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Abstract: In this study, comparative analysis of calculated (GIAO method, DFT level) and experi-
mental 31P NMR shifts for a wide range of model palladium complexes showed that, on the whole,
the theory reproduces the experimental data well. The exceptions are the complexes with the P=O
phosphorus, for which there is a systematic underestimation of shielding, the value of which depends
on the flexibility of the basis sets, especially at the geometry optimization stage. The use of triple-ζ
quality basis sets and additional polarization functions at this stage reduces the underestimation of
shielding for such phosphorus atoms. To summarize, in practice, for the rapid assessment of 31P
NMR shifts, with the exception of the P=O type, a simple PBE0/{6-311G(2d,2p); Pd(SDD)}//PBE0/
{6-31+G(d); Pd(SDD)} approximation is quite acceptable (RMSE = 8.9 ppm). Optimal, from the
point of view of “price–quality” ratio, is the PBE0/{6-311G(2d,2p); Pd(SDD)}//PBE0/{6-311+G(2d);
Pd(SDD)} (RMSE = 8.0 ppm) and the PBE0/{def2-TZVP; Pd(SDD)}//PBE0/{6-311+G(2d); Pd(SDD)}
(RMSE = 6.9 ppm) approaches. In all cases, a linear scaling procedure is necessary to minimize
systematic errors.

Keywords: DFT calculations; NMR chemical shifts; palladium complexes; phosphorus

1. Introduction

Transition metal (TM) complexes are catalysts for a number of reactions that are
important from the point of view of practical applications [1–4]. The rational design of
such systems requires information about the structure, type of coordination, and electronic
structure as well. To this end, NMR chemical shifts (CS) of atoms directly coordinating
the metal are sensitive to the electronic structure and, thus, can be used to obtain hidden
information about the electronic state of the complex. Therefore, one needs to have a tool
that allows the calculation of NMR shifts based on the principles of quantum chemistry.
However, in the case of TM complexes, this is not a trivial task, and until recently, there was
no such computational method that could be considered safe and reliable. This is due to
the fact that in TM the requirements to account for electron correlation effects [5,6] sharply
increase. Moreover, in the case of heavier metals, it may be necessary to take into account
relativistic effects as well [7–9].

Nevertheless, it has recently been shown [10–12] that for nickel complexes, the 13C
and 31P CSs can be calculated within the non-relativistic approximation at the Kohn–Sham
(KS) density functional theory [13]. Moreover, the approach allowed several anomalies to
be explained with the interpretation of NMR data [10] and to revise some structures [11].

From the point of view of catalysis and catalyst development, palladium- and platinum-
based complexes play important roles [14–23]. Therefore, in order to deal with such systems,
it is necessary to have a similar tool to calculate 31P CSs in the complexes of these metals. In
this case, however, there is a certain pessimism, since it is believed that for 4d and, especially
for 5d metals, relativistic effects may need to be taken into account [8]. Unfortunately, fully
relativistic calculations for such systems are still difficult due to the enormous demands on
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computational resources. In this regard, it is interesting to see whether it will be sufficient
to take these effects into account, at least within the framework of relatively simple scalar
approximations using the quasi-relativistic effective core potential (ECP) [24]. Therefore, at
this stage, we try to evaluate the scopes and limitations of density functional theory (DFT)
methods for estimating 31P CSs in palladium complexes using this approach to describe
the electronic structure of the metal. In fact, the present study was motivated by practical
needs and the main goal is to propose a simple DFT method that could be safely applied to
calculate 31P NMR shifts in Pd complexes.

2. Results and Discussion
2.1. General Overview

To calculate the 31P NMR shifts in Pd complexes, a combination similar to the one used
in nickel complexes was applied as an initial approximation [11]—namely, the PBE0 func-
tional with the Pople’s basis set of double-ζ quality (6-31+G(d)) on elements for geometry
optimization and the basis set of triple-ζ quality (6-311G(2d,2p)) for shielding calculation—
while ECP SDD was applied to describe Pd (PBE0/{6-311G(2d,2p); Pd(SDD)}//PBE0/
{6-31+G(d); Pd(SDD)}; hereafter, this combination will be referred to as comb_1. To assess
the quality of the calculation, Pd complexes based on organophosphorus ligands (39 in
total, structures with numbering in Figures S1–S4 in the Supporting Information (SI)),
which represent almost all known complexes of this type and have 31P CSs covering the
wide range of possible values (from −50 to 200 ppm), were used as components of a test
set. Calculations were carried out within the framework of the GIAO method [25], all 31P
CSs were referenced to H3PO4, and the linear scaling procedure was applied [26–28] with
coefficients similar to that for nickel complexes [11]. To begin with, the calculations were
carried out without taking into account the solvent effects (Table S1).

