Egr1 [222,223] and Atf3 [224,225]. CRTC1 exerts a protective effect against cardiac hypertrophy [226], and Jun has cardioprotective effects in a pressure overload mouse model of cardiomyopathy [193]. Protective effects autoimmunity are exerted by p300 [227], CBP and p300 [228], Egr2 [229], Nr4a1 [230], and Nr4a3 [231]. Suppression of hepatic gluconeogenesis by metformin and insulin is mediated through CBP [232]. In pancreatic beta cells, protective effects are exerted by CREB [94], Atf3 [233], and Npas4 [107]. Beta cell Npas4 protects mice against the development of type 2 diabetes [108].

Adaptive transcription counteracts treatment efforts

Adaptive gene programs are involved in homeostatic compensation of external stressors and can hence counteract various treatment efforts, which cells oftentimes treat as disturbances. CREB has been shown to mediate morphine tolerance in the dorsal horn of rats [234]. Nucleus accumbens deltaFosb has been shown in mice to reduce the sensitivity to analgesic effects of morphine and to accelerate analgesic tolerance development [235]. CREB, Fos, and Nr4a1 promote resistance to MAPK inhibition in melanoma [236], and CREB is activated in leukemia cells upon radiation and mediates subsequent survival [237]. Similarly, CREB mediates radiation-induced neuroendocrine differentiation in prostate cancer cells [238] and reducing CREB expression makes prostate cancer cells more susceptible to radiation-induced cell death [239]. SRF is involved in mediating a drug resistance phenotype in basal cell carcinoma [240] and MEF2 promotes chemotherapy resistance in AML [241] and hepatic cancer cells [242].

The logic of adaptive transcription in health and disease

With the evidence presented above, we can now extract some underlying principles and formulate a general logic for adaptive gene programs.

In broad terms, adaptive transcription facilitates and directs cell state transitions. Adaptive transcription components can be considered molecular change mediators, meaning they impart on cells the ability to reprogram themselves and change various aspects of their physiology, especially in the long-term. Their activation leads to widespread and coordinated cellular modifications, such as alterations in chromatin accessibility [243], epigenetic states [244–247], mitochondrial function [248], cell–cell communication [249], cytoskeletal remodeling [250], ion channel signaling [147], and extracellular matrix remodeling [251].

Activation of adaptive transcription

Adaptive gene programs are regulated by diverse cellular inputs in differential ways and provide an interesting, tangible experimental base to study scale-bridging problems in biology (i.e., how do complex environmental or intraorganismal inputs translate over cellular signals to molecular changes and back). One central problem is how adaptive transcription is engaged, that is, what stimulus parameters have to be fulfilled for cells to express these gene programs.

One such parameter is stimulus type. Npas4 in neurons is induced only by certain stimuli (e.g., depolarization) and not others (e.g., D1 dopaminergic signaling) even through both stimulus types induce Egr1 [147]. This differential nature of Npas4 induction is already present in the upstream signaling cascades as Npas4 is independent of MAPK and PKA pathways (on both of which Egr1 induction depends) but instead depends on calcineurin (CaN) (on which Egr1 does not depend) [147]. This differential induction is mirrored at the behavioral level as cocaine application induces Fos in both the ventral and dorsal striatum but Npas4 only in the ventral striatum [147]. Similar results have been reported for other stimulus types and genes (e.g., differential Fos enhancer activation by different neurotransmitters and neurotrophins [252], and differential induction of IEGs according to anatomical region and cell type [253]). Fos induction in hippocampal neurons during a spatial learning challenge is crucial for establishing a place code and coherent tuning properties across a neuronal population [35]. The CREB coactivator CRTC2 can integrate Ca²⁺- and cAMP-signaling to function as a coincidence detector for different cellular stimuli such as glucose and hormones and drive transcription accordingly [254], thus potentially tuning transcription programs in islet cells to whole organism energy metabolism. In line with this reasoning, CRTC2 knockout mice display reduced insulin transcription in the pancreas and reduced blood insulin levels [255].

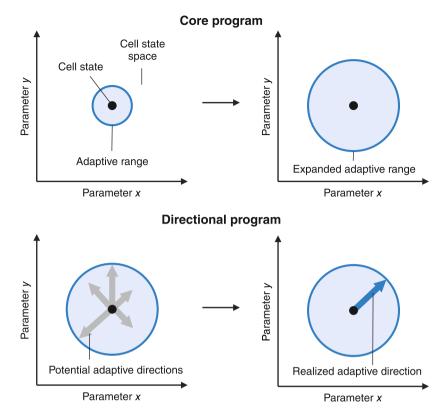
Another factor is signaling dynamics with duration and amplitude of the stimulus determining the activation of adaptive transcription factors [256]. For instance, in neurons an electrical stimulus with a duration of 180s can drive sustained CREB activation and induce Fos expression, whereas an 18s stimulus only leads to transient CREB activation with no subsequent Fos expression [257]. Mild depolarization via 20 mm potassium chloride (HiK) induces MAPK phosphorylation only weakly and leads to transient CREB phosphorylation whereas depolarization with 90 mm HiK leads to robust phosphorylation of MAPK and sustained phosphorylation of CREB [258].

The activation of adaptive gene programs is thus dependent on stimulus type (e.g., the combination of neurotransmitters that is received), stimulus duration (e.g., how long the neurotransmitter binds to the receptor), and stimulus intensity (e.g., how much neurotransmitter is present). This combinatorial nature suggests the possibility of mapping cell signaling inputs to transcriptional outputs and perhaps even the inference of past stimulation patterns from transcriptome data, as has been previously suggested for synthetic interfaces between neuronal membranes and nucleic acids [259].

Transcriptional induction of maladaptation

In health, adaptive transcriptional reprogramming enables various physiological adaptation functions such as memory formation and immune defense and increases protection against degenerative disorders. However, these gene programs can become misdirected in pathological processes and when this happens, they represent powerful mechanisms to drive organism dysfunction. The same processes that allow neurons to remodel themselves and increase their resilience in times of heightened metabolic demand (e.g., CREB activation) also increase the adaptability and survival of cancer cells. It thus seems that in many pathological conditions the goal states of cells are reset such that they reprogram themselves into suboptimal states that decrease overall organism function through the use of otherwise beneficial gene programs. Perhaps then, certain diseases might not, or not only, be the result of damage or degradation but instead be caused by 'logic errors' that lead physiological adaptive processes into states that cause pathological organism remodeling. It has recently between proposed that this adaptation—maladaptation dilemma is a central part of the aging process [2,3].

A central problem in this regard then is how cells are directed toward certain states, that is, what drives them toward changing their physiology in defined ways and how are these goals implemented or represented at the molecular level. For instance, if we presume that cardiovascular diseases such as chronically elevated blood pressure are, at least in part, adaptive reactions to inputs from the environment (e.g., nutrition and mental stressors), we can leverage this knowledge design prevention, screening and treatment approaches, and reprogram the human organism out of a dysfunctional state into a functional one by acting on it at various levels. Thus, one important problem is how adaptive transcription determines the goal state of remodeling and how it implements the measures to achieve those goals. Here, the differential gene induction mechanisms that were discussed in the previous paragraphs could give some insight. As different cellular stimulation patterns elicit distinct transcriptional responses (e.g., also see different cellular responses to the same molecules activated with different time courses [256]) and subsequent remodeling, mapping these input-output relationships could give insight into the encoding of cellular goal states and might enable the leveraging of these dependencies for targeted therapeutic programming.


Two-component model of adaptive transcription

In general, there seem to be two components to adaptive transcriptional programs (Fig. 3). The first one is a core program (e.g., induction of Fos and Egr1) that mediates such broad changes as increasing genome-wide chromatin accessibility after neural activity [243] and is comparable to the previously suggested concept of the 'generic adaptive gene programme' [260]. Secondly, it involves a directional program that is dependent on stimulation details and cellular context and guides cellular remodeling and cellular activity patterns into concrete directions (e.g., see differential neuronal gene induction in response to different neuronal activity patterns [261] and different Npas4 target gene programs according to cell type [40] and stimulation input [147]). A hypothesis that is advanced here is that these two components have two distinct, although possibly overlapping, roles in adaptive transcription.

The core component increases the adaptive range of a cell, meaning it regulates how much the cell can remodel itself regardless of the adaptive direction. Genes in this category include transcriptional regulators to open chromatin and facilitate read-out of adaptive gene programs (e.g., transcription factors such as AP1 proteins which have been shown to enhance chromatin accessibility [262]) and proteins that help the cell deal with increased metabolic activity (e.g., increased transcription of monocarboxylate transporter (MCT1) mRNA after stimulation in neurons [263], immune cells [264], and myocytes [265]). The directional component determines the adaptive direction into which the reprogramming flows and hence sets more concrete goals and constraints of remodeling. Examples in this group include defined cell-cell communication genes (e.g., Npas4 regulating postsynaptic genes for inhibitory synapses in excitatory neurons and for excitatory synapses in inhibitory neurons [40]).

In addition to the directional program, most cells complement the transcriptional changes through acute changes in their physiology (e.g., synaptic remodeling) that act in concert with transcription and cannot be entirely separated from it. An overlapping function in several adaptive gene programs might hence be to increase molecular supply for cellular computation and remodeling tasks without directly influencing their outcomes. In Aplysia neurons for instance, CREB contributes to different types of synaptic plasticity and activity-dependent modification of synapses is required in addition to CREB activation for long-lasting specific plasticity [266]. In addition to transcription, cells also dynamically regulate their translation in response to stimulation, thereby adding an additional layer of computational complexity (e.g., activity-dependent Arc translation in the regulation of synaptic plasticity [267,268] and induction of neuronal activity-dependent microRNAs [269,270]).

It is thus questionable whether mere overexpression or activation of adaptive transcription core components such as CREB will automatically lead to better or desired organism function. Indeed, while CREB overexpression or activation in the brain has been reported to enhance memory [14–19,271], it also leads to memory recall interference [272] and epileptic seizures [273]. Thus, it seems that we may require more than just broad adaptive gene overexpression, and if we do overexpress or activate adaptive transcriptional program components, we have to ensure that cell changes are directed in ways that are beneficial to overall organism function (e.g., through implementing social environment changes in psychiatric therapy or including exercise in the treatment regimen for

Fig. 3. Adaptive transcription consists of a core program and a directional program. Adaptive transcription programs can be divided into a core program (e.g., cAMP response element-binding protein (CREB) activation and Fos induction) that increases the adaptive range of cells and a directional program (e.g., Npas4 induction) that determines the direction of cellular remodeling. The core program leads to broad cellular changes (e.g., chromatin opening and metabolic flexibility) that increase cellular plasticity and resilience, whereas the directional program induces more concrete changes according to cellular input and in line with higher-order functions (e.g., upscaling excitatory input onto inhibitory neurons to maintain neural circuit excitation/inhibition balance). The coordinate system represents cellular state space with variables *x* and *y* representing cellular parameters (e.g., expression of a certain protein or a biophysical property such as resting membrane potential). The black dot represents the cell state and the blue circle represents the adaptive range, that is, which states the cell can reach through remodeling. The core program increases the cell's adaptive range (i.e., the radius of blue circle). Out of all possible adaptive directions within this circle, the directional program contributes to the shaping of the adaptation path (i.e., the realized adaptive direction) and which cell state the cell aims for in its remodeling.

cardiovascular disease). Identifying and mapping the concrete stimulation parameters at several organizational levels that guide cellular adaptation thus represents an important goal in both basic biology and translational medicine.

The universality of adaptive transcription

As adaptive transcription components such as CREB, SRF, MEF2, AP1, Egr1, Nr4a1, and others are active in all major organ systems throughout the body in both health and disease, they represent important anchoring points for understanding some of the most fundamental biological processes in animals (e.g., structural and functional plasticity at the cellular level and adaptation at the whole organism level). They also

oftentimes allow the conceptual bridging of organizational levels in that molecular alterations have defined effects on tissue organization which in turn leads to differences in organism function and behavior. An example is Npas4's dependency on cellular input [147], subsequent cell-type-specific remodeling [40,147], and specific impact on behavior [39,147]. Npas4, although it is a single gene, can hence implement higher-order functions such as excitation—inhibition circuit homeostasis [40]. Similarly, Fos helps shape and stabilize place cell ensembles in the hippocampus of mice during spatial learning [35], thus connecting the induction of a single gene to higher-order neuronal network processes and cognitive function.

With respect to diseases, adaptive transcription components could represent universal targets to correct organism dysfunction. This follows from their function as facilitators of cell state transitions, as in many medical therapies the goal is exactly to reprogram cells and tissues from a dysfunctional state into a functional one. Therapies that influence adaptive transcription could hence be universal building blocks for correcting organism dysfunction in various therapeutic paradigms. They might be effective supplementary therapies in that they could boost the effects of other targeted therapies. CREB activators for instance could potentiate the effects of antidepressants (because CREB has been shown to mediate antidepressant responses [214]), whereas CREB blockers could support radiotherapies in cancer (because CREB has been demonstrated to mediate radiotherapy resistance [237]). Thus, adaptive transcription activators or repressors could 'open up' therapeutic reprogramming windows during which other therapeutics that are more tailored to pathomechanism and target tissue would be potentiated (see below).

