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Molecular diversity 
of Mycobacterium tuberculosis 
complex in Sikkim, India 
and prediction of dominant 
spoligotypes using artificial 
intelligence
Kangjam Rekha Devi1, Jagat Pradhan2, Rinchenla Bhutia2, Peggy Dadul3, Atanu Sarkar1, 
Nitumoni Gohain1 & Kanwar Narain1* 

In India, tuberculosis is an enormous public health problem. This study provides the first description 
of molecular diversity of the Mycobacterium tuberculosis complex (MTBC) from Sikkim, India. A total 
of 399 Acid Fast Bacilli sputum positive samples were cultured on Lőwenstein–Jensen media and 
genetic characterisation was done by spoligotyping and 24-loci MIRU-VNTR typing. Spoligotyping 
revealed the occurrence of 58 different spoligotypes. Beijing spoligotype was the most dominant 
type constituting 62.41% of the total isolates and was associated with Multiple Drug Resistance. 
Minimum Spanning tree analysis of 249 Beijing strains based on 24-loci MIRU-VNTR analysis identified 
12 clonal complexes (Single Locus Variants). The principal component analysis was used to visualise 
possible grouping of MTBC isolates from Sikkim belonging to major spoligotypes using 24-MIRU VNTR 
profiles. Artificial intelligence-based machine learning (ML) methods such as Random Forests (RF), 
Support Vector Machines (SVM) and Artificial Neural Networks (ANN) were used to predict dominant 
spoligotypes of MTBC using MIRU-VNTR data. K-fold cross-validation and validation using unseen 
testing data set revealed high accuracy of ANN, RF, and SVM for predicting Beijing, CAS1_Delhi, and 
T1 Spoligotypes (93–99%). However, prediction using the external new validation data set revealed 
that the RF model was more accurate than SVM and ANN.

In India, the burden of tuberculosis (TB) is enormous. According to the latest estimate of the World Health 
Organisation (WHO), the largest number of incident cases in 2018 were from India (2.69 million, 95% CI 1.84 
to 3.70 million) accounting for 27% of global cases1. Advances in molecular technology have helped us under-
stand the genetic structure of Mycobacterium tuberculosis complex (MTBC) providing insights regarding the 
population dynamics and spread of MTBC locally and globally. The information obtained by molecular typing of 
MTBC isolates is essential for understanding TB epidemics and preventing TB2–4. Current studies also indicate 
that the outcome of TB infection may be related to strain diversity of MTBC5,6. For example, "Beijing strain" of 
MTBC has been reported to be more virulent in animal models and is often reported to be responsible for caus-
ing outbreaks7,8. Moreover, knowledge of the genetic diversity of MTBC is very useful for assessing the impact 
of the TB control program9. Although numerous studies on the genetic diversity of MTBC have been conducted 
in India9–41 yet no such types of studies are available from the hill state of Sikkim where the prevalence of MDR 
strains of MTBC is high42.

Sikkim is a small hilly state in the North East region of India, adjacent to three neighbouring countries like 
China, Nepal, and Bhutan. India TB report showed a high incidence of TB cases43. To better understand the 
genetic diversity of multidrug-resistant (MDR) and Non-MDR MTBC circulating in Sikkim, we characterized 
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399 MTBC isolates from Sikkim using spoligotyping and 24-loci Mycobacterial Interspersed Repetitive Unit-
Variable Number of Tandem Repeats (MIRU-VNTR) typing. Spoligotyping is a PCR-based reverse-hybridization 
blotting technique based on polymorphisms in the presence or absence of "spacers" in the Direct Repeat (DR) 
locus of MTBC44. Typing of MTBC using spoligotyping led to the creation of the database "SpolDB4" in 2006 
which gave the first overview into the global diversity and phylogeography of MTBC spoligotypes44. Subsequently, 
SITVIT web & SITVIT2 databases were created.

A more robust genotyping method, namely 24-loci MIRU-VNTR typing is being used for the genotypic 
characterization of MTBC isolates. Numerous studies have shown that 24-loci MIRU-VNTR genetic markers 
have high discriminatory power, provide deep insight into MTBC Spoligotypes and sub-Spoligotypes and thus 
can be used as a very good alternative method for IS6110 restriction fragment length polymorphism (RFLP) 
which has numerous limitations45–48. Our study aimed to understand the genetic diversity of clinical isolates of 
MTBC from pulmonary tuberculosis cases from Sikkim a remote state in North-eastern India where the burden 
of tuberculosis is an emerging public health concern.

Spoligotyping of MTBC strains is widely used in the epidemiological studies on tuberculosis49. However, 
due to technical difficulties and possibility of carryover contamination of the hybridization membrane, numer-
ous researchers have developed alternative methods like mass spectrometry50, Luminex MagPlex magnetic 
microspheres51, multicolour melting curve analysis52 for carrying out spoligotyping. In this study we tried to pre-
dict dominant spoligotypes prevalent in Sikkim using 24-loci MIRU-VNTR profile using Artificial Intelligence.