It was found that, in general, for most of the complexes, the theory reproduces 31P
CSs well, and there is a correlation between the calculated and experimental data close to
linear (Figure 1).
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Figure 1. Correlation of calculated (PBE0/{6-311G(2d,2p); Pd(SDD)}//PBE0/{6-31+G(d); Pd(SDD)})
vs. experimental 31P CSs for palladium complexes 1–39. Complexes based on σ-donor ligands (•),
charged palladium complexes based on σ-donor ligands (•), complexes containing P=O groups (•
are the P=O phosphorus, • are other phosphorus atoms in these types of complexes), and complexes
based on π-donor ligands (•).
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A more detailed analysis allowed us to estimate the quality of calculations for each
of the types of complexes under consideration. Specifically, in Pd complexes based on σ-
donor ligands (Figure S1), the calculated 31P CSs correlate well with the experimental data
(• in Figure 1, R2 = 0.982). In charged palladium complexes based on σ-donor ligands
(Figure S2), the situation is somewhat more complicated. Here, the best agreement of the
calculation with the experiment is achieved (1) for systems with a weakly coordinating
counterion (BF4) if the counterion is not taken into account in the calculation; (2) for
systems with a strongly coordinating counterion (Cl and Br) to take them into account if
they complement the complex to a square–planar; otherwise, as with a weak counterion, it
is necessary to carry out the calculation without counterion. With this approach, for such
systems, there is good agreement between the calculation and experiment (R2 = 0.988, • in
Figure 1). The most important finding is that the systematic deviation of the calculated 31P
CS from the experimental ones is observed in Pd complexes based on ligands containing
P=O groups (Figure S3). Specifically, there is an overestimation by ~15–30 ppm for CSs of
only P=O phosphorus atoms (• in Figure 1). At the same time, for this type of phosphorus,
the dependence is also close to linear. As for palladium complexes based on π-donor
ligands (Figure S4), the theory reproduces the experiment well (R2 = 0.973, • in Figure 1).
Thus, it can be argued that, at the PBE0/{6-311G(2d,2p); Pd(SDD)}//PBE0/{6-31+G(d);
Pd(SDD)} level, a good agreement can be reached between the calculated and experimental
31P NMR shifts for most complexes. In principle, there are certain problems only with the
P=O type of phosphorus.

2.2. Optimization of the Computational Approach

In an attempt to resolve this problem, the main factors that can affect the results of
the calculation were considered. These are the medium effects, the impact of high-spin
states, the influence of the quality of basis set/functional, the possible impact of relativistic
effects, etc. Of the possible effects, one that is easily verifiable is the effect of a solvent.
However, calculations taking into account the solvent within the polarizable continuum
model (PCM) do not lead to improvements for the P=O phosphorus atoms (Table S1).
Moreover, contributions due to high-spin states can be also excluded, since these molecular
systems are very high in energy (35–60 kcal/mole, Table S3).

Thus, there is no “simple” way to correct the deviation for the P=O type of phosphorus.
In order to create a cost-effective method, we fixed the functional to the PBE0 and screened
different basis-set/functional combinations so as to obtain adequate agreement between
calculated and experimental 31P shifts. This requires a detailed systematic analysis, which
is more convenient to carry out on a smaller number of “training” models, including both
problematic complexes (22, 23, 26, 28–30, 32) and several normal systems (2, 9, 17, 38) with
different types of ligands (σ, π, charged) in the entire range of 13P CSs (Figure 2).
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It was previously shown that improving the quality of the basis set at the geometry
optimization stage leads to significant improvement in the calculated 13C NMR shifts in
nickel complexes [10]. Therefore, by analogy, the first step was an attempt to “enhance”
the basis functions within the Pople’s style basis sets. Indeed, the addition of one more
polarization function for heavy elements leads to an increase in the correlation coefficient
between calculated and experimental CSs (Table 1, Figure 3). The use of a basis set of triple-ζ
quality also improves the R2 (Table 1, Figure 3). The interplay of these modifications on the
basis sets leads to the best results (Table 1, Figure 3), and the systematic underestimation of
the P=O CSs decreases by half (by ~5–15 ppm), although it cannot be completely corrected
even when using this resource-intensive combination (Table S4).