Hyperadaptation in cancer as an instance of an adaptive logic error

Cancer provides an illustrative example of how errors in the logic of transcriptional adaptation discussed above can lead to severe organism dysfunction. Cancer cells can successfully adapt to an enormous amount of internal and external challenges [274] and can hence be considered hyperadaptive. They are metabolically flexible, can evade various treatment efforts and the immune system, and metastasize into tissues that are different from their origin tissue. As we have seen in a previous section, cancer cells use very powerful adaptive transcriptional program components to accomplish these feats. Since cancer cells have a highly unstable genome (e.g., karyotypic aberrations), they must most likely also adapt to internal disturbances and rewire their internal molecular networks to cope with genomic change-induced transcriptomic and proteomic disorder and it is plausible that adaptive transcription is involved in this process as well.

Interestingly, cells in various cancers express NMDA receptors and the blockade of these receptors reduces several aspects of malignancy [275–279]. Since neuronal synaptic NMDA receptor activation increases CREB phosphorylation [280] and regulates gene programs that enhance cellular survival [281], it is possible that cancer cells use NMDA receptor-associated pathways to increase their own resilience and adaptability. In addition, cancer cells and the cells they originate from are also able to undergo transformations in cellular identity, such as in epithelial–mesenchymal

transition [282], that is, the transformation of epithelial cells into mesenchymal cell states and CREB has been implicated in this process [283]. SRF can destabilize cellular identity through the suppression of cell-type specific gene programs [284], and in early postnatal neurons, activity-regulated enhancer activation mediates a switch in transcription that persists into adulthood [285]. Perhaps one function of adaptive transcription in cancer cells is to facilitate semi-stable cell state and cell identity transformations. An interesting observation in this regard is that several adaptive genes have been shown to function as oncogenes as well as tumor suppressors (e.g., Egr1 [286] and Atf3 [287]). Thus, in line with their functions in inducing cell state changes, adaptive transcription could perhaps also enable the reprogramming of cancer cells into less malignant phenotypes if the boundary conditions are chosen correctly (see below).

Note that in most instances in oncogenesis, adaptive transcription is fulfilling its immediate physiological role at the cellular level correctly. It helps protect cells against stressors and death and increases their structural and functional flexibility. Thus, there might exist in cancer cells mechanisms that contribute to malignancy in the form of adaptive transcription that are not caused by genomic mutations, but simply by mechanisms that are active in all cells under physiological conditions.

Leveraging the adaptation code to maintain health and cure disease

A central problem for successfully preventing and treating disease now is this: How can we ensure that cells have the 'correct' goal states (i.e., those that render the complete organism as healthy as possible)? We know of several ways to modify cells in the human body such as learning a new skill (e.g., adaptation of connections and excitability of neurons in the brain) or strength training (e.g., hypertrophy of skeletal muscle cells). As explored previously, we also know of several interventions that seemingly reprogram cells (and usually the whole organism) into better functioning states via adaptive transcription such as exercise and cognitive stimulation [1]. Thus, we seem to be able, in these limited circumstances, to enhance cellular function without knowing all the required molecular details. One important consideration is hence the organizational level at which we engage with the system. Under physiological conditions, adaptive transcription is engaged by complex stimuli from the environment [1]. These stimuli lead to the engagement of adaptive transcription components in various tissues and

body-wide adaptations. The transcriptional programs are tightly timed within cells and across tissues (e.g., exercise-dependent release of the Fndc5 gene product irisin from skeletal muscle into the bloodstream upregulates IEGs in the brain [288]). Single-target, fixed time-of-application pharmacological treatments in contrast lack the complexity associated with natural stimuli and might hence be suboptimal in inducing the necessary cellular reprogramming mechanisms. What is worse, the very adaptive processes that we have discussed here can also dynamically reprogram cellular physiology in order to compensate for pharmacological disturbances to the system thus rendering treatment efforts ineffective. Perhaps, we should hence additionally aim to engage the system at several organizational levels and combine interventions at various scales such as adaptive transcription boosting with environmental stimulation.

Complexity preservation in therapeutic design

The considerations of the previous paragraph bring us to a central hypothetical concept in leveraging adaptive transcription for health, namely *complexity preservation*. The principle of complexity preservation denotes the effort to preserve as much of the complexity of the natural stimuli that cells and organisms normally react to under physiological conditions as possible when designing artificial approaches to activate adaptation. In social settings for instance, visual experience (e.g., an interesting person) is transmitted into the brain where neurons are exposed to various neurotransmitters and hormones and dynamic membrane depolarization patterns. All these inputs are processed at several levels (e.g., the synaptic membrane and the genome) acting in concert to implement a complex molecular adaptation program within one cell. Then, many cells tune their adaptive programs to each other to form coherent circuits. It seems currently not possible to mimic all these events with simple treatment modalities such as pharmacological compounds acting on one or a few targets. Instead, we might require methods that incorporate these dynamic stimulation patterns that cells react to under natural conditions. This treatment approach can still include pharmacological treatments to boost or block adaptive transcription but it should in any case include complex stimulation patterns such as environmental exposure (social scenarios, exercise, nutrition) or, as we shall see below, at a lower organizational level, bioelectrical programming to achieve desired long-term goals. Thus, direct adaptive transcription boosters or blockers could serve as building blocks in combinatorial approaches.

Reprogramming dysfunctional neural circuits with natural environmental stimuli or complex artificial stimuli

One promising potential way of treating disorders like depression and addiction this way might be through changes in the environment, especially with regard to social stimuli in combination with adaptive transcription boosters. Studies in animals show that environmental enrichment induces several IEGs in the brain [289,290] and diminishes addiction-like behavior [291] and depression-like behaviors [292]. Since IEG induction is, in many cases, highly sensitive to the concrete stimulation parameters (e.g., Npas4 is induced differently by different stimuli [147]), it seems advantageous to leverage endogenous signaling mechanisms that implement their own logic to remodel the organism. When considering human patients, it seems however that reprogramming of brains via environmental stimuli requires an initial effort or ability to better one's situation (i.e., to change one's environment) which is, in severe cases, not always possible. Under these circumstances, approaches like electroconvulsive therapy (ECT), which seems effective in the treatment of depression [293], could lead to the induction of cellular plasticity to enable initial remodeling of pathological circuits via adaptive transcription. Indeed, induction of electroconvulsive seizures in the brain of animals has been shown to activate CREB signaling [294] and several IEGs including Bdnf [295], as well as induce synaptic plasticity [296–298] and reverse behavioral deficits [299,300]. Thus, ECT might be a good way to maintain some complexity (e.g., differential membrane depolarization patterns and postsynaptic receptor activation through synaptic stimulation) while being accessible to most patients. In cases where pharmacological treatment is indicated, environmental reprogramming approaches that activate adaptive transcription could perhaps be incorporated into treatment, such as CREB activators [301] to enhance complex physiological remodeling while potentially preserving the core dynamics of endogenous activity-dependent transcription. Indeed, certain antidepressants seem to exert their effects through CREB [214]. It might hence be the case that mere activation of transcriptional adaptation mechanisms might not be enough in disorders like addiction and depression but that the brain also needs inputs that direct rewiring into healthy and more functional states (e.g., through social environmental enrichment). In cases where limited modification of distinct tissues is required, tissue-level stimulation methods such as electromagnetic field application or pharmacological targeting of tissue-specific coactivators might be employed.

Reprogramming cancer

A straightforward way to dealing with cancer that is based on adaptive transcriptional mechanisms might be to simply block their activity (e.g., through AP1 inhibitors [302]). There are, however, several problems when pursuing isolated adaptive transcription component manipulations. The first is that cells could compensate for inhibition of isolated components, such as for instance in the case of CREB knockouts in mice that are compensated through CREM upregulation [303]. Secondly, pharmacological treatments will very likely affect cells in other tissues of the body and since adaptive transcription is important throughout the whole body, its manipulation might entail widespread negative side effects (e.g., CREB blockers, such as those previously developed [304], would perhaps interfere with memory formation and immune defense). In contrast to this, previous work has shown that, for instance, systemic CREB inhibition in mice had no effect on several physiological parameters [305].

One potential way of treating cancer might hence be to reprogram cancer cells into less invasive and destructive ones via physiological or close-tophysiological adaptive transcription induction, essentially reprogramming the malignant phenotype (i.e., inducing a cell state transition into a state that is conducive to overall organism survival). As we have seen above, adaptive transcription can be seen as an inducible cell state transition mechanism and SRF for instance can destabilize cell identity [284]. How would one achieve such reprogramming? Ideally, treatments would respect the endogenous dynamics and complexity of natural stimuli that human cells are subjected to in organism development and maintenance. An interesting approach in this regard could be the use of bioelectricity [306]. Cell membrane voltage aberrations have been reported in various cancer types [307] (e.g., depolarization in breast cancer cells [308]) and optogenetically mediated membrane voltage alterations can antagonize tumor formation in vivo [309]. As membrane voltage changes are tightly coupled to adaptive transcription in many tissues (see above and Ref. [259]), they might represent a valuable tool to direct tumor cell remodeling (e.g., see current translational approaches for treating cancer based on bioelectricity reviewed in [310]). The leveraging of adaptive transcriptional mechanisms in cancer cells through complex stimulation patterns to reprogram them into states that are less harmful to the overall organism might hence be a novel way to treat cancer. Interesting problems concern the nature of suitable stimulation entities (bioelectricity, engineered cells) and their dynamics (how to choose which stimulation patterns to apply and under what circumstances).

Conclusions

Adaptive transcription is a crucial mechanism to reprogram cells in response to environmental stimulation. While adaptive gene programs mediate many beneficial functions such as learning and memory, immune defense, muscle hypertrophy, and metabolic adaptation under nutritional scarcity, they are also involved in directing the organism into a dysfunctional state in diseases such as addiction, depression, anxiety, cancer, cardiovascular and metabolic disorders, and autoimmunity. Furthermore, they are crucial in mediating treatment effects in various therapeutic modalities and in counteracting treatment efforts. Adaptive transcriptional programs seem to possess a core program that is activated similarly in nearly all cell types and under most circumstances and a directional program that determines the direction and goal state of cellular reprogramming. Understanding how this goal state is encoded and how one can modify, it will be important for advancing our understanding of animal adaptation and for designing new treatment approaches in medicine. In order to leverage adaptive transcription in therapeutic efforts, it might be advantageous to use complexity-preserving stimulation (i.e., stimulation that is equal in complexity to that which cells normally react to under physiological conditions) in the form of environmental changes or bioelectrical stimulation in conjunction with single-molecule targeting of adaptive transcription components. This strathas the advantage of inducing adaptive transcriptional programs and subsequent organism remodeling with their endogenous dynamics and hence might achieve therapeutic benefits even for complex, multifactorial disorders that are difficult to treat with pharmacological approaches that target single pathways. Adaptive transcriptional programs hence have a widespread role in mediating health and disease, and their elucidation will likely enable profound advances in basic biology and medicine.

Acknowledgements

The figures were produced with BioRender.

Conflict of interest

The author declares no conflict of interest.

References

- 1 Lissek T (2022) Activity-dependent induction of younger biological phenotypes. *Adv Biol (Weinh)* **6**, e2200119.
- 2 Lissek T (2024) Aging as a consequence of the adaptation-maladaptation dilemma. Adv Biol (Weinh) 8, e2300654.
- 3 Lissek T (2023) Aging, adaptation and maladaptation. *Front Aging* **4**, 1256844.
- 4 Crabtree GR & Olson EN (2002) NFAT signaling: choreographing the social lives of cells. *Cell* **109** (Suppl). S67–S79.
- 5 Hayden MS & Ghosh S (2008) Shared principles in NF-kappaB signaling. *Cell* **132**, 344–362.
- 6 Finck BN & Kelly DP (2006) PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. *J Clin Invest* **116**, 615–622.
- 7 Impey S, Smith DM, Obrietan K, Donahue R, Wade C & Storm DR (1998) Stimulation of cAMP response element (CRE)-mediated transcription during contextual learning. *Nat Neurosci* 1, 595–601.
- 8 Deisseroth K, Bito H & Tsien RW (1996) Signaling from synapse to nucleus: postsynaptic CREB phosphorylation during multiple forms of hippocampal synaptic plasticity. *Neuron* **16**, 89–101.
- 9 Impey S, Mark M, Villacres EC, Poser S, Chavkin C & Storm DR (1996) Induction of CRE-mediated gene expression by stimuli that generate long-lasting LTP in area CA1 of the hippocampus. *Neuron* 16, 973–982.
- 10 Kida S, Josselyn SA, Pena de Ortiz S, Kogan JH, Chevere I, Masushige S & Silva AJ (2002) CREB required for the stability of new and reactivated fear memories. *Nat Neurosci* 5, 348–355.
- 11 Mamiya N, Fukushima H, Suzuki A, Matsuyama Z, Homma S, Frankland PW & Kida S (2009) Brain region-specific gene expression activation required for reconsolidation and extinction of contextual fear memory. J Neurosci 29, 402–413.
- 12 Bourtchuladze R, Frenguelli B, Blendy J, Cioffi D, Schutz G & Silva AJ (1994) Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. *Cell* 79, 59–68.
- 13 Guzowski JF & McGaugh JL (1997) Antisense oligodeoxynucleotide-mediated disruption of hippocampal cAMP response element binding protein levels impairs consolidation of memory for water maze training. *Proc Natl Acad Sci USA* 94, 2693–2698.
- 14 Viosca J, Lopez de Armentia M, Jancic D & Barco A (2009) Enhanced CREB-dependent gene expression increases the excitability of neurons in the basal amygdala and primes the consolidation of contextual and cued fear memory. *Learn Mem* 16, 193–197.

