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Purpose: To investigate whether acetyl-L-carnitine (ALCAR) retards L-buthionine-(S,R)-sulfoximine (BSO)-induced
cataractogenesis in Wistar rat pups.
Methods: On postpartum day 3, group I pups received intraperitoneal (ip) saline and group II and group III pups received
i.p. injections of BSO once daily for three consecutive days. In addition, group III pups received ip ALCAR once daily
from postpartum days 3–15. Both eyes of each pup were examined up from postpartum day 16 to day 30. After sacrifice,
extricated pup lenses were analyzed for antioxidant and redox system components.
Results: There was dense lenticular opacification in all group II pups, minimal opacification in 40% of group III pups,
and no opacification in 60% of group III pups and in all of group I pups. Group II lenses exhibited significantly lower
values of antioxidant and redox system components and higher malondialdehyde concentrations than in group I or group
III lenses.
Conclusions: ALCAR prevents cataractogenesis in the BSO-induced cataract model, possibly by inhibiting depleting
antioxidant enzyme and redox system components and inhibiting lipid peroxidation.

Oxidative stress is a common initiator of many age-
related conditions and is probably the most important
mechanism in age-related cataractogenesis. Aging of the lens
is associated with progressive changes in the physical and
chemical properties of its structural proteins, the crystallins.
Oxidative stress-induced changes include crystallin cross-
linking, aggregation, loss of solubility, conformational
alterations, fragmentation, and enzyme inactivation. Highly
reactive species such as hydrogen peroxide (H2O2), singlet
oxygen, superoxide radicals, and hydroxyl radicals can be
generated in the eye through photochemical pathways [1] or
Fenton-type reactions [2]. The lens possesses several
protective mechanisms to prevent or limit oxidative damage.
Normal young lenses maintain optimal activity of antioxidant
enzymes and high concentrations of ascorbate and glutathione
and hence minimize the alterations wrought by excessive
oxidation. If this balance of pro- and antioxidants is disturbed,
aging occurs. Under the pathological condition, the oxidation
of lenticular proteins may lead to senile cataract [3].

Glutathione is a major constituent of mammalian lenses
and is mainly concentrated in the epithelium. Glutathione
decreases during the formation of most cataracts [4]. Reduced
glutathione (GSH) is present in a high concentration in the
lens [5,6]. GSH serves as an intracellularly-produced
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antioxidant, which resists oxidative damage to cellular
organelles by recycling other antioxidants, scavenging free
radicals, and using H2O2 and hydroperoxides where it
undergoes oxidation by glutathione peroxidase [7,8]. It also
promotes the antioxidant properties of vitamin C and vitamin
E by maintaining these nutrients in a reduced state [9]. The
second line of defense for the health of the lens is its content
of intrinsic repair enzymes that constantly dethiolate protein-
thiol mixed disulfides (protein thiolation) or protein–protein
disulfides, which have been induced by oxidative stress. This
process allows lenticular proteins to maintain their free thiols
again, thus restoring lenticular proteins as well as the function
and activities of enzymes [10]. The role of GSH as an
endogenous lenticular antioxidant results in the reduction of
lenticular hydrogen peroxide [11] and dehydroascorbate
[12].

L-buthionine-(S,R)-sulfoximine (BSO), an inhibitor of
GSH biosynthesis, can induce age-dependent cataracts in pre-
weaning mice [13] and in early postnatal rats [14] and is thus
a potential model for obtaining new information about the role
of GSH in maintaining transparency of the lens. In the
presence of reduced levels of GSH, newborn rats suffer
extensive damage to the cytosolic proteins and membrane
lipids, leading to clouding of the lens [15-17]. BSO-induced
cataracts have been prevented or reduced in frequency in vivo
by esters of GSH [12,14] and by lipoic acid [18] and ascorbate
[12].

Acetyl-L-carnitine (ALCAR), a quaternary amine, is a
naturally-occurring, short-chain derivative of L-carnitine,
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which is synthesized endogenously in the human brain, liver,
and kidneys by the acetyl carnitine transferase enzyme or
obtained from dietary sources [19]. ALCAR facilitates the
uptake of acetyl-CoA into the mitochondria during fatty acid
oxidation, enhances acetylcholine production, and stimulates
synthesis of protein and membrane phospholipids. It also
counteracts oxidative stress by inhibiting increases in lipid
hydroperoxidation [20]. ALCAR has been reported to prevent
selenite-induced cataractogenesis in a Wistar rat model both
in vitro and in vivo by maintaining lenticular antioxidant and
redox system components [21,22] and lenticular calpain
activity [23] at near normal levels. In this study, an attempt
has been made to determine the putative anticataractogenic
effect of ALCAR by preventing the depletion of glutathione
in the BSO-induced cataract model. Certain key biochemical
parameters of antioxidant and redox system components and
of lipid peroxidation have also been evaluated.