Results
Spoligotyping.  The 399 MTBC isolates from Sikkim were found to be representing 58 different spoligo-
types shown in Fig. 1. Distribution of different Spoligotypes of MTBC spoligotypes isolated from Sikkim in the 
study based on the classification by SITVIT2 Web is given in Table 1. Spoligotype International Types (SIT) 
Beijing/SIT1/SIT250 with 249 isolates was the most dominant type (62.41%, n = 399) followed byCAS1_Delhi/
SIT2950/SIT26/SIT1590/SIT952/SIT428/SIT22/SIT485/SIT142/SIT1901/SIT2147/SIT3111/SIT3026 with 63 
isolates (15.79%, n = 399), T1/SIT2723/SIT334/SIT191/SIT118/SIT53 with 23 isolates (5.76%, n = 399), CAS/
SIT2148/SIT599/SIT2756/SIT486 with 7 isolates (1.75%, n = 399), T4/SIT40 with 6 isolates (1.50%, n = 399), 
CAS2/SIT288, H3/SIT665/SIT50, LAM6/SIT64 with 4 isolates (1.00%, n = 399), EAI5/SIT138/SIT517, H1/
SIT283, MANU2/SIT54/SIT1088, UNKNOWN/SIT450 with 3 isolates (0.75%, n = 399), EAI7-BGD2/SIT1391/
SIT96, T3/SIT37, T5/SIT44 with 2 isolates (0.50%, n = 399). The other known spoligotypes were unique and rep-
resented by 1 isolate of EAI3-IND/SIT355, LAM9/SIT42, URAL-2/SIT127, X1/SIT119 and X2/SIT137, (0.25%, 
n = 399). In our study, 14 spoligotypes were found to be new (not found in SITVIT2 database), out of which 11 
patterns were orphans (from single patients), and the remaining 3 spoligopatterns were new SITs (present in 
6 patients). Out of 14 new spoligotypes 13 were genetically close to Delhi/CAS, NEW1, EAI, S, Haarlem, and 
Uganda l spoligotypes based on Neighbor-Joining phylogenetic tree analysis including reference spoligotype 
database (Table 2, Fig. 2 and Supplementary Fig. 1). However, one new spoligotype could not be predicted.

In the present study, 362 (90.7%, n = 399) isolates occurred in clusters. The Hunter Gaston Discriminatory 
Index of spoligotyping was low (HGDI = 0.5977) in MTBC of Sikkim (Table 3).

MIRU‑VNTR typing.  Table  4 summarizes the diversity of the 24-loci MIRU-VNTR in MTBC isolates 
from Sikkim. Analysis of allelic diversity of 24-loci MIRU-VNTR revealed that out of 24-loci, 9 loci (Mtub04, 
MIRU10, MIRU16 Mtub21, QUB11b, MIRU26, MIRU31, QUb26, QUB4156, MIRU39) showed high discrimi-
natory power (above or equal to 0.6). Allelic diversity of 24-loci MIRU-VNTR in Sikkim based on stratified 
analysis of Beijing and Non-Beijing strains revealed that discriminatory power of various MIRU-VNTR alleles 
was lower in Beijing isolates as compared to Non-Beijing isolates. Alleles such as (MIRU02, Mtub04, ETRC, 
MIRU04, MIRU40, MIRU10, MIRU16, MIRU20, QUB11b, ETRA, Mtub29, Mtub30, ETRB, MIRU23, MIRU26, 
Mtub34, Mtub39, QUb26, QUB4156, MIRU39) showed lower discriminatory power in Beijing MTBC isolates 
from Sikkim as compared to Non-Beijing isolates from Sikkim.

The 399 MTBC isolates from Sikkim were found to represent 394 24-loci MIRU-VNTR profiles out of which 
389 profiles were unique, i.e. each type is represented by only one MTBC isolate and 5 MIRU-VNTR types formed 
clusters and the clustering rate was 2.51% (Table 3). The maximum number of isolates in a cluster was 10. The 
Hunter-Gaston Discriminatory Index (HGDI) of combined 24-loci MIRU-VNTR typing analysis was 0.9999.

To capture population snapshot of genetic diversity of Beijing and Non-Beijing MTBC isolates from Sikkim 
we used Minimum Spanning Tree analysis using 24-loci MIRU-VNTR data. We also determined the presence 
of Clonal Complexes based on Single Locus Variants (SLVs) i.e. MTBC isolates having similar MIRU-VNTR 
profiles but differ only at a single locus. Neighbor-Joining phylogenetic tree of 249 Beijing and 150 Non-Beijing 
MTBC isolates from Sikkim based on spoligotyping data and 24-MIRU-VNTR profile is also given (Supple-
mentary Fig. 2 and 3).

Out of 249 Beijing isolates, 34 (13.6%) isolates were distributed in 12 Clonal Complexes (CCs), 10 isolates 
formed 5 identical clusters that are having identical MIRU-VNTR profiles, and the remaining 205 (82.3%) iso-
lates were unique. The largest clonal complexes (CC1) and (CC2) include 9 and 3 isolates, respectively (Fig. 3). 
On the other hand, a 24-locus MIRU-VNTR based MST for Non-Beijing isolates could identify only two clonal 
complexes and these CCs (CC1 & CC2) included 2 isolates each (Fig. 4).

Prevalence of Multiple Drug Resistance according to spoligotypes.  Out of 249, Beijing isolates 
74 (29.7%) were Multiple Drug Resistant (MDR) in contrast to 7 (4.7%) out of 150 Non-Beijing isolates. Beijing 
isolates had more than 8.6 times higher risk of being MDR (Odds ratio 8.64; 95%. CI 3.86–19.34; p ≤ 0.01) than 
Non-Beijing strains and this difference was statistically significant (Table 5).
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Principal component analysis.  To visualize possible clustering of MTBC isolates according to spoli-
gotypes, we reduced the multidimensional MIRU-VNTR data into a few principal components. The first two 
components were used to depict MTBC isolates in the biplot (Fig.  5). MTBC isolates belonging to Beijing, 
CAS1_Delhi, and T1 tend to form separate groups as can be seen in the bi plot.