- 15 Suzuki A, Fukushima H, Mukawa T, Toyoda H, Wu LJ, Zhao MG, Xu H, Shang Y, Endoh K, Iwamoto T et al. (2011) Upregulation of CREB-mediated transcription enhances both short- and long-term memory. J Neurosci 31, 8786–8802.
- 16 Josselyn SA, Shi C, Carlezon WA Jr, Neve RL, Nestler EJ & Davis M (2001) Long-term memory is facilitated by cAMP response element-binding protein overexpression in the amygdala. J Neurosci 21, 2404– 2412.
- 17 Restivo L, Tafi E, Ammassari-Teule M & Marie H (2009) Viral-mediated expression of a constitutively active form of CREB in hippocampal neurons increases memory. *Hippocampus* 19, 228–234.
- 18 Sekeres MJ, Neve RL, Frankland PW & Josselyn SA (2010) Dorsal hippocampal CREB is both necessary and sufficient for spatial memory. *Learn Mem* 17, 280– 283.
- 19 Han JH, Yiu AP, Cole CJ, Hsiang HL, Neve RL & Josselyn SA (2008) Increasing CREB in the auditory thalamus enhances memory and generalization of auditory conditioned fear. *Learn Mem* 15, 443–453.
- 20 Zhou Y, Won J, Karlsson MG, Zhou M, Rogerson T, Balaji J, Neve R, Poirazi P & Silva AJ (2009) CREB regulates excitability and the allocation of memory to subsets of neurons in the amygdala. *Nat Neurosci* 12, 1438–1443.
- 21 Gruart A, Benito E, Delgado-Garcia JM & Barco A (2012) Enhanced cAMP response element-binding protein activity increases neuronal excitability, hippocampal long-term potentiation, and classical eyeblink conditioning in alert behaving mice. *J Neurosci* 32, 17431–17441.
- 22 Redmond L, Kashani AH & Ghosh A (2002) Calcium regulation of dendritic growth via CaM kinase IV and CREB-mediated transcription. *Neuron* 34, 999–1010.
- 23 Barco A, Alarcon JM & Kandel ER (2002) Expression of constitutively active CREB protein facilitates the late phase of long-term potentiation by enhancing synaptic capture. *Cell* 108, 689–703.
- 24 Bading H, Ginty DD & Greenberg ME (1993) Regulation of gene expression in hippocampal neurons by distinct calcium signaling pathways. *Science* 260, 181–186.
- 25 Etkin A, Alarcon JM, Weisberg SP, Touzani K, Huang YY, Nordheim A & Kandel ER (2006) A role in learning for SRF: deletion in the adult forebrain disrupts LTD and the formation of an immediate memory of a novel context. *Neuron* 50, 127–143.
- 26 Ramanan N, Shen Y, Sarsfield S, Lemberger T, Schutz G, Linden DJ & Ginty DD (2005) SRF mediates activity-induced gene expression and synaptic plasticity but not neuronal viability. *Nat Neurosci* 8, 759–767.
- 27 Barbosa AC, Kim MS, Ertunc M, Adachi M, Nelson ED, McAnally J, Richardson JA, Kavalali ET,

- Monteggia LM, Bassel-Duby R *et al.* (2008) MEF2C, a transcription factor that facilitates learning and memory by negative regulation of synapse numbers and function. *Proc Natl Acad Sci USA* **105**, 9391–9396.
- 28 Flavell SW, Cowan CW, Kim TK, Greer PL, Lin Y, Paradis S, Griffith EC, Hu LS, Chen C & Greenberg ME (2006) Activity-dependent regulation of MEF2 transcription factors suppresses excitatory synapse number. *Science* 311, 1008–1012.
- 29 Teather LA, Packard MG, Smith DE, Ellis-Behnke RG & Bazan NG (2005) Differential induction of c-Jun and Fos-like proteins in rat hippocampus and dorsal striatum after training in two water maze tasks. Neurobiol Learn Mem 84, 75–84.
- 30 Guzowski JF, Setlow B, Wagner EK & McGaugh JL (2001) Experience-dependent gene expression in the rat hippocampus after spatial learning: a comparison of the immediate-early genes Arc, c-fos, and zif268. J Neurosci 21, 5089–5098.
- 31 Vann SD, Brown MW, Erichsen JT & Aggleton JP (2000) Fos imaging reveals differential patterns of hippocampal and parahippocampal subfield activation in rats in response to different spatial memory tests. J Neurosci 20, 2711–2718.
- 32 Fleischmann A, Hvalby O, Jensen V, Strekalova T, Zacher C, Layer LE, Kvello A, Reschke M, Spanagel R, Sprengel R et al. (2003) Impaired long-term memory and NR2A-type NMDA receptor-dependent synaptic plasticity in mice lacking c-Fos in the CNS. J Neurosci 23, 9116–9122.
- 33 Guzowski JF (2002) Insights into immediate-early gene function in hippocampal memory consolidation using antisense oligonucleotide and fluorescent imaging approaches. *Hippocampus* 12, 86–104.
- 34 Katche C, Bekinschtein P, Slipczuk L, Goldin A, Izquierdo IA, Cammarota M & Medina JH (2010) Delayed wave of c-Fos expression in the dorsal hippocampus involved specifically in persistence of long-term memory storage. *Proc Natl Acad Sci USA* 107, 349–354.
- 35 Pettit NL, Yap EL, Greenberg ME & Harvey CD (2022) Fos ensembles encode and shape stable spatial maps in the hippocampus. *Nature* **609**, 327–334.
- 36 Yap EL, Pettit NL, Davis CP, Nagy MA, Harmin DA, Golden E, Dagliyan O, Lin C, Rudolph S, Sharma N et al. (2021) Bidirectional perisomatic inhibitory plasticity of a Fos neuronal network. *Nature* 590, 115–121.
- 37 Bozon B, Davis S & Laroche S (2003) A requirement for the immediate early gene zif268 in reconsolidation of recognition memory after retrieval. *Neuron* 40, 695– 701.
- 38 Jones MW, Errington ML, French PJ, Fine A, Bliss TV, Garel S, Charnay P, Bozon B, Laroche S & Davis

- S (2001) A requirement for the immediate early gene Zif268 in the expression of late LTP and long-term memories. *Nat Neurosci* **4**, 289–296.
- 39 Ramamoorthi K, Fropf R, Belfort GM, Fitzmaurice HL, McKinney RM, Neve RL, Otto T & Lin Y (2011) Npas4 regulates a transcriptional program in CA3 required for contextual memory formation. *Science* 334, 1669–1675.
- 40 Spiegel I, Mardinly AR, Gabel HW, Bazinet JE, Couch CH, Tzeng CP, Harmin DA & Greenberg ME (2014) Npas4 regulates excitatory-inhibitory balance within neural circuits through cell-type-specific gene programs. Cell 157, 1216–1229.
- 41 Lin Y, Bloodgood BL, Hauser JL, Lapan AD, Koon AC, Kim TK, Hu LS, Malik AN & Greenberg ME (2008) Activity-dependent regulation of inhibitory synapse development by Npas4. *Nature* 455, 1198–1204
- 42 Bloodgood BL, Sharma N, Browne HA, Trepman AZ & Greenberg ME (2013) The activity-dependent transcription factor NPAS4 regulates domain-specific inhibition. *Nature* **503**, 121–125.
- 43 Egan B, Carson BP, Garcia-Roves PM, Chibalin AV, Sarsfield FM, Barron N, McCaffrey N, Moyna NM, Zierath JR & O'Gorman DJ (2010) Exercise intensity-dependent regulation of peroxisome proliferator-activated receptor coactivator-1 mRNA abundance is associated with differential activation of upstream signalling kinases in human skeletal muscle. *J Physiol* 588, 1779–1790.
- 44 McGee SL, Sparling D, Olson AL & Hargreaves M (2006) Exercise increases MEF2- and GEF DNA-binding activity in human skeletal muscle. *FASEB J* **20**, 348–349.
- 45 Rundqvist HC, Montelius A, Osterlund T, Norman B, Esbjornsson M & Jansson E (2019) Acute sprint exercise transcriptome in human skeletal muscle. *PLoS One* 14, e0223024.
- 46 Zapata-Bustos R, Finlayson J, Langlais PR, Coletta DK, Luo M, Grandjean D, De Filippis EA & Mandarino L (2021) Altered transcription factor expression responses to exercise in insulin resistance. *Front Physiol* 12, 649461.
- 47 Stewart R, Flechner L, Montminy M & Berdeaux R (2011) CREB is activated by muscle injury and promotes muscle regeneration. *PLoS One* **6**, e24714.
- 48 Bruno NE, Kelly KA, Hawkins R, Bramah-Lawani M, Amelio AL, Nwachukwu JC, Nettles KW & Conkright MD (2014) Creb coactivators direct anabolic responses and enhance performance of skeletal muscle. *EMBO J* 33, 1027–1043.
- 49 Guerci A, Lahoute C, Hebrard S, Collard L, Graindorge D, Favier M, Cagnard N, Batonnet-Pichon S, Precigout G, Garcia L et al. (2012) Srfdependent paracrine signals produced by myofibers

- control satellite cell-mediated skeletal muscle hypertrophy. *Cell Metab* **15**, 25–37.
- 50 Randrianarison-Huetz V, Papaefthymiou A, Herledan G, Noviello C, Faradova U, Collard L, Pincini A, Schol E, Decaux JF, Maire P et al. (2018) Srf controls satellite cell fusion through the maintenance of actin architecture. J Cell Biol 217, 685–700.
- 51 Moretti I, Ciciliot S, Dyar KA, Abraham R, Murgia M, Agatea L, Akimoto T, Bicciato S, Forcato M, Pierre P et al. (2016) MRF4 negatively regulates adult skeletal muscle growth by repressing MEF2 activity. Nat Commun 7, 12397.
- 52 Liu N, Nelson BR, Bezprozvannaya S, Shelton JM, Richardson JA, Bassel-Duby R & Olson EN (2014) Requirement of MEF2A, C, and D for skeletal muscle regeneration. *Proc Natl Acad Sci USA* 111, 4109–4114.
- 53 Almada AE, Horwitz N, Price FD, Gonzalez AE, Ko M, Bolukbasi OV, Messemer KA, Chen S, Sinha M, Rubin LL et al. (2021) FOS licenses early events in stem cell activation driving skeletal muscle regeneration. Cell Rep 34, 108656.
- 54 Raffaello A, Milan G, Masiero E, Carnio S, Lee D, Lanfranchi G, Goldberg AL & Sandri M (2010) JunB transcription factor maintains skeletal muscle mass and promotes hypertrophy. *J Cell Biol* **191**, 101–113.
- 55 Pillon NJ, Gabriel BM, Dollet L, Smith JAB, Sardon Puig L, Botella J, Bishop DJ, Krook A & Zierath JR (2020) Transcriptomic profiling of skeletal muscle adaptations to exercise and inactivity. *Nat Commun* 11, 470
- 56 Pearen MA, Eriksson NA, Fitzsimmons RL, Goode JM, Martel N, Andrikopoulos S & Muscat GE (2012) The nuclear receptor, Nor-1, markedly increases type II oxidative muscle fibers and resistance to fatigue. *Mol Endocrinol* 26, 372–384.
- 57 Barton K, Muthusamy N, Chanyangam M, Fischer C, Clendenin C & Leiden JM (1996) Defective thymocyte proliferation and IL-2 production in transgenic mice expressing a dominant-negative form of CREB. *Nature* 379, 81–85.
- 58 Zhang F, Rincon M, Flavell RA & Aune TM (2000) Defective Th function induced by a dominant-negative cAMP response element binding protein mutation is reversed by Bcl-2. *J Immunol* **165**, 1762–1770.
- 59 Chen HC, Byrd JC & Muthusamy N (2006) Differential role for cyclic AMP response element binding protein-1 in multiple stages of B cell development, differentiation, and survival. *J Immunol* 176, 2208–2218.
- 60 Esau C, Boes M, Youn HD, Tatterson L, Liu JO & Chen J (2001) Deletion of calcineurin and myocyte enhancer factor 2 (MEF2) binding domain of Cabin1 results in enhanced cytokine gene expression in T cells. J Exp Med 194, 1449–1459.