Table 1. R2 dependence on combination used in the calculations for the “training” set of Pd complexes
(2, 9, 17, 22–23, 26, 28–30, 32, 38).

Entry Combination
Basis Set a

R2 ∆δ b, ppm
Elements Pd

1 comb_1 6-311G(2d,2p)//6-31+G(d) SDD//SDD 0.936 24
2 comb_2 6-311G(2d,2p)//6-31+G(2d) SDD//SDD 0.951 19
3 comb_3 6-311G(2d,2p)//6-311+G(d) SDD//SDD 0.944 22
4 comb_4 6-311G(2d,2p)//6-311+G(2d) SDD//SDD 0.955 18
5 comb_5 6-311+G(2d,2p)//6-311+G(2d) SDD//SDD 0.959 18
6 comb_6 6-311G(2d,2p)//6-311+G(3df) SDD//SDD 0.959 14
7 comb_7 6-311G(2d,2p)//6-311+G(2d) def2-TZVPD//def2-TZVPD 0.953 19
8 comb_8 6-311G(2d,2p)//6-311+G(2d) SDD//DKH3-DZP 0.904 20
9 comb_9 6-311G(2d,2p)//6-311+G(2d) DKH3-DZP//DKH3-DZP 0.829 28 (65) c

10 comb_10 cc-pVTZ//6-311+G(3df) SDD//SDD 0.950 15
11 comb_11 pc-2//6-311+G(3df) SDD//SDD 0.943 19
12 comb_12 def2-TZVP//6-311+G(3df) SDD//SDD 0.965 9
13 comb_13 def2-TZVP//6-311+G(2d) SDD//SDD 0.964 13
14 comb_14 TZV//6-311+G(3df) SDD//SDD 0.833 68
15 comb_15 def2-TZVP//def2-TZVP SDD//SDD 0.964 11
16 comb_16 6-311G(2d,2p)//cc-pVDZ SDD//SDD 0.911 36
17 comb_17 6-311G(2d,2p)//cc-pVTZ SDD//SDD 0.953 17
18 comb_18 6-311G(2d,2p)//pc-2 SDD//SDD 0.958 11
19 comb_19 6-311G(2d,2p)//def2-TZVP SDD//SDD 0.956 15
20 comb_20 TZV//TZV SDD//SDD 0.689 118 (101) c

21 comb_21 cc-pVTZ//6-31+G(d) SDD//SDD 0.927 22
22 comb_22 cc-pVTZ//cc-pVDZ SDD//SDD 0.901 37

a Basis sets used for shielding calculation//geometry optimization steps; b average deviation from the general
correlation line for P=O phosphorus atoms; c in brackets average deviation from the general correlation line for
P=P phosphorus atoms.
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On the other hand, the enlarging of the basis sets on the elements at the CS calculation
stage by adding diffuse functions leads only to a minimal improvement, although the
calculations become very time-consuming (Figure 3). Thus, further augmentation of the
basis sets at the shielding calculation stage does not seem rational.

As a last resort, in an attempt to improve the results of calculations, we further
augmented the basis sets at the optimization stage by adding another polarization function
on the elements. Indeed, this led to some improvement in the agreement of the calculated CS
with the experimental ones for problematic phosphorus atoms (Table 1, entry 6), although
the time costs increased significantly (vide infra).

Thus, we concluded that the more flexible the basis set is on heavy elements at the
geometry optimization stage, the better the structure is, and as a result, the better the 31P
NMR shifts. However, the reason for the imperfect agreement between the calculation
and experiment may also be in the quality of the basis sets on the metal. For example, for
nickel complexes, diffusion functions on the metal are important for obtaining the correct
geometry of the complex and, accordingly, its 13C NMR shifts [10]. Unfortunately, in the
case of palladium, the choice of basis sets is very limited. Of the currently available the
def2-TZVPD ECP with diffuse functions on valence orbitals is the most extended basis
set defined [21,29]. Thus, calculations were carried out using this ECP on palladium and
6-311G(2d,2p)//6-311+G(2d) basis sets on the elements at the shielding//optimization
calculation stages, respectively. However, it was found that, in general, the use of this ECP
does not lead to an improvement, compared with the comb_1 combination with SDD ECP
on Pd (Table 1, entry 7).

