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Abstract
Background: The application of high throughput approaches to the identification of protein
interactions has offered for the first time a glimpse of the global interactome of some model
organisms. Until now, however, such genome-wide approaches have not been applied to the human
proteome.

Results: In order to fill this gap we have assembled an inferred human protein interaction network
where interactions discovered in model organisms are mapped onto the corresponding human
orthologs. In addition to a stringent assignment to orthology classes based on the InParanoid
algorithm, we have implemented a string matching algorithm to filter out orthology assignments of
proteins whose global domain organization is not conserved. Finally, we have assessed the accuracy
of our own, and related, inferred networks by benchmarking them against i) an assembled
experimental interactome, ii) a network derived by mining of the scientific literature and iii) by
measuring the enrichment of interacting protein pairs sharing common Gene Ontology annotation.

Conclusion: The resulting networks are named HomoMINT and HomoMINT_filtered, the latter
being based on the orthology table filtered by the domain architecture matching algorithm. They
contains 9749 and 5203 interactions respectively and can be analyzed and viewed in the context of
the experimentally verified interactions between human proteins stored in the MINT database.
HomoMINT is constantly updated to take into account the growing information in the MINT
database.

Background
The dynamic assembly of stable or transient protein com-
plexes regulates cell physiology by presiding over basic
cell functions. In principle, if we knew the kinetic details
of the interaction between any macromolecule in a cell, as
well as the concentration of each player, we could start
thinking about modeling a virtual cell in order to under-
stand, or infer, its response to any given stimulus.

Regrettably we are very far from this level of understand-
ing of the interactions within a cell proteome. In recent
years, however, high throughput approaches based on the
yeast two hybrid [1] and TAP TAG [2] methods have pro-
vided for the first time a genome-wide perspective of the
interactome of simple model organisms such as H.
pylori[3], E. coli[4], S. cerevisiae [5-8], C. elegans [9] and D.
melanogaster[10,11]. Comparative analysis of comprehen-
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sive experiments conducted by different groups, using
similar or orthogonal approaches, has led to the recogni-
tion that the available interactomes are noisy and largely
incomplete [12]. Nevertheless this remarkable experimen-
tal effort has put us in a position to analyze the interac-
tomes' broad structure and to start mapping, in these
complex protein meshes, the pathway representation we
are used to. Unfortunately no such high-throughput data
are yet available for the human proteome while genome-
wide approaches aimed at the elucidation of the human

interactome are only at their inception. However, assum-
ing that functional protein interactions are conserved in
evolution, one can consider extending the experimentally
determined human protein interaction network by using
data from the model organism protein interaction data-
sets. This can be achieved by transferring the interaction
information from each organism to the human proteome
and requires the identification of genes that have a com-
mon ancestor and share the same function in the two
organisms (orthologs). Lehner and Fraser [13] have used

HomoMINT as a web toolFigure 1
HomoMINT as a web tool. HomoMINT can be searched and analyzed by taking advantage of the tools developed for 
MINT. A) A search can be carried out in the protein table by entering in the form one of the following: a protein name, a Uni-
prot or a PDB identifier, a keyword, an InterPro domain or a gene ontology term (top part of the form). Alternatively the 
search can be carried out on the interaction table (centre). Finally (lower part) a BLAST search can be carried out by entering 
a protein sequence. B) Search output listing on the right the partners of the query protein and on the left the experimental evi-
dence supporting the interactions. C) The Mint Viewer is an applet that permits the graphic display of interaction networks. 
Edges marked by small blue circles indicate that the corresponding interactions were inferred from experiments carried out in 
model organisms, while yellow circles mark interactions supported by direct experimental results. Interactions that are 
inferred from model organisms but are also supported by direct experiments are marked by yellow circles with a blue contour. 
A series of check boxes make it possible to visualize interactions inferred by any combination of model organism interactomes.
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the InParanoid algorithm [14] to infer a network of over
70000 interactions between 6200 human proteins gener-
ated by using data from the yeast, fly and worm interac-
tome. More recently Brown and Jurisica [15] have
developed OPHID a web-based database containing
23359 predicted interactions between human proteins.
OPHID was assembled by mapping model organism PPIs
to human orthologs using BLASTP and the reciprocal best
hit approach. Here we present HomoMINT containing
9749 inferred interactions between 4125 human proteins.
We also used the InParanoid algorithm to assign proteins
to orthology groups. Whenever two proteins shown to
interact in model organisms could be confidently
assigned to orthology groups containing a human
ortholog, the corresponding main human orthologs (not
paralogs) are included in the inferred HomoMINT net-
work. HomoMINT is essentially an 'orthology table' in the
MINT database[16]. Thus the inferred network can be
freely and conveniently analyzed in the context of the
MINT protein interaction data with the aid of the MINT
search and analysis tools. HomoMINT is updated daily to
take into account the growing number of interactions that
are curated each day in the MINT database.

