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Abstract: Phthalate exposure is widespread among pregnant women but whether it is related to fetal
growth and birth weight remains to be determined. We examined whether first trimester prenatal
phthalate exposure was associated with birth weight in a pregnancy cohort study. We recruited first
trimester pregnant women from 2010–2012 from four centers and analyzed mother/infant dyads
who had complete urinary phthalate and birth record data (N = 753). We conducted multiple linear
regression to examine if prenatal log specific gravity adjusted urinary phthalate exposure was related
to birthweight in term and preterm (≤37 weeks) infants, stratified by sex. We observed a significant
association between mono carboxy-isononyl phthalate (MCOP) exposure and increased birthweight
in term males, 0.13 kg (95% CI 0.03, 0.23). In preterm infants, we observed a 0.49 kg (95% CI 0.09, 0.89)
increase in birthweight in relation to a one log unit change in the sum of di-ethylhexyl phthalate
(DEHP) metabolite concentrations in females (N = 33). In summary, we observed few associations
between prenatal phthalate exposure and birthweight. Positive associations may be attributable to
unresolved confounding in term infants and limited sample size in preterm infants.
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1. Introduction

Low birth weight and intrauterine growth retardation are significant risk factors for future
morbidity including obesity and poor cognitive function [1], yet identification of modifiable
environmental exposures that influence fetal growth remains to be determined. Phthalates are a
class of man-made chemicals that are ubiquitous in the general population [2]. Pregnant women
have widespread exposure from contact with plastic products, personal care products, contaminated
foods, and dust [3]. Phthalates cross the placenta and can impact fetal development leading to adverse
reproductive outcomes [3] via hormone mediation, oxidative stress, and peroxisome proliferator

Int. J. Environ. Res. Public Health 2016, 13, 945; doi:10.3390/ijerph13100945 www.mdpi.com/journal/ijerph

http://www.mdpi.com/journal/ijerph
http://www.mdpi.com
http://www.mdpi.com/journal/ijerph


Int. J. Environ. Res. Public Health 2016, 13, 945 2 of 10

activated receptor (PPAR) pathways [4,5]. These pathways may also be important for fetal growth, but
it is unclear whether first trimester phthalate exposures are associated with birth weight outcomes.

Some rodent toxicologic studies indicate that gestational di-ethyl hexyl phthalate (DEHP) exposure
leads to reduced birth weight in offspring [6,7]. In humans, results are conflicting with regard to
the relationship between prenatal phthalate exposures and birth weight. Chinese and a combined
European birth cohort study reported that prenatal DEHP exposure is associated with growth
restriction and reduced birth weight [8–10] while findings in French and New York City birth cohorts
were null [11,12]. A Spanish study of fetal ultrasound measurements found minor associations
between prenatal monobenzyl (MBzP) and monobutyl (MBP) phthalate exposures and femur length,
head circumference, and birth weight in a sex-specific manner [13]. The majority of these studies
measured phthalate concentrations in the second or third trimester of pregnancy, and few reported
significant findings with non-DEHP phthalate compounds. Some reported differences in associations
among males versus females but results were conflicting. The disparate finding across studies may
be due to differences in exposure concentrations, sample size, study design, and timing of exposure
during pregnancy.

Our aim was to assess prenatal first trimester phthalate exposure in relation to birth weight
among term and preterm infants in a prospective multi-center pregnancy cohort study, The Infant
Development and the Environment Study (TIDES). We hypothesized that first trimester DEHP
exposures would be inversely associated with birth weight outcomes.

2. Materials and Methods

2.1. Study Population

We summarize recruitment of the TIDES cohort and its characteristics briefly; details are discussed
elsewhere in Barrett et al. 2014 [14]. TIDES recruited first trimester pregnant mothers from four
study centers at the University of California, San Francisco (UCSF), University of Minnesota (UMN),
University of Rochester Medical Center (URMC), and Seattle Children’s Hospital/University of
Washington (SCH/UW) from 2010–2012. Eligibility criteria included: less than 13 weeks pregnant,
singleton pregnancy, English speaking, age 18 or over, no serious threat to the pregnancy, and plans to
deliver at a study hospital. Interested women who met eligibility criteria signed an informed consent
for themselves and their infant, and were then enrolled in the study. All study centers received human
subjects’ approval for conducting TIDES procedures. Study participants completed a questionnaire
on demographics and gave a urine sample in each trimester of pregnancy. We report on 753 women
who completed questionnaires and delivered a live infant. We recorded birth weight from the official
medical record at birth from each institution. We used the first available ultrasound in the medical
record to calculate gestational age. If no ultrasound was available, we used the physician’s estimate of
gestational age at birth.