METHODS
Experimental animal: Two-day-old rat pups (Wistar strain)
were used in this study. The pups were housed with parents
in large spacious cages, and the parents were given food and
water ad libitum. The animal room was well ventilated, and a
regular 12 h light and 12 h dark cycle was maintained
throughout the experimental period. These animals were used
in accordance with institutional guidelines and with the
Association for Research in Vision and Ophthalmology
Statement for the Use of Animals in Research. The rat pups
were divided into three groups, each group comprising pups
from the same litter: Group I, which received only saline
(control); Group II, which received BSO (cataract-untreated);
Group III, which received BSO and ALCAR (cataract-
treated).

Each rat pup in groups II and III received an
intraperitoneal (ip) injection of BSO once daily for three
consecutive days starting from postpartum day 2. In addition,
pups in group III received ip injections of ALCAR (200 mg/
kg bodyweight), which was administered half an hour before
the BSO injection once a day until the pups opened their eyes.
Morphological examination: When the rat pups first opened
their eyes, a slit-lamp biomicroscopic examination was
performed on each eye to detect opacification. Prior to
performing the examination, mydriasis was achieved by a
topical ophthalmic solution, which was instilled every 30 min
for 2 h with the animals being kept in a dark room. After 2 h,
the eyes were viewed by a slit-lamp biomicroscope (Carl
Zeiss, Jena, Germany) at 12X magnification. At the end of the
experimental period (postpartum day 30), each eye was
photographed, and the degree of opacification was graded as
follows: 0=normal transparent lens; +=initial sign of nuclear
opacity involving tiny scatters; ++=partial nuclear opacity;
and +++=dense nuclear opacity.
Biochemical evaluation of redox system components and
antioxidant enzymes: Rat pups in all three groups were

anesthetized and then sacrificed by cervical dislocation on
postpartum day 30. The lenses were then excised. Both lenses
of each individual rat were processed together to constitute a
single value. The lenses were homogenized in 50 mM
phosphate buffer (pH 7.2; 1 ml/ 100 mg tissue) and centrifuged
at 14,006x g for 15 min at 4 °C. The supernatant obtained was
used for the analysis of enzymatic and non-enzymatic
parameters. To calculate the specific enzyme activity, protein
in each sample was estimated by the method of Bradford
[24].
Reduced glutathione: The GSH content was estimated by the
method of Moron et al. [25]. The lens homogenate was
centrifuged at 2,432x g for 15 min at 4 °C. To the resulting
supernatant, 0.5 ml of 10% trichloroacetic acid was added,
and the mix was recentrifuged. The resulting protein-free
supernatant was allowed to react with 4 ml of 0.3 M
Na2HPO4 (pH 8.0) and 0.5 ml of 0.04% (wt/vol) 5,5-
dithiobis-2-nitrobenzoic acid. The absorbance of the resulting
yellow color was read spectrophotometrically at 412 nm. A
parallel standard was also maintained. The results were
expressed in μmoles/g wet weight.
Glutathione reductase: This enzyme, which utilizes
nicotinamide adenine dinucleotide phosphate (NADPH) to
convert oxidized glutathione to the reduced form, was assayed
by the method of Stall et al. [26]. The change in absorbance
was read at 340 nm for 2 min at intervals of 30 s in an
ultraviolet (UV) spectrophotometer (Analytik Jena AG, Jena,
Germany). The activity of glutathione reductase (GR) was
expressed as nmoles of NADPH oxidized/min/mg protein.
Glutathione S-transferase: The activity of glutathione S-
transferase (GST) was determined by the method of Habig and
Jacoby [27]. The conjugation of GSH with 1-chloro-2,4-
dinitrobenzene (CDNB), a hydrophilic substrate, was
observed spectrophotometrically at 340 nm to measure the
activity of GST. One unit of GST was defined as the amount
of enzyme required to conjugate 1 μmol of CDNB with GSH
per min.
Glutathione peroxidase: The activity of glutathione
peroxidase (GPx) was determined essentially as described by
Rotruck et al. [28]. The principle of this method is that the rate
of glutathione oxidation by H2O2 as catalyzed by the GPx
present in the supernatant is determined. The color that
develops is read against a reagent blank at 412 nm on a
spectrophotometer. In the test, the enzyme activity was
expressed as units/mg protein (one unit was the amount of
enzyme that converted 1 µmole of GSH to the oxidized form
of glutathione [GSSH] in the presence of H2O2 per min).
Catalase: Catalase (CAT) activity was determined by the
method of Sinha [29]. In this test, dichromatic acetic acid is
reduced to chromic acetate when heated in the presence of
H2O2 with the formation of perchloric acid as an unstable
intermediate. In the test, the green color developed was read
at 590 nm against a blank on a spectrophotometer. The activity
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of catalase was expressed as units/mg protein (one unit was
the amount of enzyme that used 1 mmole of H2O2 per min).