.

Results
HomoMINT
Our strategy starts by assigning proteins to orthology
groups having a human protein as the main ortholog. An
interaction between human proteins is then inferred if
both partners of an interaction experimentally verified in
model organisms have at least one human ortholog.

Similarly to Lehner and Fraser [13], we have used the
InParanoid algorithm to assemble orthology groups. This
algorithm has the potential to distinguish between out-
paralog, homologous genes that arose by duplication
before the speciation event (unlikely to share function),
and in-paralogs arising after speciation. However, to avoid
unnecessary graphical overcrowding, in the resulting
inferred human network (HomoMINT) we have only
included interactions between the main human orthologs
of each orthology group. An extended network in which
the model organism interactions are mapped to all the
possible combinations of in-paralogs is also available
(HomoMINT_extended). Since InParanoid attributes a
score to each orthology assignment it is relatively easy to
obtain different inferred networks using orthology tables
with varying levels of stringency for assignment to orthol-
ogy classes.

In addition we have tuned the orthology assignments by
imposing the condition that proteins in the same orthol-
ogy group must have the same domain architecture. This

filtering step evaluates the overall protein similarity and
eliminates any incongruity caused by the local nature of
the BLAST algorithm. Motivated by the observation that
multidomain proteins, sharing an exact domain architec-
ture, have significantly higher functional conservation
[17,18], we developed a workflow (see Methods) to pro-
duce a "high confidence" orthology table in which all
orthology group members share the same domain archi-
tecture. This filtering procedure improves the functional
coherence within the orthology groups (see Methods)
while removing only 10% of the 16531 inferred groups.
We call the resulting network HomoMINT_filtered.

HomoMINT as a web server
The inferred HomoMINT network has been incorporated
into the MINT database [16]. In essence HomoMINT is a
calculated table integrated in the MINT relational data-
base. The table is calculated every day by using the orthol-
ogy group table to map onto the human proteome the
interactions that are curated daily in the MINT database.
As a result HomoMINT is a dynamic dataset continuously
updated that can make use of the search and analysis tools
developed for MINT. By entering a protein name, in the
MINT search form, one can either perform the search over
the experimentally verified interactions between human
proteins, as curated in the MINT database, or extend the
search to the HomoMINT table, by checking the appropri-
ate radio button (Fig. 1A).

In the latter case one obtains, as a result of the query, both
the experimentally verified interactions and the inferred
ones. Appropriate links make it possible to retrieve infor-
mation about the experiments supporting the interaction
either directly (experiments carried out with human pro-
teins) or indirectly (experiments carried out in model
organisms) (Fig. 1B).

During any MINT search session it is possible to extend
the analysis to HomoMINT, by clicking the HomoMINT
hyperlink. The composition of the orthology groups used
to infer the human interactions can also be inspected via
the 'orthology table' hyperlink. A distinction is made
between main orthologs (orthologs) and co-orthologs
(in-paralogs).

Finally the HomoMINT network can be analyzed,
expanded, edited in the context of the experimentally ver-
ified protein interactions in the MINT database by using
the MINT viewer tool (Fig. 1c). For instance the MINT
viewer makes it possible, by checking appropriate boxes,
to visualize only interactions inferred from any combina-
tion of model organism interactomes. The network visual-
ized and edited by the viewer tool can be downloaded in
any of three formats: flat file, XML PSI [19], or in a format
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that can be used as input for the OSPREY visualization
software [20].