2.2. Phthalate Assessment

First trimester urine was collected in sterile and phthalate-free polypropylene specimen cups
during initial recruitment visits. Urine was transferred into 5 individual 2 mL cryovials, and stored
in freezers at <−80 ◦C. We measured specific gravity using a handheld refractometer at the time of
urine collection, which was calibrated with deionized water before each measurement. Specific gravity
is used to correct for urinary dilution. Phthalate metabolite concentrations were analyzed at two
different sites. Three hundred subject samples for mothers of female infants were analyzed at the
Environmental Health Laboratory at the University of Washington (UW). Per a modified version of
the CDC method 6306.03, glucuronidated phthalate monoesters underwent enzymatic deconjugation,
followed by online-solid phase extraction (SPE) coupled with reversed high performance liquid
chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) to quantify
the simple monoesters in urine [15]. An additional 369 subject samples for mothers of male infants
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were analyzed by the Division of Laboratory Sciences, National Center for Environmental Health,
Center for Disease Control and Prevention (CDC). At the CDC, urine samples were analyzed using
a modified method described in Silva et al. 2007 that involved the enzymatic deconjugation of
the phthalate metabolites from their glucuronidated form, automated on-line sold phase extraction,
separation with high performance liquid chromatography and detection by isotope-dilution tandem
mass spectrometry [16]. Process and instrument blanks as well as field blanks were run in each lab for
quality assurance of analytical and sampling procedures. For the field blank collection, deionized water
was purchased, poured into phthalate-free urine cups and transferred with disposable pipettes to 5 mL
cryovials. These blanks were then interspersed with subject samples to be shipped to laboratories.
Ten urine samples were also analyzed at both UW and the CDC for comparison and showed values
that were within 10% of one another for MEP, MBP, and MBzP. For the DEHP metabolites and MCPP,
values differed between labs. Results are presented for male and female infants separately and together
in the results section.

The limit of detection (LOD) of metabolites was between 0.2 and 2.0 ng/mL for the UW samples
and 0.2 and 0.6 ng/mL for the CDC samples. For concentrations below the LOD, a value equal to each
sample’s specific LOD divided by the square root of 2 was used [17]. All urinary phthalate metabolite
levels were adjusted for dilution using specific gravity measurements and logarithmically transformed
to normalize distributions. To calculate the molar sum of the DEHP metabolites, mono-2-ethylhexyl
phthalate (MEHP), mono-2-ethyl-5-hydroxy-hexyl phthalate (MEHHP), mono-2-ethyl-5-oxy-hexyl
phthalate (MEOHP) and mono-2-ethyl-5-carboxypentyl phthalate (MECPP) were divided by their
molecular weights and added (∑DEHP metabolites = (MEHP/278) + (MEHHP/294) + (MEOHP/292) +
(MECPP/308)) × 1000). Other metabolites measured included mono-ethyl phthalate (MEP), MBzP,
MBP, mono-3-carboxypropyl (MCPP), and mono (carboxy-isononyl) phthalate (MCOP).