- 61 Youn HD, Sun L, Prywes R & Liu JO (1999)
 Apoptosis of T cells mediated by Ca²⁺-induced release of the transcription factor MEF2. *Science* **286**, 790–793.
- 62 Di Giorgio E, Wang L, Xiong Y, Akimova T, Christensen LM, Han R, Samanta A, Trevisanut M, Bhatti TR, Beier UH *et al.* (2020) MEF2D sustains activation of effector Foxp3+ Tregs during transplant survival and anticancer immunity. *J Clin Invest* **130**, 6242–6260.
- 63 Herglotz J, Unrau L, Hauschildt F, Fischer M, Kriebitzsch N, Alawi M, Indenbirken D, Spohn M, Muller U, Ziegler M et al. (2016) Essential control of early B-cell development by Mef2 transcription factors. Blood 127, 572–581.
- 64 Wilker PR, Kohyama M, Sandau MM, Albring JC, Nakagawa O, Schwarz JJ & Murphy KM (2008) Transcription factor Mef2c is required for B cell proliferation and survival after antigen receptor stimulation. *Nat Immunol* 9, 603–612.
- 65 Zhao X, Di Q, Liu H, Quan J, Ling J, Zhao Z, Xiao Y, Wu H, Wu Z, Song W *et al.* (2022) MEF2C promotes M1 macrophage polarization and Th1 responses. *Cell Mol Immunol* **19**, 540–553.
- 66 Mylona A, Nicolas R, Maurice D, Sargent M, Tuil D, Daegelen D, Treisman R & Costello P (2011) The essential function for serum response factor in T-cell development reflects its specific coupling to extracellular signal-regulated kinase signaling. *Mol Cell Biol* 31, 267–276.
- 67 Fleige A, Alberti S, Grobe L, Frischmann U, Geffers R, Muller W, Nordheim A & Schippers A (2007) Serum response factor contributes selectively to lymphocyte development. *J Biol Chem* 282, 24320–24328.
- 68 Yukawa M, Jagannathan S, Vallabh S, Kartashov AV, Chen X, Weirauch MT & Barski A (2020) AP-1 activity induced by co-stimulation is required for chromatin opening during T cell activation. *J Exp Med* 217, e20182009.
- 69 Clark CE, Hasan M & Bousso P (2011) A role for the immediate early gene product c-fos in imprinting T cells with short-term memory for signal summation. *PLoS One* **6**, e18916.
- 70 Gururajan M, Simmons A, Dasu T, Spear BT, Calulot C, Robertson DA, Wiest DL, Monroe JG & Bondada S (2008) Early growth response genes regulate B cell development, proliferation, and immune response. *J Immunol* 181, 4590–4602.
- 71 Dinkel A, Warnatz K, Ledermann B, Rolink A, Zipfel PF, Burki K & Eibel H (1998) The transcription factor early growth response 1 (Egr-1) advances differentiation of pre-B and immature B cells. *J Exp Med* 188, 2215–2224.

- 72 Lohoff M, Giaisi M, Kohler R, Casper B, Krammer PH & Li-Weber M (2010) Early growth response protein-1 (Egr-1) is preferentially expressed in T helper type 2 (Th2) cells and is involved in acute transcription of the Th2 cytokine interleukin-4. *J Biol Chem* 285, 1643–1652.
- 73 Fentzke RC, Korcarz CE, Lang RM, Lin H & Leiden JM (1998) Dilated cardiomyopathy in transgenic mice expressing a dominant-negative CREB transcription factor in the heart. *J Clin Invest* **101**, 2415–2426.
- 74 Schulte JS, Seidl MD, Nunes F, Freese C, Schneider M, Schmitz W & Muller FU (2012) CREB critically regulates action potential shape and duration in the adult mouse ventricle. *Am J Physiol Heart Circ Physiol* 302, H1998–H2007.
- 75 Watson PA, Birdsey N, Huggins GS, Svensson E, Heppe D & Knaub L (2010) Cardiac-specific overexpression of dominant-negative CREB leads to increased mortality and mitochondrial dysfunction in female mice. Am J Physiol Heart Circ Physiol 299, H2056–H2068.
- 76 Rankinen T, Argyropoulos G, Rice T, Rao DC & Bouchard C (2010) CREB1 is a strong genetic predictor of the variation in exercise heart rate response to regular exercise: the HERITAGE Family Study. Circ Cardiovasc Genet 3, 294–299.
- 77 Watson PA, Reusch JE, McCune SA, Leinwand LA, Luckey SW, Konhilas JP, Brown DA, Chicco AJ, Sparagna GC, Long CS et al. (2007) Restoration of CREB function is linked to completion and stabilization of adaptive cardiac hypertrophy in response to exercise. Am J Physiol Heart Circ Physiol 293, H246–H259.
- 78 Funakoshi Y, Ichiki T, Takeda K, Tokuno T, Iino N & Takeshita A (2002) Critical role of cAMP-response element-binding protein for angiotensin II-induced hypertrophy of vascular smooth muscle cells. *J Biol Chem* 277, 18710–18717.
- 79 Hudson C, Kimura TE, Duggirala A, Sala-Newby GB, Newby AC & Bond M (2018) Dual role of CREB in the regulation of VSMC proliferation: mode of activation determines pro- or anti-mitogenic function. *Sci Rep* 8, 4904.
- 80 Molnar P, Perrault R, Louis S & Zahradka P (2014) The cyclic AMP response element-binding protein (CREB) mediates smooth muscle cell proliferation in response to angiotensin II. *J Cell Commun Signal* 8, 29–37.
- 81 Tokunou T, Ichiki T, Takeda K, Funakoshi Y, Iino N & Takeshita A (2001) cAMP response element-binding protein mediates thrombin-induced proliferation of vascular smooth muscle cells. *Arterioscler Thromb Vasc Biol* **21**, 1764–1769.
- 82 Ono H, Ichiki T, Fukuyama K, Iino N, Masuda S, Egashira K & Takeshita A (2004) cAMP-response

- element-binding protein mediates tumor necrosis factor-alpha-induced vascular smooth muscle cell migration. *Arterioscler Thromb Vasc Biol* **24**, 1634–1639.
- 83 Jalvy S, Renault MA, Lam Shang Leen L, Belloc I, Reynaud A, Gadeau AP & Desgranges C (2007) CREB mediates UTP-directed arterial smooth muscle cell migration and expression of the chemotactic protein osteopontin via its interaction with activator protein-1 sites. Circ Res 100, 1292–1299.
- 84 Nelson TJ, Balza R Jr, Xiao Q & Misra RP (2005) SRF-dependent gene expression in isolated cardiomyocytes: regulation of genes involved in cardiac hypertrophy. *J Mol Cell Cardiol* **39**, 479–489.
- 85 Zhang X, Azhar G, Chai J, Sheridan P, Nagano K, Brown T, Yang J, Khrapko K, Borras AM, Lawitts J *et al.* (2001) Cardiomyopathy in transgenic mice with cardiac-specific overexpression of serum response factor. *Am J Physiol Heart Circ Physiol* **280**, H1782–H1792.
- 86 Balza RO Jr & Misra RP (2006) Role of the serum response factor in regulating contractile apparatus gene expression and sarcomeric integrity in cardiomyocytes. *J Biol Chem* **281**, 6498–6510.
- 87 Parlakian A, Charvet C, Escoubet B, Mericskay M, Molkentin JD, Gary-Bobo G, De Windt LJ, Ludosky MA, Paulin D, Daegelen D et al. (2005) Temporally controlled onset of dilated cardiomyopathy through disruption of the SRF gene in adult heart. Circulation 112, 2930–2939.
- 88 el Azzouzi H, van Oort RJ, van der Nagel R, Sluiter W, Bergmann MW & De Windt LJ (2010) MEF2 transcriptional activity maintains mitochondrial adaptation in cardiac pressure overload. *Eur J Heart Fail* 12, 4–12.
- 89 Hashemi S, Salma J, Wales S & McDermott JC (2015) Pro-survival function of MEF2 in cardiomyocytes is enhanced by beta-blockers. *Cell Death Discov* 1, 15019.
- 90 Naya FJ, Black BL, Wu H, Bassel-Duby R, Richardson JA, Hill JA & Olson EN (2002) Mitochondrial deficiency and cardiac sudden death in mice lacking the MEF2A transcription factor. *Nat Med* 8, 1303–1309.
- 91 Medzikovic L, Schumacher CA, Verkerk AO, van Deel ED, Wolswinkel R, van der Made I, Bleeker N, Cakici D, van den Hoogenhof MMG, Meggouh F *et al.* (2015) Orphan nuclear receptor Nur77 affects cardiomyocyte calcium homeostasis and adverse cardiac remodelling. *Sci Rep* 5, 15404.
- 92 Yan G, Zhu N, Huang S, Yi B, Shang X, Chen M, Wang N, Zhang G-X, Talarico JA, Tilley DG et al. (2015) Orphan nuclear receptor Nur77 inhibits cardiac hypertrophic response to beta-adrenergic stimulation. *Mol Cell Biol* 35, 3312–3323.

- 93 Medzikovic L, van Roomen C, Baartscheer A, van Loenen PB, de Vos J, Bakker ENTP, Koenis DS, Damanafshan A, Creemers EE, Arkenbout EK et al. (2018) Nur77 protects against adverse cardiac remodelling by limiting neuropeptide Y signalling in the sympathoadrenal-cardiac axis. Cardiovasc Res 114, 1617–1628.
- 94 Jhala US, Canettieri G, Screaton RA, Kulkarni RN, Krajewski S, Reed J, Walker J, Lin X, White M & Montminy M (2003) cAMP promotes pancreatic betacell survival via CREB-mediated induction of IRS2. Genes Dev 17, 1575–1580.
- 95 Liu B, Barbosa-Sampaio H, Jones PM, Persaud SJ & Muller DS (2012) The CaMK4/CREB/IRS-2 cascade stimulates proliferation and inhibits apoptosis of betacells. *PLoS One* 7, e45711.
- 96 Van de Velde S, Wiater E, Tran M, Hwang Y, Cole PA & Montminy M (2019) CREB promotes beta cell gene expression by targeting its coactivators to tissue-specific enhancers. *Mol Cell Biol* **39**, e00200-19.
- 97 Herzig S, Long F, Jhala US, Hedrick S, Quinn R, Bauer A, Rudolph D, Schutz G, Yoon C, Puigserver P *et al.* (2001) CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. *Nature* **413**, 179–183.
- 98 Wang Y, Inoue H, Ravnskjaer K, Viste K, Miller N, Liu Y, Hedrick S, Vera L & Montminy M (2010) Targeted disruption of the CREB coactivator Crtc2 increases insulin sensitivity. *Proc Natl Acad Sci USA* 107, 3087–3092.
- 99 Song Y, Altarejos J, Goodarzi MO, Inoue H, Guo X, Berdeaux R, Kim JH, Goode J, Igata M, Paz JC et al. (2010) CRTC3 links catecholamine signalling to energy balance. *Nature* 468, 933–939.
- 100 Sarkar A, Zhang M, Liu SH, Sarkar S, Brunicardi FC, Berger DH & Belaguli NS (2011) Serum response factor expression is enriched in pancreatic beta cells and regulates insulin gene expression. FASEB J 25, 2592–2603.
- 101 Glauser DA, Brun T, Gauthier BR & Schlegel W (2007) Transcriptional response of pancreatic beta cells to metabolic stimulation: large scale identification of immediate-early and secondary response genes. BMC Mol Biol 8, 54.
- 102 Ray JD, Kener KB, Bitner BF, Wright BJ, Ballard MS, Barrett EJ, Hill JT, Moss LG & Tessem JS (2016) Nkx6.1-mediated insulin secretion and beta-cell proliferation is dependent on upregulation of c-Fos. FEBS Lett 590, 1791–1803.
- 103 Josefsen K, Sorensen LR, Buschard K & Birkenbach M (1999) Glucose induces early growth response gene (Egr-1) expression in pancreatic beta cells. *Diabetologia* 42, 195–203.
- 104 Eto K, Kaur V & Thomas MK (2006) Regulation of insulin gene transcription by the immediate-early

- growth response gene Egr-1. *Endocrinology* **147**, 2923–2935.
- 105 Reynolds MS, Hancock CR, Ray JD, Kener KB, Draney C, Garland K, Hardman J, Bikman BT & Tessem JS (2016) Beta-cell deletion of Nr4a1 and Nr4a3 nuclear receptors impedes mitochondrial respiration and insulin secretion. Am J Physiol Endocrinol Metab 311, E186–E201.
- 106 Tessem JS, Moss LG, Chao LC, Arlotto M, Lu D, Jensen MV, Stephens SB, Tontonoz P, Hohmeier HE & Newgard CB (2014) Nkx6.1 regulates islet beta-cell proliferation via Nr4a1 and Nr4a3 nuclear receptors. *Proc Natl Acad Sci USA* 111, 5242–5247.
- 107 Speckmann T, Sabatini PV, Nian C, Smith RG & Lynn FC (2016) Npas4 transcription factor expression is regulated by calcium signaling pathways and prevents tacrolimus-induced cytotoxicity in pancreatic beta cells. J Biol Chem 291, 2682–2695.
- 108 Sabatini PV, Speckmann T, Nian C, Glavas MM, Wong CK, Yoon JS, Kin T, Shapiro AMJ, Gibson WT, Verchere CB et al. (2018) Neuronal PAS domain protein 4 suppression of oxygen sensing optimizes metabolism during excitation of neuroendocrine cells. Cell Rep 22, 163–174.
- 109 Yoo H, Lee HR, Kim KH, Kim MA, Bang S, Kang YH, Kim WH, Song Y & Chang SE (2021) CRTC3, a sensor and key regulator for melanogenesis, as a tunable therapeutic target for pigmentary disorders. *Theranostics* **11**, 9918–9936.
- 110 Horike N, Kumagai A, Shimono Y, Onishi T, Itoh Y, Sasaki T, Kitagawa K, Hatano O, Takagi H, Susumu T et al. (2010) Downregulation of SIK2 expression promotes the melanogenic program in mice. Pigment Cell Melanoma Res 23, 809–819.
- 111 Verdoni AM, Ikeda S & Ikeda A (2010) Serum response factor is essential for the proper development of skin epithelium. *Mamm Genome* **21**, 64–76.
- 112 Neub A, Houdek P, Ohnemus U, Moll I & Brandner JM (2007) Biphasic regulation of AP-1 subunits during human epidermal wound healing. *J Invest Dermatol* 127, 2453–2462.
- 113 Florin L, Hummerich L, Dittrich BT, Kokocinski F, Wrobel G, Gack S, Schorpp-Kistner M, Werner S, Hahn M, Lichter P et al. (2004) Identification of novel AP-1 target genes in fibroblasts regulated during cutaneous wound healing. Oncogene 23, 7005–7017.
- 114 Florin L, Knebel J, Zigrino P, Vonderstrass B, Mauch C, Schorpp-Kistner M, Szabowski A & Angel P (2006) Delayed wound healing and epidermal hyperproliferation in mice lacking JunB in the skin. J Invest Dermatol 126, 902–911.
- 115 Singh K, Camera E, Krug L, Basu A, Pandey RK, Munir S, Wlaschek M, Kochanek S, Schorpp-Kistner M, Picardo M et al. (2018) JunB defines functional