Intersection of HomoMINT with the Human experimental 
network
Several low throughput experiments, providing evidence
of protein interactions between human proteins, have
been published in the scientific literature over the past
decades. This dataset is approximately the same size as the
datasets obtained from the results of high throughput
experiments carried out in model organisms, although it
is not readily accessible. Recently, a number of databases
have started to capture this information and release it in a
computer readable format according to a common stand-
ard [19]. By merging all the interactions currently depos-
ited in seven major databases [16,21-25], we have
assembled a human interactome of 28531 non-redundant
interactions. In Table 1 we have reported the analysis of
the overlap between the data curated by the different data-
bases.

This assembled human experimental network (HEN) is
likely to have some bias in the coverage of the interaction
space due to the interest of the scientific community in
investigating specific biological domains or to a biased
selection of the journal articles curated by the databases.
Nevertheless it represents the most accurate representa-
tion of the human interactome to date. We used HEN as a

benchmark for the initial assessment of the accuracy and
the information content of HomoMINT and related
inferred networks (Table 2). The networks inferred by
Brown and colleagues [15] and by Lehner and Fraser [13]
are here referred to as "OPHID" and "Sanger" respectively.
As proposed by Marcotte and colleagues [26] we used a
unified scoring scheme to evaluate the ability of each
inferred network to reconstruct the reference network. To
evaluate a dataset we calculated a log likelihood ratio as

where P(I|D) and P(~I|D) are the frequencies of interac-
tions, in a given dataset (D), that are or are not observed
in the benchmark dataset (I), while P(I) and P(~I) repre-
sent the prior expectations (the frequency of all bench-
mark gene pairs that do or do not interact).

The overlap between the human experimental network
and the one inferred from model organisms (Homo-
MINT) is 694 interactions (Table 3). This corresponds to
7.1% of HomoMINT, suggesting that both networks only
cover a small fraction of the real interactome and that
either or both are affected by a large number of false pos-
itives. Most of the HomoMINT network (94%) is inferred
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Table 2: Inferred ad experimental networks compared in this work

Dataset Number of interactions Description or reference

OPHID 23359 [15]
Sanger 37007 [13]
Sanger H.C. 5647 [13]
HomoMINT 9749 This work
HomoMINT_filtered 5203 HomoMINT filtered for domain architecture conservation.
HMINT_2 int 290 inferred from interactions confirmed by at least two experiments.
HMINT_2 org 126 inferred from interactions supported by experiments in at least two model organisms
HM_LT 543 Inferred from interactions discovered by low throughput experiments.
HEN 28531 Compilation of interactions between human proteins
iHOP 278452 [28]

Table 1: Intersection of human interactomes in public databases

MINT DIP BIND Intact React. HPRD MIPS

Nr. of edges
MINT 3679 x 315 340 1350 101 429 54
DIP 990 x 158 22 67 209 26
BIND 4671 x 356 229 733 50
Intact 2860 x 103 208 16
Reactome 15068 x 269 16
HPRD 6891 x 84
MIPS 777 x
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from interactions that have been obtained by high
throughput experiments while only 6% is inferred from
higher confidence experiments. Interestingly, the set of
high confidence interactions covers more than 26% of the
intersection between HomoMINT and the experimental
network. The OPHID and Sanger networks are larger since
their inference is based on a larger dataset, including com-
putationally predicted interactions datasets (Sanger), and
binary interactions, within complexes, being represented
by the matrix [27] model (OPHID). This results in a much
larger number of binary interactions than for instance
those present in networks based on the 'spoke' model. As
a consequence the coverage of the HEN network is also
larger but the percentage of confirmed interactions and
the LLR is lower when compared with HomoMINT. The
Sanger core dataset, whose inference is based on a subset
of high confidence interactions, is more accurate as is the
HomoMINT high confidence network containing only
interactions that are inferred when supported by at least
two experiments. The highest log likelihood ratio is
achieved by a rather limited network HMINT_2org (126
edges) where we have only considered the interactions
confirmed by experiments in at least two model organ-
isms. The overlap between the human experimental net-
work and HomoMINT_filtered, obtained by considering

only ortholog pairs sharing the same domain architecture,
is 453 interactions; these corresponding to almost 9% of
the inferred interactions.