Random forests (RF), support vector machines (SVM) and artificial neural networks (ANN).  In 
this study, we aimed to predict three dominant spoligotype using RF, SVM and ANN. We used supervised learn-
ing i.e. the machine learning (ML) algorithm was first trained on a training data set (70% randomly selected 
data) to learn predictive patterns and subsequently applied to testing data set (30% data which was kept aside 
and not used for model training) for evaluation of classification accuracy, sensitivity and specificity. We used ten-
fold cross-validation for SVM and ANN models. The testing data sets are non-overlapping. Finally, k-ML models 
are generated. K-fold cross-validation helps in avoiding model overfitting and the metric calculations of model 
performance are calculated as mean over the k-folds. The model specifications of SVM analysis were: Number of 
independents is equal to 24 (i.e. 24-loci MIRU-VNTR), SVM type was C-classification, Kernel type was Radical 
Basis Function. Hyperparameter optimisation revealed that best parameters for Epsilon was = 0 and Cost = 4.The 
results of SVM analysis are given as a confusion matrix showing predicted and observed Spoligotypes of Beijing, 
CAS1-Delhi & T1 Spoligotypes for training data set and testing data set (Table 6). The sensitivity, specificity, and 
accuracy of SVM classification/prediction for the training data set and the Testing data set are given in Table 7. 
For testing dataset, the sensitivity of detecting Beijing Spoligotype of MTBC was 97.06%and the specificity was 

Figure 1.   58 patterns of spoligotypes of MTBC present in Sikkim (2016–2018). The spoligotype patterns are 
made in Microsoft Excel2019 (https://​www.​micro​soft.​com/​en-​in). We used Microsoft Windows Screenshot 
Snipping Tool to save as image (https://​suppo​rt.​micro​soft.​com/​en-​in/​help/​13776/​windo​ws-​10-​use-​snipp​ing-​
tool-​to-​captu​re-​scree​nshots).

https://www.microsoft.com/en-in
https://support.microsoft.com/en-in/help/13776/windows-10-use-snipping-tool-to-capture-screenshots
https://support.microsoft.com/en-in/help/13776/windows-10-use-snipping-tool-to-capture-screenshots
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100%. For CAS1-Delhi the sensitivity was 97.06%and specificity was 100%. For the detection of the T1 Spoligo-
type of MTBC, the sensitivity and specificity were 97.06%and 100%, respectively.

A multilayer perceptron network was used for ANN. K-fold cross-validation was also performed for ANN 
analysis. The input layer consisted of 24 factors (24-MIRU-VNTR types). The number of units includes 24 
(excluding the bias unit). The number of hidden layers was 1 and the number of units in the hidden layer were7 
(excluding the bias unit). The activation function used was Hyperbolic Tangent. The output layers included one 
dependent variable for Spoligotypes (Beijing or CASI Delhi or TI). The activation function used was SoftMax 
and the error function was cross-entropy.

The result of tenfold cross-validation for predicting Beijing or CAS1-Delhi or T1 Spoligotype using Artificial 
Neural Network analysis for testing, training datasets are given in Table 6. The accuracy for the prediction of 
three dominant Spoligotypes (Beijing, CAS1-Delhi, and T1) in the testing data set was 97–99% (Table 7). The 
ROC analysis for ANN model for predicting Beijing, CAS1-Delhi and T1 MTBC Spoligotypes based on testing 

Table 1.   Distribution of different lineages of 399 MTBC isolates collected from 2016 to 2018 based on the 
spoligotype classification by SITVIT2. *Values are in %.

Lineage No. of isolates Prevalence*

BEIJING 249 62.41

CAS1-DELHI 63 15.79

T1 23 5.76

Orphan 17 4.26

CAS 7 1.75

T4 6 1.50

CAS2 4 1.00

LAM6 4 1.00

H3 4 1.00

MANU2 3 0.75

EAI5 2 0.50

H1 3 0.75

UNKNOWN 3 0.75

T3 2 0.50

T5 2 0.50

EAI7-BGD2 2 0.50

X2 1 0.25

X1 1 0.25

LAM9 1 0.25

URAL-2 1 0.25

EAI3-IND 1 0.25

Table 2.   Predicted lineages of 17 orphan MTBC* isolates using phylogenetic tree-based identification as 
implemented by MIRU-VNTRplus. *Mycobacterium tuberculosis complex. **Total number of patterns: 14.

Sample ID of New spoligotypes discovered** n Predicted lineage

IRL-056 1 EAI

IRL-121 1 ?

IRL-130 1 Delhi CAS

IRL-133 1 Delhi CAS

IRL-143 1 S

IRL-147 1 Delhi CAS

IRL-185 1 NEW1

IRL-188 & IRL-189 2 NEW1

IRL-242 & IRL-406 2 EAI

IRL-261 & IRL-375 2 Haarlem

IRL-325 1 S

IRL-342 1 Uganda I

IRL-430 1 NEW1

IRL-184 1 EAI
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data set from Sikkim which were not used for model training (Fig. 6) shows sensitivity versus specificity graph 
i.e. classification performance for all possible cut-offs. The curves of Beijing, CAS1-Delhi, and T1 are quiet away 
from the 45° baseline indicating a more accurate and robust classification achieved by ANN. This interpretation 
is also supported by significantly high Area Under Curve (AUC) result. The 24-MIRU_VNTR independent 
variables ranked on the basis of their importance for prediction of MTBC spoligotype is given in importance 
chart (Fig. 7). The importance values of each independent (predictor) variable is computed based on training 
and testing samples as implemented in SPSS v.26 (https://​www.​ibm.​com/​in-​en/​analy​tics/​spss-​stati​stics-​softw​
are). The normalized importance values are computed by dividing importance values by the largest importance 
value and expressed as percentage.

Figure 2.   Neighbor-Joining (NJ) tree showing the phylogenetic relationship of orphan strains of MTBC from 
Sikkim with reference MTBC isolates available at the MIRU-VNTRplus database. The NJ tree was constructed 
using spoligotyping and 24-loci MIRU-VNTR data. MIRU-VNTR alleles and spoligo-patterns from 17 isolates 
are also represented along with the NJ tree. This phylogenetic tree was used to predict lineage of the orphan/
new MTBC isolates from Sikkim.Web tools MIRU-VNTRplus (https://​www.​miru-​vntrp​lus.​org) and MEGA v7.0 
were used to make the phylogenetic trees (https://​www.​megas​oftwa​re.​net).