A rare alternative to ECP on palladium is the Sapporo-DKH3-DZP all-electron (AE) basis
set [30,31], which is a compact Gaussian-type basis set for relativistic molecular calculations.
However, the use of this AE basis set on palladium leads even to worse results. For example,
if to use the basis set for Pd at the geometry optimization stage (Table 1, entry 8) the systematic
underestimation of the P=O CSs increases (20 versus 18 ppm). Moreover, an application of
this basis set for Pd at both stages of calculations leads to the worst results. Specifically, in
addition to P=O (∆δ = 28 ppm), the P=P (∆δ = 65 ppm) phosphorus also starts to deviate
from the main correlation (Table 1, entry 9). Thus, it appears that this basis set for Pd is not
good for NMR shielding calculations.

Up to this point, we had checked only Pople’s basis sets on elements. As an alterna-
tive, three more popular basis sets, which are often used to calculate magnetic properties
in organic systems, were tested. There are Dunning’s [32,33], Jensen’s [34–36], and Al-
richs’s [29,37,38] basis sets.

First, we analyzed the performance of the basis set for the CS calculation stage using
the best geometry optimized at the PBE0/6-311+G(3df) level. It was revealed that the use
of Dunning’s correlation-consistent basis sets of triple-ζ quality (cc-pVTZ) for shielding
calculation leads to some improvement, particularly for problematic P=O phosphorus
(Table 1, entry 10). The Jensen’s polarization-consistent (pc-2) basis sets, which were
specially developed for DFT calculations, showed worse results for P=O phosphorus
(∆δ = 19 ppm). Additionally, the best results are observed if the Alrichs’s (def2-TZVP) basis
sets were used for elements (∆δ = 9 ppm).

Next, we considered how these basis sets perform at the geometry optimization
stage while the PBE0/6-311G(2d,2p) level was applied as a standard for CS calculation
(Table 1, entry 16–19). We started with the cc-pVDZ (double-ζ) for optimization. The use of
this basis set for geometry optimization leads to a very poor correlation between calculation
and experiment (R2 = 0.911). Changing from the basis set of double- to triple-ζ quality
(cc-pVTZ) leads to notable improvement, and the R2 becomes close to that obtained with
PBE0/6-311+G(2d) geometry. The use of pc-2 or def2-TZVP basis sets results in 31P shifts
for problematic phosphorus that are only slightly better than the corresponding Pople’s
combination (comb_4), although the time costs increase substantially (vide infra).

Thus, the def2-TZVP//6-311+G(3df) combination looks the best. However, it is very
difficult to work with in terms of both geometry optimization and CS calculation. Therefore,
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taking into account practical aspects, options with lighter basis sets were considered both at
the geometry optimization stage and shielding calculation. It was found that, for example,
the PBE0/6-311+G(2d) geometry with the def2-TZVP basis at the shielding calculation
reproduces the experimental values quite well (∆δ = 13 ppm). At the same time, easing the
basis set at the shielding calculation stage just to TZV leads to a significant deterioration in
the results (∆δ = 81 ppm).

Several other combinations were also tested (Table 1, entries 20–22). Of those consid-
ered, only the use of the def2-TZVP basis at both stages of the calculation leads to a good
correlation between the calculation and experiment (R2 = 0.964). The rest of the combinations
do not look promising. Moreover, some variants proved to be bad, although, for example, in
the case of 13C shifts in nickel complexes, they performed exceptionally well [10]. It should
be noted that, in this case, both the P=O and phosphorus for systems with multiple bonds
begin to deviate strongly from the general dependence (Table 1, entry 20).

Thus, based on the analysis performed on the training set, we came to the conclusion
that several combinations are promising, leading to approximately the same correlation
coefficients between the calculation and experiments. However, on the other hand, these
approximations vary greatly in the time spent on calculations. Therefore, taking into
account these factors, some of them seem to be more preferable from a practical point
of view.

2.3. Practical Aspects, Quality of Calculations, and Computational Costs

The aim of this study is not just to find an approach that will allow 31P shifts to
be estimated in Pd complexes with sufficient accuracy but to develop a tool that can be
relatively easily applied for large molecules of practical interest using modest computer
resources. Unfortunately, not all the approximations discussed above satisfy these require-
ments. Therefore, in this section, we discuss a comparative analysis of computational costs
in order to choose the leading combinations in terms of the “price–quality” ratio.