Superoxide dismutase: Superoxide dismutase (SOD) activity
was determined by the method of Marklund and Marklund
[30]. In this test, the degree of inhibition of pyrogallol auto-
oxidation by the supernatant of the lens homogenate was
measured. The change in absorbance was read at 470 nm
against the blank each min for 3 min on a spectrophotometer.
The enzyme activity was expressed as units per mg protein.
Determination of lipid peroxidation: The extent of lipid
peroxidation was determined by the method of Ohkawa et al.
[31]. The principle of this method is that malondialdehyde

Figure 1. Slit-lamp appearance of the eye of a 30-day-old Wistar rat
pup in group II. The eye exhibited dense opacification of the lens
(Grade +++ opacification).

Figure 2. Slit-lamp appearance of the eye of 30-day-old Wistar rat
pup in group III. This eye exhibited only slight opacification of the
lens (Grade + opacification).

(MDA), an end-product of lipid peroxidation, reacts with
thiobarbituric acid (TBA) to form a pink chromogen. For this
assay, 0.2 ml of 8.1% sodium dodecyl sulfate, 1.5 ml of 20%
acetic acid (pH 3.5), and 1.5 ml of 0.81% thiobarbituric acid
aqueous solution were added in succession in a reaction tube.
To this reaction mixture, 0.2 ml of the lens homogenate was
added, and the mixture was then heated in boiling water for
60 min. After cooling to room temperature, 5 ml of the
butanol:pyridine (15:1 v/v) solution were added. The mixture
was then centrifuged at 2,432x g for 15 min and the upper
organic layer was separated. The intensity of the resulting pink
color was then read at 532 nm, and the result was expressed
as nmoles of MDA formed per gram wet weight.
Statistical analysis: The mean value of each parameter in each
individual group of rats was calculated from at least five
individual values and was expressed as mean±SD. Statistical
analysis was done by using the Student’s t-test and χ2 test
where appropriate, and p values less than 0.05 were
considered statistically significant.

RESULTS
Morphological examination: Slit-lamp examination revealed
that all 15 rat pups in group II (Figure 1 and Table 1) exhibited
dense opacification of the lens (grade +++). In contrast, only
6 of 15 (40%) rat pups in group III (Figure 2 and Table 1)
exhibited lenticular opacification (grade +) with the lenses of
the other nine pups appearing normal (grade 0). All 15 rat pups
in group I exhibited maximum transparency (grade 0) of the
lens (Figure 3 and Table 1). The difference between the value
in group II and group III rats was statistically significant (χ2

[degrees of freedom=1]=12.8; p<0.01).
Biochemical evaluation of lenticular antioxidant and redox
system components:

Figure 3. Slit-lamp appearance of the eye of 30-day-old Wistar rat
pup in group I. This eye exhibited no opacification of the lens (Grade
0 opacification).
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Redox system components—The mean activities of GR,
GST, and GPx and the mean level of GSH in lenses of BSO-
injected rats (group II) were significantly lower than those in
lenses of normal rats (group I) (p<0.05; Table 2). The mean
activities of GR, GST, and GPx and the mean level of GSH
were significantly higher in lenses of group III rats than those
in lenses of group II rats (p<0.05). However, no significant
differences were observed in the mean activities of GR, GST,
and GPx and the mean level of GSH between lenses of normal

rats (group I) and the lenses of ALCAR-treated rat lenses
(group III; Table 2).