Intersection of HomoMINT with the iHOP resource
The PubMed resource, containing more than 15 million
biomedical abstracts, is a valuable resource for high qual-
ity protein interactions. As a whole, concurring proteins in
PubMed sentences can be considered and modeled as a
literature network, which can be superimposed on exper-
imental interaction data or on putative relationships,
making it possible to compare new and existing knowl-
edge possible. Here we have made use of a novel text-min-
ing resource, called iHOP (Information Hyperlinked over
Proteins) [28] as an independent assessment of the pro-
tein interactions predicted in HomoMINT. The iHOP sys-
tem currently contains 6 million sentences from PubMed
abstracts and about 40000 different proteins from
human, mouse, and other common animal models
(iHOP, http://www.pdg.cnb.uam.es/UniPub/iHOP/).

Table 4 summarizes the results obtained from this com-
parison. In particular, we were able to identify a corre-
sponding sentence in the iHOP network for 6.8 % of our
predicted interactions. Moreover, 3 % of these sentences
expressed the interaction in an explicit protein-verb-pro-
tein syntax. In the control set (H_MINT ctrl)), derived
from a process of scrambling of the true dataset, less than
1 % of the putative interactor pairs were supported by co-
occurrence in sentences in the iHOP database. For com-
parison the overlap of the iHOP human protein interac-
tion network with our assembled experimental PPI
dataset was estimated to be about 22%. Only sentences of
high precision were used for the assessment; sentences
were excluded from the comparison, when ambiguities
between protein-synonyms from different organisms (e.g.
Mtx2 in mouse and MTX2 in human) could not be
resolved.

For this comparisons we mapped all the proteins to Locus
Link ids. In this process proteins (and their interactions)
that could not be confidently mapped were eliminated

Table 4: Overlap of the inferred and experimental human networks with iHOP

H_MINT H_MINT ctrl Sanger Sanger ctrl. OPHID OPHID ctrl. HEN HEN ctrl.

Nr of Edges 7658 7658 26590 26590 12887 12887 23332 23332
iHOP* (sentence) 278,452 522 (6.8) 57 (0.7) 857 (3.2) 233 (0.8) 941 (7.3) 88 (0.7) 5293 (22.6) 615 (2.7)
iHOP (pattern) 47,807 229 (3) 9 (0.1) 254 (1) 53 (0.2) 468 (3.6) 14 (0.1) 2675 (11.5) 176 (0.7)

*The iHOP (sentence) network includes interactions between proteins whose names are found in the same sentence in an abstract. iHOP (pattern) 
is a subnetwork linking proteins found in a pattern of type gene_name_A/verb/ gene_name_B. The networks that are compared with iHOP are 
described in the main text. The corresponding 'ctrl' networks are scrambled networks containing the same nodes and the same number of edges. 
For this comparison we mapped all the proteins to Locus Link ids. In this process proteins (and their interactions) that could not be confidently 
mapped were eliminated from the networks.

Table 3: Overlap between inferred and experimental human 
networks

OPHID Sanger HEN % overlap LLR

23359 37007 28531
HomoMINT 9749 3501 2794 694 7.1 4.2
OPHID 23359 7067 1632 7.0 4.1
Sanger 37007 1504 4.1 3.6
Sanger H.C. 5647 841 14.9 5.0
HM_filtered 5203 1818 1391 453 8.7 4.4
HMINT_2int 810 290 227 218 26.9 5.7
HMINT_2org 126 70 75 60 47.6 6.6
HM_LT 543 69 63 131 24.1 5.6

For this comparison we mapped all the proteins to Uniprot ids. In this 
process proteins (and their interactions) that could not be confidently 
mapped were eliminated from the networks.
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from the networks. For this reason, H_MINT in Table 4
contains 7658 interactions.