- and structural integrity of the epidermo-pilosebaceous unit in the skin. *Nat Commun* **9**, 3425.
- 116 Li G, Gustafson-Brown C, Hanks SK, Nason K, Arbeit JM, Pogliano K, Wisdom RM & Johnson RS (2003) c-Jun is essential for organization of the epidermal leading edge. *Dev Cell* 4, 865–877.
- 117 Welter JF & Eckert RL (1995) Differential expression of the fos and jun family members c-fos, fosB, Fra-1, Fra-2, c-jun, junB and junD during human epidermal keratinocyte differentiation. *Oncogene* 11, 2681–2687.
- 118 Wu M, Melichian DS, de la Garza M, Gruner K, Bhattacharyya S, Barr L, Nair A, Shahrara S, Sporn PH, Mustoe TA et al. (2009) Essential roles for early growth response transcription factor Egr-1 in tissue fibrosis and wound healing. Am J Pathol 175, 1041– 1055.
- 119 Long F, Schipani E, Asahara H, Kronenberg H & Montminy M (2001) The CREB family of activators is required for endochondral bone development. Development 128, 541–550.
- 120 Arnold MA, Kim Y, Czubryt MP, Phan D, McAnally J, Qi X, Shelton JM, Richardson JA, Bassel-Duby R & Olson EN (2007) MEF2C transcription factor controls chondrocyte hypertrophy and bone development. *Dev Cell* 12, 377–389.
- 121 Grigoriadis AE, Wang ZQ, Cecchini MG, Hofstetter W, Felix R, Fleisch HA & Wagner EF (1994) c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science 266, 443– 448.
- 122 Wang ZQ, Ovitt C, Grigoriadis AE, Mohle-Steinlein U, Ruther U & Wagner EF (1992) Bone and haematopoietic defects in mice lacking c-fos. *Nature* **360**, 741–745.
- 123 Eferl R, Hoebertz A, Schilling AF, Rath M, Karreth F, Kenner L, Amling M & Wagner EF (2004) The Fos-related antigen Fra-1 is an activator of bone matrix formation. *EMBO J* 23, 2789–2799.
- 124 Bozec A, Bakiri L, Jimenez M, Schinke T, Amling M & Wagner EF (2010) Fra-2/AP-1 controls bone formation by regulating osteoblast differentiation and collagen production. *J Cell Biol* 190, 1093–1106.
- 125 He X, Ohba S, Hojo H & McMahon AP (2016) AP-1 family members act with Sox9 to promote chondrocyte hypertrophy. *Development* **143**, 3012–3023.
- 126 Fukasawa K, Park G, Iezaki T, Horie T, Kanayama T, Ozaki K, Onishi Y, Takahata Y, Yoneda Y, Takarada T et al. (2016) ATF3 controls proliferation of osteoclast precursor and bone remodeling. Sci Rep 6, 30918.
- 127 Bleckmann SC, Blendy JA, Rudolph D, Monaghan AP, Schmid W & Schutz G (2002) Activating transcription factor 1 and CREB are important for cell survival during early mouse development. *Mol Cell Biol* 22, 1919–1925.

- 128 Mantamadiotis T, Lemberger T, Bleckmann SC, Kern H, Kretz O, Martin Villalba A, Tronche F, Kellendonk C, Gau D, Kapfhammer J et al. (2002) Disruption of CREB function in brain leads to neurodegeneration. Nat Genet 31, 47–54.
- 129 Potthoff MJ, Arnold MA, McAnally J, Richardson JA, Bassel-Duby R & Olson EN (2007) Regulation of skeletal muscle sarcomere integrity and postnatal muscle function by Mef2c. *Mol Cell Biol* 27, 8143–8151.
- 130 Anderson CM, Hu J, Barnes RM, Heidt AB, Cornelissen I & Black BL (2015) Myocyte enhancer factor 2C function in skeletal muscle is required for normal growth and glucose metabolism in mice. Skelet Muscle 5, 7.
- 131 Materna SC, Sinha T, Barnes RM, Lammerts van Bueren K & Black BL (2019) Cardiovascular development and survival require Mef2c function in the myocardial but not the endothelial lineage. *Dev Biol* **445**, 170–177.
- 132 Lin Q, Schwarz J, Bucana C & Olson EN (1997) Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. *Science* 276, 1404–1407.
- 133 Lin Q, Lu J, Yanagisawa H, Webb R, Lyons GE, Richardson JA & Olson EN (1998) Requirement of the MADS-box transcription factor MEF2C for vascular development. *Development* 125, 4565–4574.
- 134 Dinsmore CJ & Soriano P (2022) Differential regulation of cranial and cardiac neural crest by serum response factor and its cofactors. *Elife* **11**, e75106.
- 135 Lu PP & Ramanan N (2011) Serum response factor is required for cortical axon growth but is dispensable for neurogenesis and neocortical lamination. *J Neurosci* **31**, 16651–16664.
- 136 Parlakian A, Tuil D, Hamard G, Tavernier G, Hentzen D, Concordet JP, Paulin D, Li Z & Daegelen D (2004) Targeted inactivation of serum response factor in the developing heart results in myocardial defects and embryonic lethality. *Mol Cell Biol* 24, 5281–5289.
- 137 Velazquez FN, Prucca CG, Etienne O, D'Astolfo DS, Silvestre DC, Boussin FD & Caputto BL (2015) Brain development is impaired in c-fos -/- mice. *Oncotarget* 6, 16883-16901.
- 138 Carlezon WA Jr, Thome J, Olson VG, Lane-Ladd SB, Brodkin ES, Hiroi N, Duman RS, Neve RL & Nestler EJ (1998) Regulation of cocaine reward by CREB. Science 282, 2272–2275.
- 139 Larson EB, Graham DL, Arzaga RR, Buzin N, Webb J, Green TA, Bass CE, Neve RL, Terwilliger EF, Nestler EJ et al. (2011) Overexpression of CREB in the nucleus accumbens shell increases cocaine reinforcement in self-administering rats. J Neurosci 31, 16447–16457.

- 140 McClung CA & Nestler EJ (2003) Regulation of gene expression and cocaine reward by CREB and DeltaFosB. *Nat Neurosci* **6**, 1208–1215.
- 141 Valverde O, Mantamadiotis T, Torrecilla M, Ugedo L, Pineda J, Bleckmann S, Gass P, Kretz O, Mitchell JM, Schutz G et al. (2004) Modulation of anxiety-like behavior and morphine dependence in CREB-deficient mice. Neuropsychopharmacology 29, 1122–1133.
- 142 Cahill ME, Walker DM, Gancarz AM, Wang ZJ, Lardner CK, Bagot RC, Neve RL, Dietz DM & Nestler EJ (2018) The dendritic spine morphogenic effects of repeated cocaine use occur through the regulation of serum response factor signaling. *Mol Psychiatry* 23, 1474–1486.
- 143 Vialou V, Feng J, Robison AJ, Ku SM, Ferguson D, Scobie KN, Mazei-Robison MS, Mouzon E & Nestler EJ (2012) Serum response factor and cAMP response element binding protein are both required for cocaine induction of DeltaFosB. *J Neurosci* 32, 7577– 7584
- 144 Pulipparacharuvil S, Renthal W, Hale CF, Taniguchi M, Xiao G, Kumar A, Russo SJ, Sikder D, Dewey CM, Davis MM *et al.* (2008) Cocaine regulates MEF2 to control synaptic and behavioral plasticity. *Neuron* 59, 621–633.
- 145 Zhang J, Zhang L, Jiao H, Zhang Q, Zhang D, Lou D, Katz JL & Xu M (2006) c-Fos facilitates the acquisition and extinction of cocaine-induced persistent changes. *J Neurosci* 26, 13287–13296.
- 146 Kelz MB, Chen J, Carlezon WA Jr, Whisler K, Gilden L, Beckmann AM, Steffen C, Zhang YJ, Marotti L, Self DW et al. (1999) Expression of the transcription factor deltaFosB in the brain controls sensitivity to cocaine. Nature 401, 272–276.
- 147 Lissek T, Andrianarivelo A, Saint-Jour E, Allichon MC, Bauersachs HG, Nassar M, Piette C, Pruunsild P, Tan YW, Forget B et al. (2021) Npas4 regulates medium spiny neuron physiology and gates cocaine-induced hyperlocomotion. EMBO Rep 22, e51882.
- 148 Taniguchi M, Carreira MB, Cooper YA, Bobadilla AC, Heinsbroek JA, Koike N, Larson EB, Balmuth EA, Hughes BW, Penrod RD *et al.* (2017) HDAC5 and its target gene, Npas4, function in the nucleus accumbens to regulate cocaine-conditioned behaviors. *Neuron* **96**, 130–144.e6.
- 149 Newton SS, Thome J, Wallace TL, Shirayama Y, Schlesinger L, Sakai N, Chen J, Neve R, Nestler EJ & Duman RS (2002) Inhibition of cAMP response element-binding protein or dynorphin in the nucleus accumbens produces an antidepressant-like effect. *J Neurosci* 22, 10883–10890.
- 150 Pliakas AM, Carlson RR, Neve RL, Konradi C, Nestler EJ & Carlezon WA Jr (2001) Altered responsiveness to cocaine and increased immobility in the forced swim test associated with elevated cAMP

- response element-binding protein expression in nucleus accumbens. *J Neurosci* **21**, 7397–7403.
- 151 Manners MT, Brynildsen JK, Schechter M, Liu X, Eacret D & Blendy JA (2019) CREB deletion increases resilience to stress and downregulates inflammatory gene expression in the hippocampus. *Brain Behav Immun* 81, 388–398.
- 152 Wallace TL, Stellitano KE, Neve RL & Duman RS (2004) Effects of cyclic adenosine monophosphate response element binding protein overexpression in the basolateral amygdala on behavioral models of depression and anxiety. *Biol Psychiatry* 56, 151–160.
- 153 Zimprich A, Mroz G, Meyer Zu Reckendorf C, Anastasiadou S, Forstner P, Garrett L, Holter SM, Becker L, Rozman J, Prehn C et al. (2017) Serum response factor (SRF) ablation interferes with acute stress-associated immediate and long-term coping mechanisms. Mol Neurobiol 54, 8242–8262.
- 154 Kim S, Park D, Kim J, Kim D, Kim H, Mori T, Jung H, Lee D, Hong S, Jeon J et al. (2021) Npas4 regulates IQSEC3 expression in hippocampal somatostatin interneurons to mediate anxiety-like behavior. Cell Rep 36, 109417.
- 155 Crans-Vargas HN, Landaw EM, Bhatia S, Sandusky G, Moore TB & Sakamoto KM (2002) Expression of cyclic adenosine monophosphate response-element binding protein in acute leukemia. *Blood* 99, 2617–2619.
- 156 Shankar DB, Cheng JC, Kinjo K, Federman N, Moore TB, Gill A, Rao NP, Landaw EM & Sakamoto KM (2005) The role of CREB as a protooncogene in hematopoiesis and in acute myeloid leukemia. *Cancer Cell* 7, 351–362.
- 157 Aggarwal S, Kim SW, Ryu SH, Chung WC & Koo JS (2008) Growth suppression of lung cancer cells by targeting cyclic AMP response element-binding protein. *Cancer Res* 68, 981–988.
- 158 Linnerth NM, Baldwin M, Campbell C, Brown M, McGowan H & Moorehead RA (2005) IGF-II induces CREB phosphorylation and cell survival in human lung cancer cells. *Oncogene* 24, 7310–7319.
- 159 Chen P, Li M, Hao Q, Zhao X & Hu T (2018) Targeting the overexpressed CREB inhibits esophageal squamous cell carcinoma cell growth. *Oncol Rep* 39, 1369–1377.
- 160 He S, Deng Y, Liao Y, Li X, Liu J & Yao S (2017) CREB5 promotes tumor cell invasion and correlates with poor prognosis in epithelial ovarian cancer. *Oncol Lett* 14, 8156–8161.
- 161 Wu J, Wang ST, Zhang ZJ, Zhou Q & Peng BG (2018) CREB5 promotes cell proliferation and correlates with poor prognosis in hepatocellular carcinoma. *Int J Clin Exp Pathol* 11, 4908–4916.
- 162 Abramovitch R, Tavor E, Jacob-Hirsch J, Zeira E, Amariglio N, Pappo O, Rechavi G, Galun E &