Antioxidant enzymes—The mean activities of CAT and
SOD in lenses of BSO-injected rats (group II) were
significantly lower than the values in lenses of normal rats
(group I) that had received saline alone (p<0.05; Table 3).
Treatment with ALCAR appeared to exert a beneficial effect
since the activities of CAT and SOD were significantly
(p<0.05) higher in lenses of group III rats than group II rats
(Table 3).

Experimental
Groups

Number
of pups

  Number of pups with different
degrees of lenticular opacification

  Number of pups in
    which lenticular
opacification occurred

0 + ++ +++
Group I  15 15 - - - 0

Group II
 (cataract-untreated)

15 - - - 15 all 15

Group III
 (cataract-treated)

15 9 6 - - 6 of 15 (40%)

Group I rat pups received only saline. Group II rat pups received only L-buthionine-(S,R)-sulfoximine (BSO). Group III rat
pups received BSO and acetyl-L-carnitine. The degree of opacification was graded as follows: 0-normal transparent lens; +-
initial sign of nuclear; opacity involving tiny scatters; ++-partial nuclear opacity; and +++- mature nuclear opacity.

TABLE 2. QUANTITATIVE ANALYSIS OF REDOX SYSTEM COMPONENTS IN THE LENSES OF RAT PUPS.

Component analyzed
   (unit of activity)

Group I
(normal)

        Group II
(cataract-untreated)

      Group III
(cataract-treated)

Reduced glutathione
(μmoles/gram tissue)

8.14±0.10 4.6±0.73* 7.36±0.40*

Glutathione reductase (nmoles of
NADPH oxidized/min/mg protein)

0.183±0.07 0.115±0.06* 0.168±0.07*

Glutathione-S-transferase (μmoles of
CDNB conjugated with GSH/min)

5.50±0.32 2.89±0.38* 4.5±0.44*

Glutathione peroxidase (μmoles
glutathione oxidized/mg protein/min)

43.41±4.9 25.41±1.59* 34.59±1.67*

Each value represents the mean (±SD) of five observations. Statistical analysis was performed by the Student t-test. The asterisk
indicates statistical significance (p≤0.05) in at least one cut-off level between the group II and group I lenses and between group
III and group I lenses. Abbreviation: GSH=Reduced glutathione; NADPH=Nicotinamide adenine dinucleotide phosphate;
CDNB=1-chloro-2,4-dinitrobenzene.

TABLE 3. QUANTITATIVE ANALYSIS OF ANTIOXIDANT ENZYME PARAMETERS IN THE LENSES OF RAT PUPS.

Enzyme analyzed
 (unit of activity)

 Group I
(normal)

           Group 2
(cataract-untreated)

       Group 3
(cataract-treated)

1. Catalase (μmoles hydrogen
peroxide consumed/mg
protein/min)

7.45±0.33 4.5±0.47* 6.54±0.31*

2. Superoxide dismutase
(units/mg protein)

2.35±0.25 0.88±0.08* 1.66±0.11*

Each value represents the mean (±SD) of five observations. Statistical analysis was performed by the Student t-test. The asterisk
indicates statistical significance (p≤0.05) in at least one cut-off level between the group II and group I lenses and between group
III and group I lenses.
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Determination of lipid peroxidation—The mean MDA
level was found to be significantly higher in lenses of BSO-
injected rats (group II) than in normal rats (group I; p<0.05;
Figure 4). However, the mean MDA level in group III rat
lenses (treated with ALCAR) was significantly lower than in
group II rat lenses (p<0.05), presumably due to limitation of
lipid peroxidation.

DISCUSSION
Cataract formation is associated with oxidative insults such as
loss of lenticular glutathione, excessive H2O2, accumulation
of lipid peroxides, and lack of oxygen-detoxifying enzymes
[32-34]. Humans exposed to hyperbaric oxygen have been
found to develop cataract [35]. The role of such oxidative
insults in cataractogenesis led us to investigate the role of
ALCAR, a known antioxidant, in the prevention of lenticular
opacification in newborn rats exposed to BSO. Gross
morphological examination appeared to suggest that ALCAR
is able to significantly retard BSO-induced cataractogenesis
since 100% of rats receiving BSO alone developed dense
lenticular opacification while 60% of rats receiving BSO and
ALCAR did not develop any lenticular opacification (Figure
1, Figure 3; Table 1).