Interacting proteins sharing GO terms
The extent of shared annotation in a protein interaction
dataset has been previously shown to correlate with accu-
racy [12,26]. Thus, as a third benchmark for the assess-
ment of the different inferred networks, we estimated the
similarity of the Gene Ontology annotation (Biological
Process) [29] of any pair of interacting proteins. To deter-
mine the relatedness of two GO terms we used the simLL
function of the GOstats Package of Bioconductor [30].
This algorithm, as schematically illustrated in Figure 2A,

compares the GO graphs 'induced' by two proteins (i, j)
and counts the number of edges that are in common
between the minimal paths linking the two GO annota-
tion nodes and the ontology root nodes. This value, Dij, is
taken as a measure of annotation relatedness. Figure 2B
reports, as a function of Dij, the difference between the
percentage of interaction pairs showing a given level of
GO annotation similarity in an inferred network and in a
comparable randomized network. In the randomized net-
work the interactions between the same nodes were reas-
signed at random. All the inferred networks show a
significant difference as compared to the scrambled net-
works, with the function peaking at Dij = 6 or 7. As was

Degree of common annotation in interacting protein pairs in experimental and inferred networksFigure 2
Degree of common annotation in interacting protein pairs in experimental and inferred networks. A) Schematic 
representation of the algorithm used to evaluate the relatedness of gene ontology annotation. The Gene Ontology graph 
induced by protein 'i ' is in green, while the one induced by protein 'j' is in blue. Dij is the number of edges that the two induced 
graphs have in common. B) For any given network we have derived a 'scrambled network' containing the same protein nodes 
linked by the same number of edges with their connections rearranged at random. For each interacting protein pair, in which 
both proteins have a GO annotation, we have then calculated Dij. Finally we have plotted, as a function of Dij, the difference 
between the percentage of nodes having a specific Dij in the inferred and in the scrambled network.

B

Percentage of interactions as a 

function of Dij 

Percentage of interactions as a 

function of Dij

GO networks induced by the 

annotation of proteins i and j

Dij=2

Root
node

A

i

j

Page 6 of 12
(page number not for citation purposes)



BMC Bioinformatics 2005, 6:S21
observed in the previous assessment tests, the Homo-
MINT and OPHID networks perform better than the
Sanger dataset, while the Sanger high confidence curve is
more similar to the curve of the experimental network. A
higher peak at Dij = 7 is observed in the curve of
HomoMINT_filtered, obtained by filtering the orthology
groups to remove proteins displaying a different protein
architecture, or in the curve of HMINT_2int, a high confi-
dence network obtained by considering only interactions
supported by at least two experiments.

HomoMINT as a graph
Protein interaction networks can be described as graphs
where nodes and edges represent proteins and their inter-
actions respectively. Although, at a first sight, apparently
random in their topology, biological networks are charac-

terized by a number of properties differentiating them
from random networks. Specifically they have a large aver-
age clustering coefficient [31]. Most remarkably the distri-
bution of protein connectivity is scale-free. As shown in
Figure 3 the HomoMINT network, as well as the assem-
bled human interaction network, has a scale-free topology
with its degree distribution not differing substantially
from those of the interactomes of model organisms.

In Table 5 we have reported the analysis of some charac-
teristics of the HomoMINT graph and we have compared
them with those of some experimental networks in the
MINT database. In HomoMINT the average clustering
coefficient, the parameter that most captures the modular-
ity of biological networks, is considerably higher than that
of a random network of similar size and is consistent with

Degree distribition of the HomoMINT network compared with different biological networksFigure 3
Degree distribition of the HomoMINT network compared with different biological networks. Frequency of nodes 
with k links for A) the model organism experimental networks in the MINT database B) the assembled Human experimental 
network (HEN), the Human inferred (HomoMINT) data set, the Mammalian data set in MINT and C), for a random network of 
similar size and for a scale-free network assembled according to Barabasi [31].
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the values found in biological networks. Also the remain-
ing parameters describing the HomoMINT graph are typi-
cal of biological networks.

Discussion
Several databases, using a variety of computational meth-
ods to make inferences about functional relationships
between genes and proteins, are available on the web [32-
35]. HomoMINT is an inferred human protein network
obtained by transferring the experimental interaction
annotation from the proteome of seven model organisms
to the corresponding ortholog human proteins. The
orthology mapping is obtained by means of the InPara-
noid algorithm.