Table 3.   Hunter Gaston Discriminatory Index (HGDI) and cluster results based on MIRU-VNTR loci analysis 
of 399 Mycobacterium tuberculosis complexes (MTBC) isolate from Sikkim. *Values are in %.

Typing method
Total no. 
of patterns

No. of unique 
types

Total no. 
of clusters

Total no. of isolates 
in clusters*

Maximum no. of 
isolates in a cluster HGDI

Spoligotyping 58 37 21 362 (90.7) 248 0.5977

24 loci MIRU-VNTR 394 389 5 10 (2.51) 2 0.999937029

https://www.ibm.com/in-en/analytics/spss-statistics-software
https://www.ibm.com/in-en/analytics/spss-statistics-software
https://www.miru-vntrplus.org
https://www.megasoftware.net
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Random forest analysis..  The optimal number of decision trees was found to be 3000 and optimal num-
ber of variables used at each split was found to be four. The out of bag (OOB) estimate of error of final tuned 
model based on training data set was 3.78%. The confusion matrix for training and testing data set is given in 
tables 7and 8, respectively.

External validation and performance evaluation of SVM and ANN.  We used MTBC dataset from 
different region (Assam) for validating of ML models. All ML models used in the present study viz., RF, SVM and 
ANN models were trained to predict Beijing or CAS1-Delhi or T1 Spoligotypes using data from MTBC isolates 
obtained from Sikkim. However, to validate the performance of RF, SVM & ANN models new data set used was 
based on MTBC data generated from Assam. The accuracy, sensitivity and specificity of RF, SVM and ANN 
models against external new data set are given in Table 8. The results show that RF is better classifier to predict 
Beijing or CAS1_Delhi or T1 strains of MTBC using MIRU-VNTR data.

Discussion
India has still the highest burden of TB despite intense national efforts to control and eliminate it (RNTCP, 2014). 
TB is difficult to control and eliminate in India probably due to its vast geographical and socio-economic diversity. 
Recent global studies have shown that high genotypic diversity of MTBC strains is an important factor in the 
pathogenesis of TB by affecting virulence, transmissibility, host response and the emergence of drug resistance53.

Recent advances in MIRU-VNTR profiling and spoligotyping methods have provided powerful tools to deter-
mine various MTBC strains circulating in TB patients and to understand transmission dynamics of tuberculosis 
in a region31. Till date, only limited studies have been conducted on 24-loci MIRU-VNTR and spoligotyping 
based method to characterize MTBC strains in India31. Our study based on 24-loci MIRU-VNTR and spoligotyp-
ing of 399 MTBC isolates provides the first insight into the population structure of MTBC isolates from the hill 
state of Sikkim. According to this study the Beijing spoligotype was found to be the most dominant Spoligotype 
responsible for tuberculosis transmission in Sikkim, followed by CAS1_Delhi. The Delhi/CAS Spoligotype is 
effectively confined to India, Western Asia and Eastern Africa14. The Beijing strains, first described by Van Soolin-
gen et al., in the Beijing area in 199554. The Beijing Spoligotype of MTBC is dominant in countries from Eastern 
Asia, Central Asia, Northern Asia and South-Eastern Asia although Beijing strains have also been reported from 
Austral Africa, Austral Asia, Southern Asia, Western Asia, North America, Central America, Northern Europe 
and Southern Europe. In India except NE region Beijing/Beijing-like strains of MTBC are less prevalent and 
their frequency ranges from 3 to 7%35. The Beijing strain of MTBC is more dominant in Sikkim, about 62.41% 
(present study) and 35.45% in Assam19. The dominance of Beijing genotype in Sikkim is a matter of great concern 

Table 4.   The diversity of each of the 24 MIRU-VNTR loci in Beijing (n = 249) and Non-Beijing (n = 150) 
Mycobacterium tuberculosis isolates from Sikkim.

Alias Locus

HGDI

Beijing Non-Beijing Total

MIRU02 154 0.1713 0.9497 0.1896

Mtub04 424 0.6071 0.7264 0.6930

ETRC​ 577 0.2190 0.6375 0.4740

MIRU04 580 0.0080 0.1769 0.0736

MIRU40 802 0.3653 0.6145 0.4702

MIRU10 960 0.3157 0.8438 0.6228

MIRU16 1644 0.6242 0.6486 0.6444

Mtub21 1955 0.5326 0.7116 0.6540

MIRU20 2059 0.2908 0.3238 0.3033

QUB11b 2163b 0.4502 0.7221 0.6830

ETRA​ 2165 0.1083 0.6801 0.3975

Mtub29 2347 0.3326 0.3480 0.3383

Mtub30 2401 0.2171 0.5000 0.5330

ETRB 2461 0.2092 0.5155 0.3407

MIRU23 2531 0.1137 0.3537 0.2099

MIRU24 2687 0.3691 0.3661 0.3672

MIRU26 2996 0.6901 0.7941 0.7539

MIRU27 3007 0.4289 0.4756 0.4464

Mtub34 3171 0.2476 0.4045 0.3087

MIRU31 3192 0.6969 0.7536 0.7597

Mtub39 3690 0.3967 0.5486 0.4566

QUb26 4052 0.7078 0.8774 0.7914

QUB4156 4156 0.6917 0.7652 0.7210

MIRU39 4348 0.5346 0.6795 0.6170
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as this genotype has been associated with the high frequency of the drug resistance4,55; and treatment failure56,57. 
Moreover, the Beijing genotype is known to cause epidemic outbreaks in several countries because of their high 
adaptability and also this strain is considered to be less sensitive to BCG vaccination58,59. Our present study 
has revealed that Multiple Drug Resistant tuberculosis (MDR-TB) is more prevalent in Beijing strains 29.7% 
(n = 249), whereas in Non-Beijing strains of MTBC prevalence of MDR was 4.7% (n = 150) only. Multiple Drug 
Resistance thus appears to be associated with the Beijing strains in North Eastern region of India as it has been 
previously observed in other Southeast Asian countries like Vietnam, Thailand and also in South Africa2,56,60–64.