2.3. Statistical Analysis

We examined the distributions of demographic characteristics and specific gravity adjusted
phthalate concentrations. All phthalate concentrations were log transformed for analysis because of
skewedness. Gestational age at birth is an important factor to account for in birth weight analyses,
and traditional methods of covariate adjustment in regression models may not be appropriate [18–20].
Therefore, we constructed birth weight for gestational age z-scores as our outcome variable using
methods put forth by Olsen et al in 2010 and used values in Talge et al. 2014 to update previous curve
calculations [18,21]. We compared results of this constructed variable to that of crude birthweight
and gestational age and did not see significant differences. Therefore, we present models for multiple
regression with crude birthweight as the primary outcome variable. We also present models without
adjustment for gestational age (our primary model) and those with gestational age (sensitivity analysis)
due to the uncertainty of how to account for gestational age in the published literature. Several
variables were considered for confounding in the analysis. After reviewing the literature, we decided
a priori to adjust for study center, smoking during pregnancy, race/ethnicity, and parity in all analyses
given their well-established relationship to the outcomes of interest. We also examined time of day
of urine collection, maternal age, education status, pre-pregnancy BMI, and income to see if point
estimates changed appreciably or if they improved the precision of the model. We examined infant
sex in stratified analyses given the literature noting differential growth patterns in males versus
females. We present multiple linear regression t in term and preterm infants (≤37 weeks) separately
and together because growth patterns can differ appreciably between the two groups even accounting
for gestational age. In order to assess for highly influential observations, graphical examination of the
residuals using Stata’s qnorm plot showed that in the male pre-term group, one point in particular
was quite a distance from the line indicating normality. This point represented the individual with the
heaviest birthweight. Therefore, we excluded this infant from the analysis.
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2.4. Results

The majority of women were between 20–40 years old (93%), white (66%), and had a college
degree (74%) (Table 1). A small percentage (7%) reported smoking anytime during pregnancy. Preterm
infants comprised 10% of the total sample, and the Universities of Rochester and Minnesota had a
higher percentage of preterm births compared to the Universities of California, San Francisco (Table 1).
Mean birth weight in term infants was 3440 g (SD 0.48) and 2600 g (SD 0.67) in preterm infants. The
percentage of samples above the limit of detection ranged from 66%–99%, and the distribution of
phthalate concentrations is shown in Table 2 and also reported in previous publications in further
detail [19]. Correlations between the DEHP metabolites (MEHP, MEOHP, MEHHP, and MECPP) were
between 0.6–0.9 while the correlations between all other metabolites ranged in absolute magnitude
from 0–<0.6 (results not shown).

Table 1. Demographic characteristics of 753 mom infant dyads in TIDES.

Characteristic Total n (%) Term n (%) Preterm n (%)

Study Center
UCSF 187 (25) 173 (25) 14 (19)
UMN 202 (27) 180 (27) 22 (30)
URMC 212 (28) 186 (27) 26 (35)
UW 152 (20) 140 (21) 12 (16)

Maternal Age (years)
<20–<30 291 (39) 260 (38) 31 (43)
30–<40 426 (57) 393 (58) 33 (45)
>40 32 (4) 23 (3) 9 (12)

Pre-Pregnancy BMI
20–<24.9 435 (58) 405 (60) 30 (41)
25–<29.9 164 (22) 144 (21) 20 (28)
>30 145 (19) 123 (18) 22 (31)

Race/Ethnicity
NH White 496 (66) 446 (66) 50 (68)
NH Black 86 (11) 75 (11) 11 (15)
NH Asian 48 (6) 46 (7) 2 (3)
Hispanic 67 (9) 61 (9) 6 (8)
Other/Mixed/Unknown 52 (7) 48 (7) 4 (5)

Education
≤High school/Some college 191 (26) 173 (26) 18 (25)
College/post graduate 554 (74) 499 (74) 55 (75)

Any Smoking During Pregnancy
Yes 54 (7) 50 (7) 4 (6)
No 695 (93) 627 (93) 68 (94)

Parity
Nulliparous 276 (38) 252 (38) 24 (35)
Parous 451 (62) 406 (62) 45 (65)

Gestatational Age at Birth (weeks)
25–≤37 74 (10) N/A 74 (100)
>37 679 (90) 679 (100) N/A

Income
<$25,000 173 (24) 149 (23) 24 (33)
$25,000–74,999 197 (27) 185 (28) 12 (17)
≥$75,000 356 (49) 320 (49) 36 (50)

Infant Sex
Male 369 (49) 331 (49) 38 (51)
Female 384 (51) 348 (51) 36 (49)

Infant Birthweight, kg (mean (SD)) 3.35 (0.6) 3.44 (0.5) 2.60 (0.7)
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Table 2. Percentiles of specific gravity adjusted first trimester urinary phthalate concentrations
in TIDES.