Approximately one fifth of the interactions present in the
MINT database could be mapped to human orthologs
thus resulting in the assembly of an inferred network link-
ing 4125 human proteins with 9749 edges. While a large
proportion of these proteins are not functionally anno-
tated one can use HomoMINT to transfer functional infor-
mation from better characterized neighbors in the graph.

Because of evolutionarily frequent molecular processes
leading to gene family expansion or contraction, the
transfer of interaction information between organisms,
especially high eukaryotes, is complicated by the abun-
dance of paralogs in orthology groups. The InParanoid
algorithm is designed to distinguish paralogs arising
before or after speciation events. We have chosen to trans-
fer the interaction information only to the main human
ortholog in each group. Thus our inferred network is
essentially based on orthology mapping by the reciprocal
best hit approach. However, the orthology groups assem-
bled in our web available table contain paralogs, so per-
mitting any alternative choice. Furthermore since the
InParanoid algorithm provides a confidence score for

each orthology assignment the likelihood of the inferred
interactions can be evaluated from the confidence score of
the model organism and human gene orthology assign-
ment as proposed for instance by Lehner and Fraser [13].

To assess the predictive value of HomoMINT, we per-
formed a number of tests aimed at assessing to what
degree of accuracy and coverage the orthology based
inferred networks could be supported by previous knowl-
edge. We first assembled a human experimental network
from the protein interaction data stored in PPI databases
and determined the percentage overlap between this net-
work and HomoMINT or related networks. Next, we esti-
mated the enrichment in the inferred networks of
interacting proteins sharing Gene Ontology annotation.
Finally we estimated the overlap between the inferred net-
works and the iHOP literature network.

Our approach is based on the assumption that protein
interactions between ortholog proteins are conserved in
evolution. To what extent this is true cannot at present be
estimated because of the incompleteness and inaccuracy
of the available experimental datasets [36]. Even hypoth-
esizing that the assumption is 100% correct, the accuracy
and coverage of the inferred network is still limited by the
quality of the original model organism interaction data-
sets and our ability to identify the true human orthologs
of a model organism protein. Not surprisingly our bench-
mark tests show that accuracy increases if one uses more
stringent criteria for orthology assignment (for instance
by only allowing orthologs with similar modular architec-
ture) or if one bases the inference on a more reliable inter-
action dataset (for instance relying on multiple evidence).

In contrast with similar projects [13,15,37], HomoMINT
is unique for its direct link to a curated PPI database.
HomoMINT is a calculated section in the MINT relational

Table 5: Graph analysis

Data set Nodes (N) Edges* (L) Clust. coeff. 1 MPL2 <k> 3 d_LCC4

HomoMINT 4067 9132 0.04 4.9 4.73 12
HEN 4933 22124 0.16 4.5 9.4 15
C. elegans 2834 4406 0.02 4.8 3.2 13
D. melanogaster 7005 20282 0.01 4.4 5.8 11
S. cerevisiae 4584 12055 0.07 4.4 5.3 12
Random2000 # 1989 5047 0.002 4.8 5.0 11
Random5000 # 4893 9935 0.001 6.2 4.0 13

*Number of edges may be different from those reported in Table 2 because in this analysis we have neglected interactions leading to 
homodimerization.
#Random2000 and Random5000 are random networks with approximately 2000 and 5000 nodes.
1Average of the clustering coefficient of the nodes in the network.
2MPL is the average of the minimal path length between two nodes of the graph.
3<k> is the average number of connections per nodes in the graph.
4d_LCC is the diameter of the largest connected component of the graph
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database and its content is updated daily to take into
account the newly curated entries in the MINT database.
Furthermore the MINT viewer makes it possible to analyze
and edit the HomoMINT network in the context of the
experimentally verified interactions deposited in the
MINT database. HomoMINT can be searched and ana-
lyzed at http://mint.bio.uniroma2.it/mint/search/
search.php?dataset=homomint. The HomoMINT dataset
is available either as a flat file or a PSI XML file (see Addi-
tional file 1 and Additional file 2 for details). Each of them
contains all interaction inferred from model organism's
protein on main human orthologs.