The predominance of Beijing isolates in Sikkim indicates that more attention is needed to be given to the TB 
control program in this region to prevent the spreading of this dominating genotype in the community. Recent 
studies have shown that the modern Beijing strains of MTBC are spreading throughout the world because of 
their high degree of transmission potential65 and BCG vaccination has been found to favour the positive selec-
tion of Beijing strains66.

In addition to Beijing family strains, we also identified strains belonging to other families such as CAS1_Delhi 
(15.79%), T1 (5.76%), Orphan (4.26%), CAS (1.75%), T4 (1.50%), CAS2, H3, LAM6 (1.00%), H1, MANU2, 

Figure 3.   A Minimum Spanning Tree (MST) depicting relationships among 249 Beijing isolates from Sikkim, 
India based on 24-loci MIRU-VNTR data. This tree shows the clustering of MTBC isolates based on a final 
match of 24-loci MIRU-VNTR profiles (10 isolates represented by 5 black dots) and clusters based on Single 
Locus Variant (SLV-1) (i.e. these clusters of isolates which differ from each other by the single difference in 
24-loci MIRU-VNTR profile). The largest Clonal Complex (CC1) comprisesnine isolates shown by green dots 
and highlighted in pink colour. This MST was developed using the MIRU-VNTRplus web tool (https://​www.​
miru-​vntrp​lus.​org) and the figure was enhanced using Microsoft Paint (https://​ms-​paint.​en.​softo​nic.​com).

https://www.miru-vntrplus.org
https://www.miru-vntrplus.org
https://ms-paint.en.softonic.com
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UNKNOWN (0.75%), EAI7-BGD2, EAI5 T3, T5 (0.50%), The Less frequent strains belonged to EAI3-IND, 
LAM9, URAL-2, X1 and X2 (0.25%). MIRU-VNTR profiling (24-loci) was more discriminatory (HGDI = 0.9999) 
of genotyping method as compared to spoligotyping method (HGDI = 0.59).

In this study we tried to predict the main spoligotypes of MTBC in Sikkim, India using 24-loci MIRU-VNTR 
profiles. Two-dimensional scatterplot of MTBC isolates indicates that 24-loci MIRU-VNTR data can group 
MTBC isolates according to their spoligotype (Fig. 4). These preliminary results encouraged us to explore the 
effectiveness of RF, SVM & ANN to predict dominant spoligotype of MTBC using 24-loci MIRU-VNTR profile. 
The results of testing data (unseen sample) clearly indicate that classification; accuracy rate for ANN was signifi-
cantly high, followed by RF and SVM models. However, RF model turned out to be better predictor of MTBC 
spoligotype when new external data was used for testing. The major limitation of this study is small sample size 
for some Spoligotypes. Further studies are needed using more diverse samples from different geographical areas 
to validate these finding at global level. Nevertheless, this study has clearly shown the possible use of Artificial 
Intelligence in predicting Spoligotypes from 24-loci MIRU-VNTR profiles. The high-resolution molecular char-
acterization of MTBC done in the present study gives us the first insight into the genotypic diversity of MTBC 
isolates from Sikkim, where MDR TB is emerging as an important public health concern. The results of the 
present study are interesting due to the high predominance of Beijing genotype. However, more elaborate longi-
tudinal studies are needed to be undertaken in this region to understand the transmission dynamics of MTBC, 
and also to get an insight into the efficiency of the TB control program in Sikkim.

Methods
Bacterial culture, identification and DNA extraction.  A total of 399 AFB positive sputum samples 
were collected from 2016 to 2018 from Sikkim and brought to the ICMR-Regional Medical Research Centre, 
North-East Region laboratory Dibrugarh, for culture, Drug Sensitivity Testing (DST) and molecular charac-
terization of MTBC isolates. Biosafety level 3 was used for culture and DST, and BSL level 2 facility was used 
for molecular experiments. Modified Petroff ’s method was used to decontaminate sputum samples, and all the 

Figure 4.   The Minimum Spanning Tree (MST) of 150 Non-Beijing isolates from Sikkim, India. Only two 
Clonal Complexes (CC1 & CC2) are present. The most dominant lineage among non-Beijing isolates was 
CAS1-Delhi represented by red dots in the MST. 17 orphan/new MTBC isolates discovered in the study are 
represented by black dots. This MST was developed using the MIRU-VNTRplus web tool (https://​www.​miru-​
vntrp​lus.​org), and the figure was enhanced using Microsoft Paint (https://​ms-​paint.​en.​softo​nic.​com/).

Table 5.   Results of multiple logistic regression analysis showing the association of Beijing isolates of MTBC 
with multiple drug resistance (MDR). The dependent variable was MDR, and the independent variable was 
Beijing and non-Beijing strains of MTBC. *Degree of freedom; **95% Confidence Interval.

Coefficient Standard error chi-square df* Significance Odds ratio

C.I**. for odds 
ratio

Lower Upper

Beijing(1) 2.156 0.411 27.499 1 0 8.638 3.859 19.339

Constant  − 3.017 0.387 60.74 1 0 0.049

https://www.miru-vntrplus.org
https://www.miru-vntrplus.org
https://ms-paint.en.softonic.com/
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samples were subjected to culture on solid LJ media at 37 °C for 6–8 weeks. The Mycobacterium species identi-
fication was performed according to traditional microbiological and biochemical methods43,67and subsequently 
compared with their respective spoligotyping and MIRU-VNTR patterns.