Phthalate
Metabolite % > LOD 25% Median 75%

MBP 92 4.83 8.45 14.05
MBzP 87 2.05 4.00 8.56
MEP 99 13.69 31.32 81.93
MCPP 75 1.03 2.05 4.79
MCNP 96 1.45 2.18 4.41
MCOP 100 8.12 15.20 44.04
MEHP 66 1.37 2.49 4.35
MEHHP 97 4.35 7.56 12.77
MEOHP 97 3.13 5.44 8.70
MECPP 98 5.90 9.51 15.95

In male, term infants, MCOP was significantly associated with a 0.13 kg increase (95% CI 0.03, 0.23)
in birth weight in relation to one log unit change of MCOP (Table 3), and this result persisted in models
adjusting for gestational age (Table 4). No significant relationships were observed in term female
infants. In preterm female infants, the log sum of DEHP metabolites was significantly associated with
a 0.49 kg (95% CI 0.09, 0.89) increase in birth weight, and all individual DEHP metabolites were also
significantly associated with birth weight, and these relationship persisted in models adjusting for
gestational age except for MEHP which was not statistically significant (Table 3). In our sensitivity
analysis adjusted for gestational age, we observed a −0.36 kg (−0.68, −0.05) decrease in birth weight
relation to a one log unit change in MBP in male preterm infants (Table 4). Of note, the direction of the
coefficients for the analyses was often in the opposite direction for males versus females.
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Table 3. Birthweight (kg) in relation to log specific gravity adjusted prenatal phthalate exposure a.

Male Infants Female Infants

All Births n = 351 Term Birth n = 315 Preterm Birth n = 35 All Births n = 356 Term Birth n = 323 Preterm Birth n = 33

MBP −0.11 (−0.26, 0.04) −0.01 (−0.15, 0.13) −0.27 (−0.80, 0.25) 0.14 (−0.02, 0.31) 0.14 (−0.01, 0.29) 0.35 (−0.32, 1.03)
MBzP 0.00 (−0.13, 0.14) −0.05 (−0.17, 0.07) 0.02 (−0.53, 0.57) 0.04 (−0.10, 0.18) 0.09 (−0.04, 0.22) 0.35 (−0.04, 0.74)
MCPP 0.04 (−0.07, 0.16) 0.07 (−0.03, 0.17) −0.14 (−0.53, 0.24) 0.04 (−0.06, 0.14) 0.02 (−0.07, 0.11) 0.15 (−0.16, 0.46)
MEP −0.04 (−0.15, 0.06) 0.00 (−0.09, 0.10) −0.11 (−0.47, 0.25) 0.01 (−0.09, 0.10) −0.01 (−0.10, 0.08) 0.15 (−0.16, 0.45)
MEHP −0.10 (−0.25, 0.06) −0.06 (−0.20, 0.08) −0.29 (−0.80, 0.21) 0.13 (−0.01, 0.26) 0.09 (−0.04, 0.22) 0.46 * (0.09, 0.83)
MEHHP −0.09 (−0.23, 0.05) −0.05 (−0.18, 0.08) −0.01 (−0.50, 0.47) 0.15 * (0.00, 0.29) 0.08 (−0.06, 0.22) 0.43 * (0.04, 0.82)
MEOHP −0.12 (−0.26, 0.03) −0.07 (−0.20, 0.06) −0.03 (−0.53, 0.48) 0.11 (−0.04, 0.25) 0.04 (−0.11, 0.18) 0.51 * (0.11, 0.90)
MECPP −0.07 (−0.24, 0.09) −0.01 (−0.16, 0.14) 0.01 (−0.58, 0.61) 0.14 (−0.00, 0.28) 0.04 (−0.10, 0.18) 0.47 * (0.06, 0.88)
MCOP 0.07 (−0.04, 0.18) 0.13 * (0.03, 0.23) −0.26 (−0.66, 0.13) −0.10 (−0.34, 0.15) −0.08 (−0.30, 0.14) N/A
Sum DEHP −0.10 (−0.25, 0.06) −0.04 (−0.19, 0.10) −0.04 (−0.61, 0.53) 0.15 (−0.00, 0.30) 0.07 (−0.08, 0.22) 0.49 * (0.09, 0.89)

Note: MCOP measurements are not available for the majority of female infants; excludes one male preterm outlier. a Adjusted for race, smoking during pregnancy, study center, parity,
income. * p < 0.05.