- Honigman A (2004) A pivotal role of cyclic AMP-responsive element binding protein in tumor progression. *Cancer Res* **64**, 1338–1346.
- 163 Zhuang H, Meng X, Li Y, Wang X, Huang S, Liu K, Hehir M, Fang R, Jiang L, Zhou JX et al. (2016) Cyclic AMP responsive element-binding protein promotes renal cell carcinoma proliferation probably via the expression of spindle and kinetochore-associated protein 2. Oncotarget 7, 16325–16337.
- 164 Wang X, Cui H, Lou Z, Huang S, Ren Y, Wang P & Weng G (2017) Cyclic AMP responsive element-binding protein induces metastatic renal cell carcinoma by mediating the expression of matrix metallopeptidase-2/9 and proteins associated with epithelial-mesenchymal transition. *Mol Med Rep* 15, 4191–4198.
- 165 Srinivasan S, Totiger T, Shi C, Castellanos J, Lamichhane P, Dosch AR, Messaggio F, Kashikar N, Honnenahally K, Ban Y et al. (2018) Tobacco carcinogen-induced production of GM-CSF activates CREB to promote pancreatic cancer. Cancer Res 78, 6146–6158.
- 166 Steven A, Heiduk M, Recktenwald CV, Hiebl B, Wickenhauser C, Massa C & Seliger B (2015) Colorectal carcinogenesis: connecting K-RAS-induced transformation and CREB activity in vitro and in vivo. *Mol Cancer Res* 13, 1248–1262.
- 167 Wang S, Qiu J, Liu L, Su C, Qi L, Huang C, Chen X, Zhang Y, Ye Y, Ding Y et al. (2020) CREB5 promotes invasiveness and metastasis in colorectal cancer by directly activating MET. J Exp Clin Cancer Res 39, 168.
- 168 Guo L, Yin M & Wang Y (2018) CREB1, a direct target of miR-122, promotes cell proliferation and invasion in bladder cancer. *Oncol Lett* **16**, 3842–3848.
- 169 Yamada T, Amann JM, Fukuda K, Takeuchi S, Fujita N, Uehara H, Iwakiri S, Itoi K, Shilo K, Yano S et al. (2015) Akt kinase-interacting protein 1 signals through CREB to drive diffuse malignant mesothelioma. Cancer Res 75, 4188–4197.
- 170 Jean D & Bar-Eli M (2000) Regulation of tumor growth and metastasis of human melanoma by the CREB transcription factor family. *Mol Cell Biochem* **212**, 19–28.
- 171 Jean D, Harbison M, McConkey DJ, Ronai Z & Bar-Eli M (1998) CREB and its associated proteins act as survival factors for human melanoma cells. *J Biol Chem* 273, 24884–24890.
- 172 Tan X, Wang S, Zhu L, Wu C, Yin B, Zhao J, Yuan J, Qiang B & Peng X (2012) cAMP response element-binding protein promotes gliomagenesis by modulating the expression of oncogenic microRNA-23a. *Proc Natl Acad Sci USA* 109, 15805–15810.
- 173 Homminga I, Pieters R, Langerak AW, de Rooi JJ, Stubbs A, Verstegen M, Vuerhard M, Buijs-Gladdines

- J, Kooi C, Klous P *et al.* (2011) Integrated transcript and genome analyses reveal NKX2-1 and MEF2C as potential oncogenes in T cell acute lymphoblastic leukemia. *Cancer Cell* **19**, 484–497.
- 174 Schwieger M, Schuler A, Forster M, Engelmann A, Arnold MA, Delwel R, Valk PJ, Lohler J, Slany RK, Olson EN *et al.* (2009) Homing and invasiveness of MLL/ENL leukemic cells is regulated by MEF2C. *Blood* **114**, 2476–2488.
- 175 Song Z, Feng C, Lu Y, Gao Y, Lin Y & Dong C (2017) Overexpression and biological function of MEF2D in human pancreatic cancer. *Am J Transl Res* 9, 4836–4847.
- 176 Zhang M, Zhu B & Davie J (2015) Alternative splicing of MEF2C pre-mRNA controls its activity in normal myogenesis and promotes tumorigenicity in rhabdomyosarcoma cells. *J Biol Chem* 290, 310–324.
- 177 Schuermann M, Neuberg M, Hunter JB, Jenuwein T, Ryseck RP, Bravo R & Muller R (1989) The leucine repeat motif in Fos protein mediates complex formation with Jun/AP-1 and is required for transformation. *Cell* **56**, 507–516.
- 178 Miller AD, Curran T & Verma IM (1984) c-fos protein can induce cellular transformation: a novel mechanism of activation of a cellular oncogene. *Cell* **36**, 51–60.
- 179 Wang ZQ, Grigoriadis AE, Mohle-Steinlein U & Wagner EF (1991) A novel target cell for c-fos-induced oncogenesis: development of chondrogenic tumours in embryonic stem cell chimeras. *EMBO J* 10, 2437–2450.
- 180 Grigoriadis AE, Schellander K, Wang ZQ & Wagner EF (1993) Osteoblasts are target cells for transformation in c-fos transgenic mice. *J Cell Biol* 122, 685–701.
- 181 Wang Q, Liu H, Wang Q, Zhou F, Liu Y, Zhang Y, Ding H, Yuan M, Li F & Chen Y (2017) Involvement of c-Fos in cell proliferation, migration, and invasion in osteosarcoma cells accompanied by altered expression of Wnt2 and Fzd9. *PLoS One* 12, e0180558.
- 182 Liu ZG, Jiang G, Tang J, Wang H, Feng G, Chen F, Tu Z, Liu G, Zhao Y, Peng MJ et al. (2016) c-Fos over-expression promotes radioresistance and predicts poor prognosis in malignant glioma. Oncotarget 7, 65946–65956.
- 183 Saez E, Rutberg SE, Mueller E, Oppenheim H, Smoluk J, Yuspa SH & Spiegelman BM (1995) c-fos is required for malignant progression of skin tumors. *Cell* 82, 721–732.
- 184 Milde-Langosch K, Roder H, Andritzky B, Aslan B, Hemminger G, Brinkmann A, Bamberger CM, Loning T & Bamberger AM (2004) The role of the AP-1 transcription factors c-Fos, FosB, Fra-1 and Fra-2 in

- the invasion process of mammary carcinomas. *Breast Cancer Res Treat* **86**, 139–152.
- 185 Young MR, Li JJ, Rincon M, Flavell RA, Sathyanarayana BK, Hunziker R & Colburn N (1999) Transgenic mice demonstrate AP-1 (activator protein-1) transactivation is required for tumor promotion. *Proc Natl Acad Sci USA* 96, 9827–9832.
- 186 Liu Y, Ludes-Meyers J, Zhang Y, Munoz-Medellin D, Kim HT, Lu C, Ge G, Schiff R, Hilsenbeck SG, Osborne CK et al. (2002) Inhibition of AP-1 transcription factor causes blockade of multiple signal transduction pathways and inhibits breast cancer growth. Oncogene 21, 7680–7689.
- 187 Kuo PL, Chen YH, Chen TC, Shen KH & Hsu YL (2011) CXCL5/ENA78 increased cell migration and epithelial-to-mesenchymal transition of hormoneindependent prostate cancer by early growth response-1/snail signaling pathway. J Cell Physiol 226, 1224– 1231.
- 188 Tomita H, Nazmy M, Kajimoto K, Yehia G, Molina CA & Sadoshima J (2003) Inducible cAMP early repressor (ICER) is a negative-feedback regulator of cardiac hypertrophy and an important mediator of cardiac myocyte apoptosis in response to beta-adrenergic receptor stimulation. Circ Res 93, 12–22.
- 189 Kim Y, Phan D, van Rooij E, Wang DZ, McAnally J, Qi X, Richardson JA, Hill JA, Bassel-Duby R & Olson EN (2008) The MEF2D transcription factor mediates stress-dependent cardiac remodeling in mice. *J Clin Invest* 118, 124–132.
- 190 Zhou N, Lee JJ, Stoll S, Ma B, Wiener R, Wang C, Costa KD & Qiu H (2017) Inhibition of SRF/ myocardin reduces aortic stiffness by targeting vascular smooth muscle cell stiffening in hypertension. *Cardiovasc Res* 113, 171–182.
- 191 Miao G, Zhao X, Chan SL, Zhang L, Li Y, Zhang Y, Zhang L & Wang B (2022) Vascular smooth muscle cell c-Fos is critical for foam cell formation and atherosclerosis. *Metabolism* **132**, 155213.
- 192 Omura T, Yoshiyama M, Yoshida K, Nakamura Y, Kim S, Iwao H, Takeuchi K & Yoshikawa J (2002) Dominant negative mutant of c-Jun inhibits cardiomyocyte hypertrophy induced by endothelin 1 and phenylephrine. *Hypertension* 39, 81–86.
- 193 Windak R, Muller J, Felley A, Akhmedov A, Wagner EF, Pedrazzini T, Sumara G & Ricci R (2013) The AP-1 transcription factor c-Jun prevents stressimposed maladaptive remodeling of the heart. *PLoS One* **8**, e73294.
- 194 Taimor G, Schluter KD, Best P, Helmig S & Piper HM (2004) Transcription activator protein 1 mediates alpha- but not beta-adrenergic hypertrophic growth responses in adult cardiomyocytes. Am J Physiol Heart Circ Physiol 286, H2369–H2375.

- 195 Hilfiker-Kleiner D, Hilfiker A, Kaminski K, Schaefer A, Park JK, Michel K, Quint A, Yaniv M, Weitzman JB & Drexler H (2005) Lack of JunD promotes pressure overload-induced apoptosis, hypertrophic growth, and angiogenesis in the heart. *Circulation* 112, 1470–1477.
- 196 Buitrago M, Lorenz K, Maass AH, Oberdorf-Maass S, Keller U, Schmitteckert EM, Ivashchenko Y, Lohse MJ & Engelhardt S (2005) The transcriptional repressor Nab1 is a specific regulator of pathological cardiac hypertrophy. *Nat Med* 11, 837–844.
- 197 Harja E, Bucciarelli LG, Lu Y, Stern DM, Zou YS, Schmidt AM & Yan SF (2004) Early growth response-1 promotes atherogenesis: mice deficient in early growth response-1 and apolipoprotein E display decreased atherosclerosis and vascular inflammation. Circ Res 94, 333–339.
- 198 Wang RH, He JP, Su ML, Luo J, Xu M, Du XD, Chen HZ, Wang WJ, Wang Y, Zhang N *et al.* (2013) The orphan receptor TR3 participates in angiotensin II-induced cardiac hypertrophy by controlling mTOR signalling. *EMBO Mol Med* **5**, 137–148.
- 199 Wang X, Ni L, Chang D, Lu H, Jiang Y, Kim BS, Wang A, Liu X, Zhong B, Yang X et al. (2017) Cyclic AMP-responsive element-binding protein (CREB) is critical in autoimmunity by promoting Th17 but inhibiting Treg cell differentiation. EBioMedicine 25, 165–174.
- 200 Hernandez JB, Chang C, LeBlanc M, Grimm D, Le Lay J, Kaestner KH, Zheng Y & Montminy M (2015) The CREB/CRTC2 pathway modulates autoimmune disease by promoting Th17 differentiation. *Nat Commun* 6, 7216.
- 201 Hammitzsch A, Tallant C, Fedorov O, O'Mahony A, Brennan PE, Hay DA, Martinez FO, Al-Mossawi MH, de Wit J, Vecellio M et al. (2015) CBP30, a selective CBP/p300 bromodomain inhibitor, suppresses human Th17 responses. Proc Natl Acad Sci USA 112, 10768–10773.
- 202 Shiozawa S, Tanaka Y, Fujita T & Tokuhisa T (1992) Destructive arthritis without lymphocyte infiltration in H2-c-fos transgenic mice. *J Immunol* 148, 3100–3104.
- 203 Shiozawa S, Shimizu K, Tanaka K & Hino K (1997) Studies on the contribution of c-fos/AP-1 to arthritic joint destruction. *J Clin Invest* **99**, 1210–1216.
- 204 Renoux F, Stellato M, Haftmann C, Vogetseder A, Huang R, Subramaniam A, Becker MO, Blyszczuk P, Becher B, Distler JHW et al. (2020) The AP1 transcription factor Fosl2 promotes systemic autoimmunity and inflammation by repressing Treg development. Cell Rep 31, 107826.
- 205 Qi L, Saberi M, Zmuda E, Wang Y, Altarejos J, Zhang X, Dentin R, Hedrick S, Bandyopadhyay G, Hai T et al. (2009) Adipocyte CREB promotes insulin resistance in obesity. Cell Metab 9, 277–286.