First of all, let us consider the optimization stage since it is the most time-consuming.
Complex 22 was taken as an example, and all optimizations were carried out from the same
starting geometry. If we take the PBE0/6-31+G(d) approximation as a reference for time
costs, then among the Pople’s type basis sets, geometry optimization using the 6-311+G(2d)
and 6-311+G(3df) basis sets takes ~3 and ~10 times longer, respectively (Figure 4a). For the
geometry optimization stage, this is essential, since, when performing calculations on a
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In turn, using Dunning’s basis sets of double- or triple-ζ quality is ~2 and ~7 times
longer than using a 6-31+G(d) basis. Finally, the Jensen’s and Alrichs’s basis sets are
~7–9 times more time-consuming than the 6-31+G(d) basis set. Thus, at the geometry
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optimization stage, these basis sets are several times more time-consuming than the Pople’s
6-311+G(2d) basis sets at close values of R2 (Figure 3).

As for the CS calculation stage, when adding diffuse functions to the starting basis
6-311G(2d,2p), the “time–cost” increases by an order of magnitude only with a slight
increase in quality (Figure 4b). Moreover, calculations using Dunning’s and Jensen’s basis
sets of triple-ζ quality are lengthened by ~14 times, compared with 6-311G(2d,2p) at lower
quality. Using the Alrichs’s basis set leads to an increase in time by about an order of
magnitude, but it leads to a gain in quality, compared with the Pople’s basis set.

Thus, taking into account practical aspects, preference can be given to two combina-
tions, in order to check their quality on a more extended test set—namely, the 6-311+G(2d)
level looks optimal for the geometry optimization stage, while for the shielding calculation,
the use of 6-311G(2d,2p) and def2-TZVP basis sets looks promising.

2.4. Checking the Leading Combinations on the Entire Test Set of Pd Complexes

The calculations performed for the entire test set using the PBE0/{6-311G(2d,2p);
Pd(SDD)}//PBE0/{6-311+G(2d); Pd(SDD)} combination showed that improvement is
observed for all problematic phosphorus (R2 = 0.963 versus 0.954), while for “normal” com-
plexes, the changes are minimal (Figure 5). In other words, if there is no P=O phosphorus
in the complex, then the lighter comb_1 combination is also sufficient.
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in Figure 1.

At the same time, a more careful analysis reveals limitations typical for this level of
calculations in the form of systematic errors when moving to lower fields. However, it is
easy to minimize such errors by performing a linear scaling procedure [26–28] according to
Equation (1) using the regression analysis parameters for the test set (Table 2).

δscaled = (δ − Intercept)/Slope, (1)

where δ is the calculated CS for a particular nucleus, and intercept and slope are
scaling factors.
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Table 2. Empirical scaling factors obtained by the linear regression analysis of calculated and
experimental δ31P for the title Pd complexes.

Level of Theory R2 Slope Intercept RMSE

PBE0/6-311G(2d,2p)//PBE0/6-31+G(d) 0.954 1.1766 −12.297 8.9
PBE0/6-311G(2d,2p)//PBE0/6-311+G(2d) 0.963 1.1346 −13.8962 8.0

PBE0/def2-TZVP//PBE0/6-311+G(2d) 0.972 0.9297 1.1235 6.9

Thus, the application of this procedure allows for the evaluation of 31P shifts in
palladium complexes with RMSE = 8.0 ppm.

Similar calculations using (PBE0/{def2-TZVP; Pd(SDD)}//PBE0/{6-311+G(2d);
Pd(SDD)}) approximation for the entire test set lead to even higher correlation coeffi-
cients (R2 = 0.972). The linear scaling procedure allows for estimates of 31P CS with the best
RMSE = 6.9 ppm (Figure S5).

2.5. Impact of Coordination Type on 31P NMR Shifts

The NMR shifts of the atoms directly involved in the formation of the complex with
the TM strongly depend on the particular structure. Therefore, a comparison of calculated
and experimental 31P NMR shifts can be used as a reliable tool to confirm or rule out
hypothetical structures. The effectiveness of the tool can be demonstrated by the example
of structure determination of complexes based on triorganylcyclotriphosphines [39]. In
general, in such compounds, cyclophosphines can bind with TM in the η2 or η1, η1 fashions.
According to X-ray data, in the case of Pd, the P=P double bond coordinates with transition
metals in the η2 form, while for Pt, they undergo a ring-opening process during the reaction.
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Indeed, according to calculations, for complex 35, for example, both types corre-
spond to an energy minimum (Figure 6). However, only for the η2 form (35, Figure 6) is
the difference in the calculated (comb_3) versus the experimental 31P NMR shifts small
(ca. 9 ppm), while for the η1, η1 form, with the ring-opening process of complex 35 (a), the
deviation is more than 130 ppm (Figure 6). Thus, comparing theoretical results with those
obtained by experiment is an easy way to determine its coordination type in solution as a
π complex.
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3. Materials and Methods
Calculations