Table 4. Birthweight (kg) in relation to log specific gravity adjusted prenatal phthalate exposure adjusted for gestational age at birth a.

Male Infants Female Infants

All Births n = 351 Term Birth n = 315 Preterm Birth n = 35 All Births n = 356 Term Birth n = 323 Preterm Birth n = 33

MBP −0.01 (−0.13, 0.11) 0.03 (−0.10, 0.16) −0.36 * (−0.68, −0.05) 0.09 (−0.05, 0.22) 0.10 (−0.04, 0.24) 0.29 (−0.27, 0.85)
MBzP −0.00 (−0.11, 0.11) −0.00 (−0.12, 0.11) −0.12 (−0.49, 0.24) 0.07 (−0.05, 0.19) 0.09 (−0.04, 0.21) 0.16 (−0.22, 0.53)
MCPP 0.06 (−0.03, 0.15) 0.07 (−0.02, 0.17) −0.05 (−0.30, 0.21) 0.02 (−0.07, 0.10) 0.01 (−0.08, 0.10) 0.04 (−0.24, 0.31)
MEP −0.00 (−0.09, 0.08) 0.02 (−0.07, 0.11) −0.15 (−0.38, 0.08) −0.01 (−0.09, 0.07) −0.02 (−0.11, 0.06) 0.10 (−0.16, 0.35)
MEHP −0.02 (−0.14, 0.10) −0.01 (−0.14, 0.12) −0.21 (−0.54, 0.12) 0.13 * (0.01, 0.24) 0.07 (−0.05, 0.19) 0.30 (−0.04, 0.65)
MEHHP −0.03 (−0.15, 0.08) −0.02 (−0.14, 0.10) −0.08 (−0.39, 0.24) 0.15 * (0.03, 0.27) 0.08 (−0.06, 0.21) 0.32 (−0.02, 0.66)
MEOHP −0.05 (−0.17, 0.07) −0.04 (−0.16, 0.09) −0.10 (−0.43, 0.23) 0.13 * (0.00, 0.25) 0.04 (−0.10, 0.17) 0.38 * (0.03, 0.73)
MECPP −0.01 (−0.14, 0.12) 0.02 (−0.12, 0.15) −0.09 (−0.48 , 0.30) 0.14 * (0.02, 0.26) 0.04 (−0.09, 0.17) 0.40 * (0.06, 0.74)
MCOP 0.10 * (0.01, 0.18) 0.12 * (0.03, 0.21) −0.17 (−0.43, 0.10) −0.01 (−0.20, 0.18) −0.00 (−0.20, 0.19) N/A
Sum DEHP −0.03 (−0.16, 0.10) −0.01 (−0.14, 0.13) −0.11 (−0.48, 0.26) 0.16 * (0.03, 0.29) 0.06 (−0.08, 0.21) 0.37 * (0.02, 0.72)

Note: MCOP measurements are not available for the majority of female infants; excludes one male preterm outlier. a Also adjusted for race, smoking during pregnancy, study center,
parity, income. * p < 0.05.
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3. Discussion

The hypothesis that DEHP exposure would be inversely related to birthweight outcomes was not
supported by our findings. In contrast, we observed positive associations in preterm infants. Possible
explanations include differences in timing of exposure during pregnancy and exposure concentrations
changing over time. Our study is one of two to examine first trimester exposures in relation to
birth weight outcomes [13]. Our findings in term infants are similar to those in Wolff et al. who
examined third trimester urinary concentrations in in New York City and different from European and
Chinese cohort studies [8,9,11]. Compared with other birth cohort studies [9,11], urinary phthalate
concentrations were lower in TIDES but this could be due to differences in measurement technique or
changes in exposure over time. Our reported exposure concentrations were similar or slightly lower
to those of females in NHANES from 2011–2012 [2], and these concentrations are lower than other
birth cohort studies. This finding likely reflects that DEHP use has decreased in the past decade while
di-isononyl phthalate (DINP) use has increased [3]. Of note, we report measureable concentrations of
the DINP metabolites, MCOP [3]. Our study population is geographically diverse but not racially or
ethnically diverse compared to the general population, and minority populations tend to bear a larger
burden of environmental exposures. Environmental sources of phthalate exposures in the general
population include personal care products for the low molecular weight phthalates such as diethyl
phthalate and dibutyl phthalate and food and dust contamination for the high molecular weight
phthalates such as DEHP and DINP [5].