- 206 Hogan MF, Ravnskjaer K, Matsumura S, Huising MO, Hull RL, Kahn SE & Montminy M (2015) Hepatic insulin resistance following chronic activation of the CREB coactivator CRTC2. *J Biol Chem* 290, 25997–26006.
- 207 Zhao L, Zhao J, Wang X, Chen Z, Peng K, Lu X, Meng L, Liu G, Guan G & Wang F (2016) Serum response factor induces endothelial-mesenchymal transition in glomerular endothelial cells to aggravate proteinuria in diabetic nephropathy. *Physiol Genomics* 48, 711–718.
- 208 Ao H, Liu B, Li H & Lu L (2019) Egr1 mediates retinal vascular dysfunction in diabetes mellitus via promoting p53 transcription. *J Cell Mol Med* **23**, 3345–3356.
- 209 Wang D, Guan MP, Zheng ZJ, Li WQ, Lyv FP, Pang RY & Xue YM (2015) Transcription factor Egr1 is involved in high glucose-induced proliferation and fibrosis in rat glomerular mesangial cells. *Cell Physiol Biochem* 36, 2093–2107.
- 210 Zhang J, Zhang Y, Sun T, Guo F, Huang S, Chandalia M, Abate N, Fan D, Xin HB, Chen YE et al. (2013) Dietary obesity-induced Egr-1 in adipocytes facilitates energy storage via suppression of FOXC2. Sci Rep 3, 1476.
- 211 Chen AC, Shirayama Y, Shin KH, Neve RL & Duman RS (2001) Expression of the cAMP response element binding protein (CREB) in hippocampus produces an antidepressant effect. *Biol Psychiatry* 49, 753–762.
- 212 Yu XW, Curlik DM, Oh MM, Yin JC & Disterhoft JF (2017) CREB overexpression in dorsal CA1 ameliorates long-term memory deficits in aged rats. *Elife* **6**, e19358.
- 213 Barrot M, Wallace DL, Bolanos CA, Graham DL, Perrotti LI, Neve RL, Chambliss H, Yin JC & Nestler EJ (2005) Regulation of anxiety and initiation of sexual behavior by CREB in the nucleus accumbens. *Proc Natl Acad Sci USA* 102, 8357–8362.
- 214 Wallace DL, Han MH, Graham DL, Green TA, Vialou V, Iniguez SD, Cao JL, Kirk A, Chakravarty S, Kumar A et al. (2009) CREB regulation of nucleus accumbens excitability mediates social isolationinduced behavioral deficits. Nat Neurosci 12, 200–209.
- 215 Vialou V, Robison AJ, Laplant QC, Covington HE 3rd, Dietz DM, Ohnishi YN, Mouzon E, Rush AJ 3rd, Watts EL, Wallace DL *et al.* (2010) DeltaFosB in brain reward circuits mediates resilience to stress and antidepressant responses. *Nat Neurosci* 13, 745–752.
- 216 Shirayama Y, Chen AC, Nakagawa S, Russell DS & Duman RS (2002) Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. *J Neurosci* 22, 3251–3261.
- 217 Caracciolo L, Marosi M, Mazzitelli J, Latifi S, Sano Y, Galvan L, Kawaguchi R, Holley S, Levine MS,

- Coppola G et al. (2018) CREB controls cortical circuit plasticity and functional recovery after stroke. Nat Commun 9, 2250.
- 218 Zhang SJ, Zou M, Lu L, Lau D, Ditzel DA, Delucinge-Vivier C, Aso Y, Descombes P & Bading H (2009) Nuclear calcium signaling controls expression of a large gene pool: identification of a gene program for acquired neuroprotection induced by synaptic activity. *PLoS Genet* 5, e1000604.
- 219 Takahashi H, Asahina R, Fujioka M, Matsui TK, Kato S, Mori E, Hioki H, Yamamoto T, Kobayashi K & Tsuboi A (2021) Ras-like Gem GTPase induced by Npas4 promotes activity-dependent neuronal tolerance for ischemic stroke. *Proc Natl Acad Sci USA* 118, e2018850118.
- 220 Shan W, Nagai T, Tanaka M, Itoh N, Furukawa-Hibi Y, Nabeshima T, Sokabe M & Yamada K (2018) Neuronal PAS domain protein 4 (Npas4) controls neuronal homeostasis in pentylenetetrazole-induced epilepsy through the induction of Homer1a. *J Neurochem* 145, 19–33.
- 221 Barker SJ, Raju RM, Milman NEP, Wang J, Davila-Velderrain J, Gunter-Rahman F, Parro CC, Bozzelli PL, Abdurrob F, Abdelaal K et al. (2021) MEF2 is a key regulator of cognitive potential and confers resilience to neurodegeneration. Sci Transl Med 13, eabd7695.
- 222 Krones-Herzig A, Mittal S, Yule K, Liang H, English C, Urcis R, Soni T, Adamson ED & Mercola D (2005) Early growth response 1 acts as a tumor suppressor in vivo and in vitro via regulation of p53. *Cancer Res* 65, 5133–5143.
- 223 Mohamad T, Kazim N, Adhikari A & Davie JK (2018) EGR1 interacts with TBX2 and functions as a tumor suppressor in rhabdomyosarcoma. *Oncotarget* 9, 18084–18098.
- 224 Xie JJ, Xie YM, Chen B, Pan F, Guo JC, Zhao Q, Shen JH, Wu ZY, Wu JY, Xu LY *et al.* (2014) ATF3 functions as a novel tumor suppressor with prognostic significance in esophageal squamous cell carcinoma. *Oncotarget* **5**, 8569–8582.
- 225 Chen C, Ge C, Liu Z, Li L, Zhao F, Tian H, Chen T, Li H, Yao M & Li J (2018) ATF3 inhibits the tumorigenesis and progression of hepatocellular carcinoma cells via upregulation of CYR61 expression. *J Exp Clin Cancer Res* 37, 263.
- 226 Morhenn K, Quentin T, Wichmann H, Steinmetz M, Prondzynski M, Sohren KD, Christ T, Geertz B, Schroder S, Schondube FA et al. (2019) Mechanistic role of the CREB-regulated transcription coactivator 1 in cardiac hypertrophy. J Mol Cell Cardiol 127, 31–43.
- 227 Forster N, Gallinat S, Jablonska J, Weiss S, Elsasser HP & Lutz W (2007) p300 protein acetyltransferase activity suppresses systemic lupus erythematosus-like

- autoimmune disease in mice. *J Immunol* **178**, 6941–6948.
- 228 Liu Y, Wang L, Han R, Beier UH, Akimova T, Bhatti T, Xiao H, Cole PA, Brindle PK & Hancock WW (2014) Two histone/protein acetyltransferases, CBP and p300, are indispensable for Foxp3+ T-regulatory cell development and function. *Mol Cell Biol* 34, 3993–4007.
- 229 Zhu B, Symonds AL, Martin JE, Kioussis D, Wraith DC, Li S & Wang P (2008) Early growth response gene 2 (Egr-2) controls the self-tolerance of T cells and prevents the development of lupuslike autoimmune disease. *J Exp Med* 205, 2295–2307.
- 230 Wang LM, Zhang Y, Li X, Zhang ML, Zhu L, Zhang GX & Xu YM (2018) Nr4a1 plays a crucial modulatory role in Th1/Th17 cell responses and CNS autoimmunity. *Brain Behav Immun* **68**, 44–55.
- 231 Boulet S, Odagiu L, Dong M, Lebel ME, Daudelin JF, Melichar HJ & Labrecque N (2021) NR4A3 mediates thymic negative selection. *J Immunol* 207, 1055–1064.
- 232 He L, Sabet A, Djedjos S, Miller R, Sun X, Hussain MA, Radovick S & Wondisford FE (2009) Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein. *Cell* 137, 635–646.
- 233 Zmuda EJ, Qi L, Zhu MX, Mirmira RG, Montminy MR & Hai T (2010) The roles of ATF3, an adaptive-response gene, in high-fat-diet-induced diabetes and pancreatic beta-cell dysfunction. *Mol Endocrinol* 24, 1423–1433.
- 234 Takahashi K, Yi H, Gu J, Ikegami D, Liu S, Iida T, Kashiwagi Y, Dong C, Kunisawa T & Hao S (2019) The mitochondrial calcium uniporter contributes to morphine tolerance through pCREB and CPEB1 in rat spinal cord dorsal horn. *Br J Anaesth* 123, e226–e238.
- 235 Zachariou V, Bolanos CA, Selley DE, Theobald D, Cassidy MP, Kelz MB, Shaw-Lutchman T, Berton O, Sim-Selley LJ, Dileone RJ et al. (2006) An essential role for DeltaFosB in the nucleus accumbens in morphine action. Nat Neurosci 9, 205–211.
- 236 Johannessen CM, Johnson LA, Piccioni F, Townes A, Frederick DT, Donahue MK, Narayan R, Flaherty KT, Wargo JA, Root DE et al. (2013) A melanocyte lineage program confers resistance to MAP kinase pathway inhibition. Nature 504, 138–142.
- 237 Cataldi A, di Giacomo V, Rapino M, Genovesi D & Rana RA (2006) Cyclic nucleotide response element binding protein (CREB) activation promotes survival signal in human K562 erythroleukemia cells exposed to ionising radiation/etoposide combined treatment. J Radiat Res 47, 113–120.
- 238 Deng X, Elzey BD, Poulson JM, Morrison WB, Ko SC, Hahn NM, Ratliff TL & Hu CD (2011) Ionizing

- radiation induces neuroendocrine differentiation of prostate cancer cells in vitro, in vivo and in prostate cancer patients. *Am J Cancer Res* **1**, 834–844.
- 239 Suarez CD, Deng X & Hu CD (2014) Targeting CREB inhibits radiation-induced neuroendocrine differentiation and increases radiation-induced cell death in prostate cancer cells. Am J Cancer Res 4, 850–861.
- 240 Whitson RJ, Lee A, Urman NM, Mirza A, Yao CY, Brown AS, Li JR, Shankar G, Fry MA, Atwood SX et al. (2018) Noncanonical hedgehog pathway activation through SRF-MKL1 promotes drug resistance in basal cell carcinomas. Nat Med 24, 271–281.
- 241 Brown FC, Still E, Koche RP, Yim CY, Takao S, Cifani P, Reed C, Gunasekera S, Ficarro SB, Romanienko P et al. (2018) MEF2C phosphorylation is required for chemotherapy resistance in acute myeloid leukemia. Cancer Discov 8, 478–497.
- 242 Zhang H, Liu W, Wang Z, Meng L, Wang Y, Yan H & Li L (2018) MEF2C promotes gefitinib resistance in hepatic cancer cells through regulating MIG6 transcription. *Tumori* 104, 221–231.
- 243 Su Y, Shin J, Zhong C, Wang S, Roychowdhury P, Lim J, Kim D, Ming GL & Song H (2017) Neuronal activity modifies the chromatin accessibility landscape in the adult brain. *Nat Neurosci* 20, 476–483.
- 244 Hu SC, Chrivia J & Ghosh A (1999) Regulation of CBP-mediated transcription by neuronal calcium signaling. *Neuron* 22, 799–808.
- 245 Chawla S, Vanhoutte P, Arnold FJ, Huang CL & Bading H (2003) Neuronal activity-dependent nucleocytoplasmic shuttling of HDAC4 and HDAC5. *J Neurochem* 85, 151–159.
- 246 Guo JU, Ma DK, Mo H, Ball MP, Jang MH, Bonaguidi MA, Balazer JA, Eaves HL, Xie B, Ford E et al. (2011) Neuronal activity modifies the DNA methylation landscape in the adult brain. Nat Neurosci 14, 1345–1351.
- 247 Halder R, Hennion M, Vidal RO, Shomroni O, Rahman RU, Rajput A, Centeno TP, van Bebber F, Capece V, Garcia Vizcaino JC et al. (2016) DNA methylation changes in plasticity genes accompany the formation and maintenance of memory. Nat Neurosci 19, 102–110.
- 248 Beck H, Flynn K, Lindenberg KS, Schwarz H, Bradke F, Di Giovanni S & Knoll B (2012) Serum response factor (SRF)-cofilin-actin signaling axis modulates mitochondrial dynamics. *Proc Natl Acad Sci USA* 109, E2523–E2532.
- 249 Marie H, Morishita W, Yu X, Calakos N & Malenka RC (2005) Generation of silent synapses by acute in vivo expression of CaMKIV and CREB. *Neuron* **45**, 741–752.
- 250 Knoll B, Kretz O, Fiedler C, Alberti S, Schutz G, Frotscher M & Nordheim A (2006) Serum response