The quantum chemical calculations were carried out within the framework of the
Kohn Sham density functional theory [13], with the Gaussian 03 [40] (Revision B.04)
and the Gaussian 16 [41] (Revision A.03) software packages by using PBE0 [42] func-
tional and a number of families of basis sets (Pople’s [43–50], Ahlrichs’s [29,37,38], Dun-
ning’s [32,33], Jensen’s [34–36] sets). For the Pd center, the quasi-relativistic Stuttgart–
Dresden ECP28MWB was used with corresponding (8s7p6d)/(6s5p3d) GTO valence basis
set [24] (denoted as “(SDD)”), Sapporo-DKH3-DZP-diffuse (deprecated) basis set [30,31],
and def2-TZVPD basis set [21,29]. Wherever possible, geometry optimization was started
from an X-ray structure. For most of the complexes, the calculations were carried out for
all possible conformers/isomers, and results for the lowest energy forms were used in
the analysis. To take into account the medium effects, calculations were also carried out
in the framework of the Polarizable Continuum Model [51] (denoted as “PCM”), with
chloroform as solvent. To determine the energies of triplet states, geometry optimizations
were performed at the spin-unrestricted formalism (UPBE0/6-31+G(d)). 31P NMR CSs
were calculated by the GIAO method [25]. All 31P data were referenced to H3PO4.

The pc-2, def2-TZVP, def2-TZVPD, and Sapporo-DKH3-DZP-diffuse basis sets were
downloaded from the EMSL basis set library for the Gaussian package [52].

The Gaussian 03 calculations were carried out on a PC with IntelCore i7-3970X CPU,
3.5 GHz. Calculations with 6-311+G(3df), pc-2, cc-pVTZ, def2-TZVP, and Sapporo-DKH3-
DZP-diffuse (deprecated) basis sets were carried out with the Gaussian 16 on 20 CPUs,
IntelXeon ES-2650 2.20 GHz.

4. Conclusions

Comparative analysis of calculated (GIAO method, DFT level) and experimental 31P
NMR shifts for a wide range of model palladium complexes showed that, on the whole,
the theory reproduces the experimental data well. The exceptions are the complexes with
P=O phosphorus, for which there is a systematic underestimation of shielding, the value of
which depends on the flexibility of the basis sets, especially at the geometry optimization
stage. The use of basis sets of triple-ζ quality and additional polarization functions at this
stage reduces the underestimation of shielding for such phosphorus compounds.

To summarize, in practice, for the rapid assessment of phosphorus CS, with the excep-
tion of the P=O type, a rather simple PBE0/{6-311G(2d,2p); Pd(SDD)}//PBE0/{6-31+G(d);
Pd(SDD)} approximation is quite acceptable (RMSE = 8.9 ppm). Optimal from the point of
view of “price-quality” ratio is the PBE0/{6-311G(2d,2p); Pd(SDD)}//PBE0/{6-311+G(2d);
Pd(SDD)} (RMSE = 8.0 ppm) and the PBE0/{def2-TZVP; Pd(SDD)}//PBE0/{6-311+G(2d);
Pd(SDD)} (RMSE = 6.9 ppm) approaches. The use of the PBE0/6-311+G(3df) level at the
geometry optimization stage leads to some further improvement in the calculation, but
the requirements for computer resources are increasing dramatically. In all cases, a linear
scaling procedure is necessary to minimize systematic errors.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27092668/s1, Structures of all model complexes [53–70]
with experimental 31P NMR shifts and all calculation results. Table S1: Experimental and calculated
31P NMR shifts (ppm) for all model complexes. Table S2: Empirical scaling factors obtained by the
linear regression analysis of calculated and experimental δ31P for the title Pd-complexes. Table S3:
Triplet-singlet states energy gap (UPBE0/6-31+G(d)) for the “training” set of Pd complexes (2, 9, 17,
22–23, 26, 28–30, 32, 38). Table S4: Experimental and calculated (by different combinations) 31P NMR
shifts (ppm) for the “training” set of Pd complexes (2, 9, 17, 22–23, 26, 28–30, 32, 38).

https://www.mdpi.com/article/10.3390/molecules27092668/s1
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