Click here, http://mint.bio.uniroma2.it/mint/release/
main.php and fill the requested fields to have access to the
latest release files.

Conclusion
Since it is not clear which percentage of PPI are conserved
through evolution [36] HomoMINT should be considered
as a hypothetical network that can be of use in predicting
functions of yet uncharacterized proteins, in making
experimentally testable hypotheses about new partici-
pants in well studied pathways and in prioritizing interac-
tions to be tested in large scale PPI experiments. As such,
the network should provide a rich source of functional
hypotheses for researchers interested in the functions of
one or many human proteins.

Methods
Software
BLASTP searches were carried out using blastall 2.2.9 [38].

InParanoid algorithm version 1.35 was downloaded
from: http://inparanoid.cgb.ki.se/index.html.

Graph analysis and GO functional annotation analysis
were performed by using R package version 2.0.1 [39] and
the Bioconductor modules graph, RBGL, GOstats [30].

Data Sources
The proteome sets for the BLAST searches and ortholog
table assembling were downloaded or built from the fol-
lowing sources: Arabidopsis thaliana proteome set (pre-
dicted proteins), http://www.ebi.ac.uk/integr8/
FtpSearch.do?orgProteomeID=3Caenorhabditis elegans
(predicted proteins), http://www.ebi.ac.uk/integr8/Ftp
Search.do?orgProteomeID=9Drosophila melanogaster
(predicted proteins), http://www.ebi.ac.uk/integr8/Ftp-
Search.do?orgProteomeID=17Escherichia coli K12 (pre-
dicted proteins), http://www.ebi.ac.uk/integr8/Ftp
Search.do?orgProteomeID=18Homo sapiens (predicted
proteins), http://www.ebi.ac.uk/integr8/Ftp
Search.do?orgProteomeID=25Mus musculus (predicted
proteins), http://www.ebi.ac.uk/integr8/Ftp

Search.do?orgProteomeID=59Rattus norvegicus (pre-
dicted proteins), http://www.ebi.ac.uk/integr8/Ftp
Search.do?orgProteomeID=122Saccharomyces cerevisiae
(predicted proteins), http://www.ebi.ac.uk/integr8/Ftp
Search.do?orgProteomeID=40 Multiple species proteome
set (predicted proteins), http://mint.bio.uniroma2.it/
mint/ by querying the database for proteins belonging to
the following species: Sus scrofa (Pig), Xenopus laevis
(African clawed frog), Ovis aries (Sheep), Oryctolagus
cuniculus (Rabbit),Gallus gallus (Chicken), Canis famil-
iaris (Dog),Bos taurus (Bovine).

Assembly of the orthology table
The procedure implemented in the InParanoid algorithm
[14] starts with an all-against-all BLASTP comparison
between two proteomes of interest. Reciprocal best hit cri-
teria are used to identify orthologous relationships
between pairs of proteins. For each putative ortholog,
probable recent paralogs or in-paralogs are identified as
sequences within the same proteome that are reciprocally
more similar to each other than either is to any sequence
from the other proteome.

An InParanoid confidence level cut-off of 0.6 was chosen
for the assignment of in-paralogs to orthology groups.
Due to the redundancy of the starting proteome sets, sev-
eral groups contained identical copies of the same pro-
tein. To limit this problem we decided to eliminate
paralogs with InParanoid confidence level above 0.98.
InParanoid performs its comparison between each pair of
proteomes. To build an orthology table with orthology
groups including proteins from all organisms of interest,
we used python scripts to merge the InParanoid results
keeping a human protein as reference for each orthology
group.

Assembling HEN (Human Experimental Network)
The human experimental interactome has been assem-
bled by importing the data in a Postgresql database from
the following resources: Intact (XML PSI files),1300
unique interactions at http://www.ebi.ac.uk/intact/
index.jsp DIP (Flat file),833 unique interactions at http://
dip.doe-mbi.ucla.edu/ BIND (XML PSI 2 file),4073
unique interactions at http://bind.ca/ MINT, 3679 unique
interactions at http://mint.bio.uniroma2.it/mint/ HPRD
(XML PSI file), 6153 unique interactions at http://
www.hprd.org/ MIPS (XML PSI file), 322 unique interac-
tions at http://mips.gsf.de/proj/ppi/ Only interactions
that could be confidently mapped to Uniprot ids were
added to HEN.