A high concentration of GSH, a major intracellular
antioxidant, has been found to protect the lens from oxidative
damage due to toxic chemicals [36]. Thus, depletion of GSH
seriously affects GSH-dependent enzymes such as GPx, GR,
and GST as well as leukotriene C4 synthetase and the
glutaredoxin system, which renders the cells to be susceptible
to a toxic challenge [37]. GR maintains the intracellular level
of GSH by preserving the integrity of cell membranes and by
stabilizing the sulfhydryl groups of proteins. Administration
of carnitine and lipoic acid to aged rats has been found to
increase the activity of GR by increasing the levels of GSH
and the reducing equivalent of NADPH [38,39].

Figure 4. Concentration of malondialdehyde in lenses of 30-day-old
Wistar rat pups. Values are expressed as mean±SD (n=5). An asterisk
indicates that a significant difference was found between group I and
group II values (p≤0.05). The sharp (hash mark) indicates that a
significant difference was found between group II and group III
values (p≤0.05).

Depletion of GSH appears to be the prime cause of BSO-
induced cataract [13]. In the present study, the levels of redox
system components (GSH, GR, and GST) were found to be
significantly lower in lenses of BSO-administered rats than in
normal rat lenses (Table 3). These lowered activities were
possibly due to the depletion of the lenticular GSH pool that
occurred as a consequence of exposure to BSO. Similar
observations have already been reported [40,41]. In the lenses
of group III rats (exposed to BSO and treated with ALCAR),
the mean level of GSH and the mean activities of GR and GST
were found to be significantly higher than the values in the
lenses of rats that were administered BSO alone (Table 3).
Similar observations have been reported in the selenite-
induced cataract model [22]. In fact, the GSH/GPx system has
been known to function as an antioxidant system in the
mitochondria and cytoplasm of lens epithelial cells. The
depletion of lenticular GSH in animals receiving BSO alone
and the increased level of GSH following administration of
ALCAR may be due to improved energy metabolism,
inhibition of electron leakage from mitochondrial electron
transport systems [42], and enhanced repair of oxidized
membrane/lipid bilayers [43,44], thereby maintaining
lenticular GSH levels.

CAT, SOD, and GPx are important components of the
innate antioxidant enzymatic defenses of the lens. CAT is able
to detoxify significant amounts of H2O2 [45]. SOD catalyzes
the removal of superoxide radicals (O2

-), which would
otherwise damage the membrane and other biological
structures [46]. The enzyme, GPx, first demonstrated in the
lens by Pirie [47], has been reported to maintain the integrity
of the phospholipid bilayer of membranes by inhibiting lipid
peroxidation. Thus, CAT and GPx catalyze the transformation
of H2O2 within the cell to harmless by-products, thereby
curtailing the quantity of cellular destruction inflicted by
products of lipid peroxidation. A reduction in the activities of
these enzymes in tissues has been associated with the
accumulation of highly reactive free radicals, leading to loss
of the integrity and function of cell membranes [45,48,49]. In
the present in vivo study, the mean activities of CAT, SOD,
and GPx were found to be significantly lower in the lenses of
rats exposed to BSO alone than those in normal rat lenses
(Table 2). Such a reduction in the activities of these enzymes
in BSO-induced cataractogenesis has been reported in vitro
[50] and in vivo [18,51]. However, in the lenses of rats that
had been exposed to BSO and treated with ALCAR, the
activities of these enzymes were maintained at near normal
levels.

The excessive generation of free radicals leads to
peroxidative changes that ultimately result in enhanced lipid
peroxidation [52], which causes changes in biochemical
processes and structural integrity and leads to cellular damage
[53]. In the present investigation, the mean level of lenticular
MDA was found to be significantly higher in rats that had been
administered BSO alone than in normal rats. However, the
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mean levels of MDA were significantly lower in lenses of
group III rats (BSO-administered and ALCAR-treated) than
in group II rat lenses (Figure 4). Thus, lenses of rats given
BSO alone showed a significant depletion of GSH and
increased membrane damage as indicated by the increased
levels of MDA (Figure 4). However, ALCAR appeared to
prevent the occurrence of such changes. Similar protective
effects of ALCAR have been previously reported in selenite-
challenged rat lenses [22].

We have previously reported that ALCAR appears to
prevent selenite-induced cataractogenesis [22]. The results of
the present study add support to our hypothesis that ALCAR
can also prevent cataractogenesis that is mediated by
glutathione deprivation and induced by BSO. These
preventive effects of ALCAR are suggested by its ability to
maintain lenticular antioxidant and redox system components
at near normal levels and to prevent excessive lipid
peroxidation. The relevance of these results in the context of
human senile cataractogenesis requires further study.
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