Drug sensitivity testing (DST).  DST was done using the proportion method67for all first-line anti-TB 
drugs like rifampicin (RIF), isoniazid (INH), streptomycin (STR), ethambutol (EMB) and pyrazinamide (PZA).

DNA isolation.  DNA was extracted from fresh cultures by the cetyl-trimethyl ammonium bromide (CTAB) 
method68.

Spoligotyping.  For the detection of presence or absence of 43 spacers was done on all isolates as described 
by Kamerbeek, et al69. using a commercially available kit (ISOGEN BIOSCIENCES, BV, Maarsen the Nether-
lands now Ocimum Biosolutions). Briefly, the direct repeat (DR) region was amplified with primer pair Dra, 
5′-GGT​TTT​GGG​TCT​GAC​GAC​-3′ (biotinylated 5′ end) and DRb, 5′-CCG​AGA​GGG​GAC​GGA​AAC​-3′. The 
DNA amplification was carried out in GENEAMPPCR system 9700 of Applied Biosystems. The amplified PCR 
products were hybridized with nitrocellulose membrane having covalently linked 43 spacer oligonucleotides 
following the standard procedure69. The hybridized fragments were detected using an enhanced chemilumi-
nescence system (GE Healthcare, UK Ltd., Buckinghamshire, UK) and subsequent exposure in X-ray film in 
darkroom70. The spoligotypes were initially reported as 43 digits binary representation of 43 spacers; one was 
scored for positive hybridization and zero for no hybridization.

MIRU‑VNTR typing.  MIRU-VNTR typing was performed by amplifying 24 hypervariable MIRU loci of 
all 399 isolates of MTBC from Sikkim. These 24 MIRU loci used for typing in this study are MIRU02, Mtub04, 
ETRC, MIRU04, MIRU40, MIRU10, MIRU16, Mtub21, MIRU20, QUB11b, ETRA, Mtub29, Mtub30, ETRB, 
MIRU23, MIRU24, MIRU26, MIRU27, MTUB34, MIRU31, Mtub39, QUb26, QUB4156 and MIRU39. The 

Figure 5.   A Two-dimensional scatter plot of MTBC isolates from Sikkim, India based on principal component 
analysis. Based on eigenvalues, the first two components account for 14.4% and 11.1%, of the total variation of 
the entire dataset. The MTBC isolates were colour-coded depending upon their spoligotype lineage (Orange: 
Beijing; Green; CAS1_Delhi and Blue; T1). Software package R programme was used for analysis.
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details of primer pairs and PCR reaction conditions are given by Supply et al., 200646. The PCR products’ frag-
ment sizes were determined in the LAB CHIP (Caliper life sciences Inc., USA) or agarose gel electrophoresis. 
The copy number of the tandem repeats was calculated as a function size of the PCR product and interpretation 
based on the reference table46. In doubtful cases, the experiment was repeated for confirmation. For quality 
control, Mycobacterium tuberculosis H37Rv and one Beijing strain were used in every batch of the experiment.

Genotype analysis and comparison with databases.  Web tools MIRU-VNTRplus (https://​www.​
miru-​vntrp​lus.​org/) and SITVIT2 (http://​www.​paste​ur-​guade​loupe.​fr:​8081/​SITVI​T2/) were used for assignment 
of MTBC species, Spoligotypes, and genotypes by comparing with international reference database strains45,70,71. 
Spoligotypes were identified by a similarity search in MIRU-VNTRplus and SITVIT2. As on 3rd April 2020, the 
SITVIT2 database contains 1,11,635 entries from 177 countries. In this database, the spoligotypes are designated 
as Spoligotype International Type (SIT) if isolates share them from two or more patients, and if a spoligotype is 
from a single patient, it is designated as orphan70.

Phylogenetic genetic analysis of 399 isolates and the international reference strains was done using Neigh-
bour joining (NJ) tree method based on combined analysis of spoligotypes & 24-MIRU-VNTRs implemented 
by MIRU-VNTRplus web tool. A Minimum Spanning Tree (MST) using 24-loci MIRU-VNTR dataset was also 
constructed for Beijing strains (n = 249) and Non-Beijing strains (n = 150) to determine their Clonal Complexes 
(CC). We allowed single-locus variants (SLVs) to be included in clonal complexes and identical patterns of MIRU-
VNTR. Clonal Complexes identified genetically closely similar strains sharing common transmission link41,72. 
Unknown spoligotypes/orphan strains were subjected to phylogenetic tree analysis using the Neighbour Joining 
(NJ) tree and categorical coefficient to predict these isolates’ Spoligotype. The discriminatory power of spoligotyp-
ing and MIRU-VNTR typing system was calculated using the Hunter Gaston Discriminatory Index (HGDI)73.

Where N = the total number of strains in the sample population, S is the total number of types described, and 
the NJ tree is the number of strains belonging to the jth type.

Table 6.   Confusion matrix showing three major spoligotypes of MTBC from Sikkim based on actual 
spoligotyping conducted using reverse hybridization (row data). Predicted lineages (columns) are based on 
the support vector machine (SVM) and artificial neural network (ANN) analysis using 24-loci MIRU-VNTR 
profiles. Based on k-fold cross-validation.