We examined males and females separately based on differential growth patterns between the
sexes. We observed a suggestion of sex-specific effects with DEHP being positively associated with birth
weight in female, preterm infants, and MBP inversely associated with birth weight in male, preterm
infants. Other birth cohort studies noted sex specific effects with respect to phthalate exposures,
but findings differed with respect to phthalate and timing of exposure [10,13]. Several studies of
other health endpoints such as neurobehavior and anogenital distance report sex-specific impacts
of phthalate exposure likely due to phthalate related hormonal impacts differentially affecting each
sex during fetal development [22,23]. Our findings should be confirmed in a larger sample size of
premature infants. Of note, the direction of the point estimates often differed among males and females
in term infants, but given the lack of statistical significance, we cannot make conclusions based on
these findings.

Other birth cohort studies differed from ours based on timing of exposure as well as matrix of
measurement. We examined first trimester exposures while cohorts in New York, China, and Europe
measured concentrations in the second or third trimesters, and serum or cord blood samples were
used for phthalate measurements in the European cohorts [8–11]. One study examined an average
concentration from first and third trimester spot measurements but did not look at trimester specific
effects [13]. The period of major growth for a fetus is the third trimester, but it may be that first
trimester exposures program growth processes over the course of the pregnancy. One of the studies
used a nested case-control design to compare small-for-gestational age or low birth weight infants to
controls, [9] which is good for rare outcomes.

Primary predictors of birth weight included socio-economic factors and maternal infections [24].
While the latter are modifiable in pregnancy with good prenatal care, other SES factors are not easily
changeable. Environmental endocrine disrupting chemical exposures are thought to play a role in fetal
development because they impact hormonal processes and oxidative stress, both of which are known
to affect growth and birth outcomes. Recent studies report that prenatal phthalate exposure may affect
time of gestation and preterm birth outcomes through a PPAR-γ oxidative stress mechanism [25]. While
PPAR-γ is known to be associated with growth, obesity and other metabolic outcomes, the finding of
preterm birth may reflect a maternal effect and not one on the fetus and therefore, fetal growth would
not be affected. In addition, while rodent models show that phthalates affect liver PPAR-γ, human
liver cells do not exhibit the same response [26]. At this time, other potential hypotheses for effects on
fetal growth remain to be determined.
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Strengths of our study include the prospective study design that examined women from four
different locations and centers. Birth weight was recorded directly from the medical record, and all lab
personnel performing phthalate analyses were blinded to fetal outcomes. We obtained one spot urine
sample in the first trimester of pregnancy. Concentrations can be variable over pregnancy, but one
major predictor of variability is time of day of urine collection because ingestion of meals is related
to exposure concentrations [27]. We examined time of day in our analyses that did not change point
estimate outcomes and was therefore not included in final models. We performed laboratory phthalate
analysis at two different labs, and the concordance between 10 samples differed according to metabolite.
Samples from mothers of sons were performed at the CDC while samples from mothers of daughters
were performed at UW. Because we chose a priori to examine sex in a stratified manner, we do not feel
that the values from the two different labs affected our results. Another limitation is the large number
of comparisons performed which could lead to false associations but given that the DEHP metabolites
have a high degree of collinearity, multiple comparisons analysis was not performed.

Our analysis found little evidence to support a relationship between first trimester prenatal
phthalate exposure and birth weight; and while there is a suggestion of an effect in preterm infants in
a sex-specific manner, the sample size is too small to draw conclusions. Future studies should examine
first trimester exposures in relation to birth weight in larger sample sizes that can accurately assess
impacts in premature infants.

4. Conclusions

In summary, we observed few associations between prenatal phthalate exposure and birthweight.
First trimester prenatal phthalate MCOP exposure was associated with increased birthweight in
male infants only. We did observe a positive effect for DEHP in preterm, female infants but our
findings should be interpreted with caution. Positive associations may be attributable to unresolved
confounding in term infants or limited sample size in preterm infants.
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