Filtering orthology groups for domain architecture 
homogeneity
A procedure has been developed to improve and to meas-
ure the functional coherence in orthology groups, based
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on dynamic programming techniques and implemented
as a string matching algorithm [40].

We modeled every protein in our orthology groups as an
ordered string of domains. To this end, we used the
domain annotations available in SMART [41] and PFAM
[42]. In particular, the human and the other eight model
organism proteomes under analysis have been surveyed
for their specific domain architectures. Repetitions of the
same domain are treated as a single instance of that
domain. Overlapping domains are considered as inde-
pendent elements of the string representing the domain
architecture of the protein.

Then we developed a PERL string matching algorithm to
establish distances between the proteins in terms of simi-
larities between their domain architectures. Each protein
is represented as a string of concatenated ordered
domains. Thus we were able to measure a distance
between two proteins by counting the number of domain
editing steps (deletions, insertions, substitutions) in order
to match the domain architecture of the two proteins. Pro-
teins identical in their domain architecture will have an
"edit distance" equal to zero. Distances are normalized by
dividing for the total number of domains in the ortholog
human protein.

This procedure prevents proteins with markedly different
domain architecture (and function) from being clustered
mistakenly in a group, although they share similarities
only within distinct regions of a multidomain protein. In
this way we tried to take in account not only local rela-
tionships among sequences to be merged in the orthology
groups but global relationships as well.

To assess the filtering procedure we examined the consist-
ency of the annotation of the members within each
orthology group, as reported in the ENZYME database
[43]. We were able to attribute at least two ENZYME anno-
tations to 9% of groups constituting the filtered orthology
table. Fewer than 6% of these groups (77/1355) were
declared inconsistent with the ENZYME hierarchic classi-
fication scheme. 17 inconsistent groups present in the
standard orthology table were not present in the filtered
orthology table, underlining the improvement of the
functional coherence in the orthology groups after filter-
ing for similarity in domain architectures. The number of
inconsistent groups in the standard orthology table was
94 out of 1396 groups which have at least two ENZYME
annotations.

Gene Ontology similarity analysis
The algorithm for measuring the Gene Ontology annota-
tion similarity of a pair of proteins is based on the simLL
function of the GOstats package of Bioconductor [30]. For

each pair of proteins (Pi, Pj) and for each ontology, the
function simLL assigns, in three steps, a unique measure
of similarity, called Dij:

(1) Finds all the terms to which Pi and Pj are annotated
including the parent terms. These sets of terms in the Gene
Ontology tree represent the nodes of the GO graphs
induced by Pi and Pj, respectively.

(2) Find the set of terms which the GO graphs induced by
Pi and Pj have in common. Denote this set Sij.

(3) Define the depth of each term in Sij to be the length of
the shortest path between the term and the root node of
the ontology (here length refers to number of connecting
edges).

(4) Find the maximum depth of terms in the set Sij. We
refer to this value as Dij.
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Additional material

Additional File 1
In the homomint-flat file (dump-homomint.txt), the fields are: • the mint 
id of the interaction it has been infered from • uniprot id of the first 
human protein • short label for the first protein • uniprot id of the first 
protein of inference (model organism) • uniprot id of the second human 
protein • short label for the second protein • uniprot id of the second pro-
tein of inference (model organism) • model organism from which the 
interaction on Human has been infered
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-6-S4-S21-S1.zip]
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In the XML file (homomint-2005-04-30.xml) : • each ProteinParticipant 
has for first xref the uniprot reference of the human protein and as a sec-
ondary xref the ortholog in the model organism (secondary="inferred 
from") • the xref at the interaction level contains the mint id for the inter-
action from which ithas been infered • the attribute list on the interaction 
level contains an attribute "model organism" that contains the organism 
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