Actual lineages

Beijing CAS1-Delhi T1

Predicted lineages

Based on RF

Training data set

Beijing 181 0 0

CAS1-Delhi 0 44 0

T1 0 0 13

Testing data set

Beijing 65 0 0

CAS1-Delhi 3 19 1

T1 0 0 9

Based on SVM

Training data set

Beijing 181 1 0

CAS1-Delhi 0 43 0

T1 0 0 13

Testing data set

Beijing 66 0 0

CAS1-Delhi 2 19 2

T1 0 0 8

Based on ANN

Training data set

Beijing 180 4 0

CAS1-Delhi 0 38 0

T1 0 1 14

Testing data set

Beijing 69 3 0

CAS1-Delhi 0 17 1

T1 0 0 8

https://www.miru-vntrplus.org/
https://www.miru-vntrplus.org/
http://www.pasteur-guadeloupe.fr:8081/SITVIT2/
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RStudio version 1.3.1093 and R version 4.0.3 was used for Principal components analysis (PCA). Built in R 
function ‘prcom’ and libraries ‘devtools’, ‘ggplot2′,‘plyr’, ‘scales’ and ‘grid’ were also used. First two PCs were used 
for plotting MTBC isolates (n = 335) in 2-D scatter-plot to get an idea if these MTBC strains tended to group 
according to their spoligotype (Beijing, CAS1-Delhi or T1). The MTBC isolates were colour coded by Spoligotype 
type to visualize possible clustering in three groups.

Dataset preparation.  Target input variable was categorical representing three classes of MTBC Spoligo-
types viz., Beijing, CAS1_Delhi and T1 and was encoded as 1, 2 or 3 representing three classes. Independent 
input variables were 24 in number, and all were numeric. Numeric variables were normalized to have values 
ranging between 0 and 1. No data was missing.

Table 7.   Showing performance measure, i.e. (accuracy, sensitivity and specificity) of random forest (RF)/
support vector machine (SVM)/artificial neural network (ANN) analysis. Based on k-fold cross-validation. 
The training data set is based on 70% of MTBC isolates from Sikkim selected randomly and testing data set is 
remaining 30% of MTBC isolates from Sikkim which were not used for model training. *The values are in % 
and 95% confidence intervals are given in parenthesis for SVM/ANN.

Model Type of data set Performance measure Beijing* CAS1-Delhi* T1*

RF

Training

Sensitivity 100 (97.98–100) 100 (91.96–100) 100 (75.29–100)

Specificity 100 (93.73–100) 100 (98.12–100) 100 (98.37–100)

Accuracy 100 (98.46–100) 100 (98.46–100) 100 (98.46–100)

Testing

Sensitivity 95.59 (87.64–99.08) 100 (82.35–100) 90 (55–99.75)

Specificity 100 (88.06–100) 94.87 (87.39–98.59) 100 (95.85–100)

Accuracy 96.91 (91.23–99.5) 95.88 (89.78–98.87) 98.97 (94.39–99.97)

SVM

Training

Sensitivity 100 (97.98–100) 97.73 (87.98–99.99) 100 (75.29–100)

Specificity 98.25 (90.61–99.96) 100 (98.12–100) 100 (98.37–100)

Accuracy 99.58 (97.68–99.99) 99.58 (97.68–99.99) 100 (98.46–100)

Testing

Sensitivity 97.06 (89.78–99) 97.06 (89.78–99.64) 97.06 (89.78–99.64)

Specificity 100 (88.06–100) 100 (80.06–100) 100 (88.06–100)

Accuracy 97.94 (92.75–99.75) 97.94 (92.75–99.75) 97.94 (92.75–99.75)

ANN Training

Sensitivity 99.43 (96.84–99.99) 92.5 (79.61–98.43) 100 (78.2–100)

Specificity 98.18 (90.28–99.95) 99.47 (97.09–99.99) 99.07 (96.66–99.89)

Accuracy 99.13 (96.88–99.89) 98 (95.59–99.52) 99.13 (96.88–99.89)

Testing

Sensitivity 100 (78.2–100) 87.5 (67.64–97.34) 100 (54.07–100)

Specificity 99.07 (96.66–99.89) 100 (95.55–100) 97.98 (92.89–99.75)

Accuracy 99.13 (96.88–99.89) 97.14 (91.88–99.4) 98 (93.29–99.77)

Figure 6.   A Receiver operating characteristic (ROC) Curve and measured area under curve (AUC) showing, 
the classification performance of artificial neural network (ANN) at different levels of cut-offs (threshold levels). 
This sensitivity versus specificity plot shows the high performance of ANN in predicting spoligotype lineages. 
Software package R progamme was used for analysis.
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Random forests, support vector machines and artificial neural networks.  In the present study, 
artificial intelligence-based machine learning methods such as random forests, support vector machines and 
artificial neural networks74–79 were used to predict dominant spoligotypes of MTBC using MIRU-VNTR data. 
Random forest is a robust supervised classification/regression machine learning technique. It is an ensemble 
classifier based on constructing 100 s of decision trees at training time. The bootstrap samples are used to grow 
numerous decision trees, and a random sample of independent predictors are used at each node. We used two 
parameters in RF for tuning viz., ‘ntree’ number of trees to grow and ‘mtry” number of variables to select at a 
node split. RF model is robust and does not overfit the training data. RF analysis was conducted using R package 
(V 4.0.3). Libraries ‘caret’, ‘lattice’ & ‘ggplot2′ were used for RF analysis.

Support Vector Machines (SVM) are advanced nonparametric machine learning data mining techniques 
based on supervised and kernel-based methods. SVM is used for classification, prediction and regression 

Figure 7.   Importance value of independent variables (24 MIRU-VNTR loci) useful for predicting three 
dominant spoligotypes (Beijing orCAS1_Delhi, orT1) based on artificial neural network (ANN) analysis.

Table 8.   Showing performance measure, i.e. (accuracy, sensitivity and specificity) of random forest (RF)/
support vector machine (SVM)/artificial neural network (ANN) analysis based on external database validation. 
The training data set is based on MTBC isolates from Sikkim and testing data set is based on MTBC isolates 
from a different geographical area (the state of Assam), which was not used for model training. *The values are 
in % and 95% confidence intervals are given in parenthesis for RF/SVM/ANN.