- factor controls neuronal circuit assembly in the hippocampus. *Nat Neurosci* **9**, 195–204.
- 251 Kuzniewska B, Rejmak E, Malik AR, Jaworski J, Kaczmarek L & Kalita K (2013) Brain-derived neurotrophic factor induces matrix metalloproteinase 9 expression in neurons via the serum response factor/c-Fos pathway. *Mol Cell Biol* 33, 2149–2162.
- 252 Joo JY, Schaukowitch K, Farbiak L, Kilaru G & Kim TK (2016) Stimulus-specific combinatorial functionality of neuronal c-fos enhancers. *Nat Neurosci* 19, 75–83.
- 253 Gonzales BJ, Mukherjee D, Ashwal-Fluss R, Loewenstein Y & Citri A (2020) Subregion-specific rules govern the distribution of neuronal immediateearly gene induction. *Proc Natl Acad Sci USA* 117, 23304–23310.
- 254 Screaton RA, Conkright MD, Katoh Y, Best JL, Canettieri G, Jeffries S, Guzman E, Niessen S, Yates JR 3rd, Takemori H et al. (2004) The CREB coactivator TORC2 functions as a calcium- and cAMP-sensitive coincidence detector. Cell 119, 61–74.
- 255 Lee JH, Wen X, Cho H & Koo SH (2018) CREB/ CRTC2 controls GLP-1-dependent regulation of glucose homeostasis. FASEB J 32, 1566–1578.
- 256 Purvis JE & Lahav G (2013) Encoding and decoding cellular information through signaling dynamics. *Cell* 152, 945–956.
- 257 Bito H, Deisseroth K & Tsien RW (1996) CREB phosphorylation and dephosphorylation: a Ca(2+)-and stimulus duration-dependent switch for hippocampal gene expression. Cell 87, 1203–1214.
- 258 Wu GY, Deisseroth K & Tsien RW (2001) Activity-dependent CREB phosphorylation: convergence of a fast, sensitive calmodulin kinase pathway and a slow, less sensitive mitogen-activated protein kinase pathway. *Proc Natl Acad Sci USA* 98, 2808–2813.
- 259 Lissek T (2017) Interfacing neural network components and nucleic acids. Front Bioeng Biotechnol 5, 53.
- 260 Bading H (2013) Nuclear calcium signalling in the regulation of brain function. *Nat Rev Neurosci* 14, 593–608.
- 261 Tyssowski KM, DeStefino NR, Cho JH, Dunn CJ, Poston RG, Carty CE, Jones RD, Chang SM, Romeo P, Wurzelmann MK et al. (2018) Different neuronal activity patterns induce different gene expression programs. Neuron 98, 530–546.e11.
- 262 Biddie SC, John S, Sabo PJ, Thurman RE, Johnson TA, Schiltz RL, Miranda TB, Sung MH, Trump S, Lightman SL et al. (2011) Transcription factor AP1 potentiates chromatin accessibility and glucocorticoid receptor binding. Mol Cell 43, 145–155.
- 263 Bas-Orth C, Tan YW, Lau D & Bading H (2017) Synaptic activity drives a genomic program that

- promotes a neuronal Warburg effect. *J Biol Chem* **292**, 5183–5194.
- 264 D'Aria S, Maquet C, Li S, Dhup S, Lepez A, Kohler A, Van Hee VF, Dadhich RK, Freniere M, Andris F et al. (2024) Expression of the monocarboxylate transporter MCT1 is required for virus-specific mouse CD8(+) T cell memory development. Proc Natl Acad Sci USA 121, e2306763121.
- 265 Coles L, Litt J, Hatta H & Bonen A (2004) Exercise rapidly increases expression of the monocarboxylate transporters MCT1 and MCT4 in rat muscle. *J Physiol* 561, 253–261.
- 266 Casadio A, Martin KC, Giustetto M, Zhu H, Chen M, Bartsch D, Bailey CH & Kandel ER (1999) A transient, neuron-wide form of CREB-mediated long-term facilitation can be stabilized at specific synapses by local protein synthesis. *Cell* 99, 221–237.
- 267 Waung MW, Pfeiffer BE, Nosyreva ED, Ronesi JA & Huber KM (2008) Rapid translation of Arc/Arg3.1 selectively mediates mGluR-dependent LTD through persistent increases in AMPAR endocytosis rate.
 Neuron 59, 84–97.
- 268 Park S, Park JM, Kim S, Kim JA, Shepherd JD, Smith-Hicks CL, Chowdhury S, Kaufmann W, Kuhl D, Ryazanov AG et al. (2008) Elongation factor 2 and fragile X mental retardation protein control the dynamic translation of Arc/Arg3.1 essential for mGluR-LTD. Neuron 59, 70–83.
- 269 Vo N, Klein ME, Varlamova O, Keller DM, Yamamoto T, Goodman RH & Impey S (2005) A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. *Proc Natl Acad Sci USA* 102, 16426–16431.
- 270 Wayman GA, Davare M, Ando H, Fortin D, Varlamova O, Cheng HY, Marks D, Obrietan K, Soderling TR, Goodman RH et al. (2008) An activityregulated microRNA controls dendritic plasticity by down-regulating p250GAP. Proc Natl Acad Sci USA 105, 9093–9098.
- 271 Marchetti C, Tafi E & Marie H (2011) Viral-mediated expression of a constitutively active form of cAMP response element binding protein in the dentate gyrus increases long term synaptic plasticity. *Neuroscience* 190, 21–26.
- 272 Viosca J, Malleret G, Bourtchouladze R, Benito E, Vronskava S, Kandel ER & Barco A (2009) Chronic enhancement of CREB activity in the hippocampus interferes with the retrieval of spatial information. *Learn Mem* 16, 198–209.
- 273 Lopez de Armentia M, Jancic D, Olivares R, Alarcon JM, Kandel ER & Barco A (2007) cAMP response element-binding protein-mediated gene expression increases the intrinsic excitability of CA1 pyramidal neurons. *J Neurosci* 27, 13909–13918.

- 274 Hanahan D & Weinberg RA (2011) Hallmarks of cancer: the next generation. *Cell* **144**, 646–674.
- 275 Li L & Hanahan D (2013) Hijacking the neuronal NMDAR signaling circuit to promote tumor growth and invasion. *Cell* **153**, 86–100.
- 276 North WG, Liu F, Tian R, Abbasi H & Akerman B (2015) NMDA receptors are expressed in human ovarian cancer tissues and human ovarian cancer cell lines. *Clin Pharmacol* 7, 111–117.
- 277 Stepulak A, Sifringer M, Rzeski W, Endesfelder S, Gratopp A, Pohl EE, Bittigau P, Felderhoff-Mueser U, Kaindl AM, Buhrer C et al. (2005) NMDA antagonist inhibits the extracellular signal-regulated kinase pathway and suppresses cancer growth. Proc Natl Acad Sci USA 102, 15605–15610.
- 278 Muller-Langle A, Lutz H, Hehlgans S, Rodel F, Rau K & Laube B (2019) NMDA receptor-mediated signaling pathways enhance radiation resistance, survival and migration in glioblastoma cells a potential target for adjuvant radiotherapy. *Cancers* (*Basel*) 11, 503.
- 279 North WG, Gao G, Memoli VA, Pang RH & Lynch L (2010) Breast cancer expresses functional NMDA receptors. *Breast Cancer Res Treat* 122, 307–314.
- 280 Hardingham GE, Fukunaga Y & Bading H (2002) Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. *Nat Neurosci* **5**, 405–414.
- 281 Zhang SJ, Steijaert MN, Lau D, Schutz G, Delucinge-Vivier C, Descombes P & Bading H (2007) Decoding NMDA receptor signaling: identification of genomic programs specifying neuronal survival and death. *Neuron* 53, 549–562.
- 282 Kalluri R & Weinberg RA (2009) The basics of epithelial-mesenchymal transition. *J Clin Invest* **119**, 1420–1428.
- 283 Mehra S, Singh S & Nagathihalli N (2022) Emerging role of CREB in epithelial to mesenchymal plasticity of pancreatic cancer. *Front Oncol* **12**, 925687.
- 284 Ikeda T, Hikichi T, Miura H, Shibata H, Mitsunaga K, Yamada Y, Woltjen K, Miyamoto K, Hiratani I, Yamada Y et al. (2018) Srf destabilizes cellular identity by suppressing cell-type-specific gene expression programs. Nat Commun 9, 1387.
- 285 Stroud H, Yang MG, Tsitohay YN, Davis CP, Sherman MA, Hrvatin S, Ling E & Greenberg ME (2020) An activity-mediated transition in transcription in early postnatal neurons. *Neuron* 107, 874–890.e8.
- 286 Wang B, Guo H, Yu H, Chen Y, Xu H & Zhao G (2021) The role of the transcription factor EGR1 in cancer. *Front Oncol* 11, 642547.
- 287 Ku HC & Cheng CF (2020) Master regulator activating transcription factor 3 (ATF3) in metabolic homeostasis and cancer. Front Endocrinol (Lausanne) 11, 556.

- 288 Wrann CD, White JP, Salogiannnis J, Laznik-Bogoslavski D, Wu J, Ma D, Lin JD, Greenberg ME & Spiegelman BM (2013) Exercise induces hippocampal BDNF through a PGC-1alpha/FNDC5 pathway. *Cell Metab* 18, 649–659.
- 289 Rampon C, Jiang CH, Dong H, Tang YP, Lockhart DJ, Schultz PG, Tsien JZ & Hu Y (2000) Effects of environmental enrichment on gene expression in the brain. *Proc Natl Acad Sci USA* 97, 12880–12884.
- 290 Jaeger BN, Linker SB, Parylak SL, Barron JJ, Gallina IS, Saavedra CD, Fitzpatrick C, Lim CK, Schafer ST, Lacar B et al. (2018) A novel environment-evoked transcriptional signature predicts reactivity in single dentate granule neurons. Nat Commun 9, 3084.
- 291 Solinas M, Chauvet C, Thiriet N, El Rawas R & Jaber M (2008) Reversal of cocaine addiction by environmental enrichment. *Proc Natl Acad Sci USA* 105, 17145–17150.
- 292 Brenes JC, Fornaguera J & Sequeira-Cordero A (2020) Environmental enrichment and physical exercise attenuate the depressive-like effects induced by social isolation stress in rats. *Front Pharmacol* **11**, 804.
- 293 UK ECT Review Group (2003) Efficacy and safety of electroconvulsive therapy in depressive disorders: a systematic review and meta-analysis. *Lancet* 361, 799– 808.
- 294 Tanis KQ, Duman RS & Newton SS (2008) CREB binding and activity in brain: regional specificity and induction by electroconvulsive seizure. *Biol Psychiatry* 63, 710–720.
- 295 Newton SS, Collier EF, Hunsberger J, Adams D, Terwilliger R, Selvanayagam E & Duman RS (2003) Gene profile of electroconvulsive seizures: induction of neurotrophic and angiogenic factors. *J Neurosci* 23, 10841–10851.
- 296 Stewart C, Jeffery K & Reid I (1994) LTP-like synaptic efficacy changes following electroconvulsive stimulation. *Neuroreport* 5, 1041–1044.
- 297 Li W, Liu L, Liu YY, Luo J, Lin JY, Li X, Wang B & Min S (2012) Effects of electroconvulsive stimulation on long-term potentiation and synaptophysin in the hippocampus of rats with depressive behavior. *J ECT* 28, 111–117.
- 298 Stewart C & Reid I (1993) Electroconvulsive stimulation and synaptic plasticity in the rat. *Brain Res* **620**, 139–141.
- 299 Katz RJ (1981) Animal model of depression: effects of electroconvulsive shock therapy. *Neurosci Biobehav Rev* **5**, 273–277.
- 300 Schloesser RJ, Orvoen S, Jimenez DV, Hardy NF, Maynard KR, Sukumar M, Manji HK, Gardier AM, David DJ & Martinowich K (2015) Antidepressantlike effects of electroconvulsive seizures require adult neurogenesis in a neuroendocrine model of depression. *Brain Stimul* 8, 862–867.

- 301 Xia M, Huang R, Guo V, Southall N, Cho MH, Inglese J, Austin CP & Nirenberg M (2009) Identification of compounds that potentiate CREB signaling as possible enhancers of long-term memory. *Proc Natl Acad Sci USA* 106, 2412–2417.
- 302 Ye N, Ding Y, Wild C, Shen Q & Zhou J (2014) Small molecule inhibitors targeting activator protein 1 (AP-1). *J Med Chem* 57, 6930–6948.
- 303 Blendy JA, Kaestner KH, Schmid W, Gass P & Schutz G (1996) Targeting of the CREB gene leads to up-regulation of a novel CREB mRNA isoform. EMBO J 15, 1098–1106.
- 304 Xie F, Li BX, Kassenbrock A, Xue C, Wang X, Qian DZ, Sears RC & Xiao X (2015) Identification of a potent inhibitor of CREB-mediated gene transcription with efficacious in vivo anticancer activity. *J Med Chem* 58, 5075–5087.
- 305 Li BX, Gardner R, Xue C, Qian DZ, Xie F, Thomas G, Kazmierczak SC, Habecker BA & Xiao X (2016)

- Systemic inhibition of CREB is well-tolerated in vivo. *Sci Rep* **6**, 34513.
- 306 Levin M (2021) Bioelectric signaling: reprogrammable circuits underlying embryogenesis, regeneration, and cancer. *Cell* **184**, 1971–1989.
- 307 Yang M & Brackenbury WJ (2013) Membrane potential and cancer progression. *Front Physiol* **4**, 185.
- 308 Marino AA, Iliev IG, Schwalke MA, Gonzalez E, Marler KC & Flanagan CA (1994) Association between cell membrane potential and breast cancer. *Tumour Biol* **15**, 82–89.
- 309 Chernet BT, Adams DS, Lobikin M & Levin M (2016) Use of genetically encoded, light-gated ion translocators to control tumorigenesis. *Oncotarget* 7, 19575–19588.
- 310 Tuszynski J, Tilli TM & Levin M (2017) Ion channel and neurotransmitter modulators as electroceutical approaches to the control of cancer. *Curr Pharm Des* **23**, 4827–4841.