Model Type of data set Performance measure Beijing* CAS1-Delhi* T1*

RF

Training

Sensitivity 95.89 (range 88.46–99.14) 95.35 (range 84.19–99.43) 93.75 (range 69.77–99.84)

Specificity 94.92 (range 85.85–98.94) 100 (range 98.12–100) 100 (range 96.87–100)

Accuracy 95 (range 90.37–98.31) 100 (range 98.46–100) 99 (range 95.86–99.98)

Testing

Sensitivity 100 (97.98–100) 100 (91.96–100) 100 (75.29–100)

Specificity 100 (93.73–100) 100 (98.12–100) 100 (98.37–100)

Accuracy 100 (98.46–100) 100 (98.46–100) 100 (98.46–100)

SVM

Training

Sensitivity 95.89 (range 88.46–99.14) 93.02 (range 80.94–98.54) 75 (range 47–92.73)

Specificity 91.53 (range 81.32–97.19) 94.38 (range 87.37–98.15) 100 (range 96.87–100)

Accuracy 94.74 (range 88.41–97.35) 93.94 (range 88.41–97.35) 96.97 (range 92.42–99.17)

Testing

Sensitivity 100 (97.98–100) 97.73 (87.98–99.94) 100 (75.29–100)

Specificity 98.25 (90.61–99.96) 100 (98.12–100) 100 (98.37–100)

Accuracy 99.58 (97.68–99.99) 99.58 (97.68–100) 100 (98.56–100)

ANN

Training

Sensitivity 98.63 (range 92.6–99.97) 83.72 (range 69.3–93.19) 87.5(range 61.65–98.45)

Specificity 88.14 (range 77.07–95.09) 98.88 (range 93.9–99.97) 98.28 (range 93.91–99.79)

Accuracy 93.94 (range 88.41–97.35) 93.94 (range 88.41–97.35) 96.97(range 92.42–99.17)

Testing

Sensitivity 99.43 (96.86–99.99) 92.5 (76.61–98.43) 100 (78.2–100)

Specificity 98.18 (90.28–99.95) 99.47 (97.09–99.99) 99.07 (96.66–99.89)

Accuracy 99.13 (96.88–99.89) 98.25 (95.59–99.52) 99.13 (96.88–99.89)
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problems. Learning in the SVMs is achieved by finding an optimal linear hyperplane using appropriate kernel 
functions, maximizing the margin between the classes. The classification can be binary or multiclass. Prediction 
of spoligotype using 24-loci MIRU-VNTR profile of MTBC is an example of the multiclass classification task. In 
the present study, the data set of 335 MTBC isolates from Sikkim having information on three dominant spoli-
gotypes and 24-loci MIRU-VNTR profiles. We used k-fold cross-validation (10-fold for Beijing or CAS1-Delhi 
and T1 MTBC Spoligotype) to test the performance of the model. The single dependent variable was categorical 
(‘1’ for Beijing ‘2’ for CAS1/Delhi and ‘3’ for T1) and 24 independent variables (24-loci MIRU-VNTR profile) 
were numeric. We used ‘caret’ and ‘e1071’ libraries in R for SVM analysis. We tested ‘radial’, ‘linear’, polynomial’ 
and ‘sigmoid’ kernel functions to determine best function suitable for classifying three dominant MTBC Spoligo-
types. The optimal value for ‘Epsilon’ and ‘Cost’ were determined using ‘tune’ library. Artificial Neural Networks 
(ANN) are currently popular and powerful machine learning tools that are biologically inspired computational 
models that imitate brain neurons and solve complex problems. The ANN typically consists of the three-layered 
network (the input layer, the hidden layer and the output layer) consisting of artificial neurons or nodes and 
interconnected by connections (synaptic weights). ANN require training data (supervised learning algorithm) 
for model building. The dependant and independent variables are given as input (training phase) that informa-
tion will be used for the system to learn using the back-propagation learning algorithm to predict outputs. The 
Multilayer Perceptron (MLP) was used to build ANN. K-fold cross-validation was also used for the evaluation 
of ANN. We used SPSS v26 for ANN analysis. SPSS software has the provision to manually choose parameters 
such as number of hidden layers, number of units in hidden layers, activation functions (hyperbolic tangent or 
sigmoid), and output layer activation functions like identity, SoftMax, hyperbolic tangent & sigmoid. Instead, 
we opted for automatic architecture selection to select optimal parameters with a number of hidden layers one 
to fifty. The accuracy of the ANN model was best as revealed by ROC analysis.

Sensitivity, specificity, and accuracy were calculated to measure the performance of SVM and ANN predic-
tions. Sensitivity was measured by the formula TP/(TP + FN), specificity was measured as TN/(FP + TN), and 
accuracy by (TP + TN)/(TP+TN+FP+FN) where TP, TN, FN and FP represent true positive, true negative, false 
negative and false positive, respectively. The Receiver Operating Characteristic Curve (ROC) analysis was also 
used to determine ANN classifiers’ performance, where x-axis represents 1-specificity and the y-axis represents 
sensitivity and the value ranges between 0.0 and 1.0.

For external validation, 132 isolates of MTBC collected from different geographical areas (the state of Assam) 
were also processed for spoligotyping and 24-loci MIRU-VNTR typing. To check for overfitting, we used blind 
external data (obtained from MTBC isolates from Assam) to evaluate model performance of all ML methods 
i.e. RF, SVM and ANN.

Excel 2016 of Microsoft office was used for calculations related to performance measure of RF, SVM and 
ANN classifiers. This was done by generating confusion matrices generated for training, testing and external 
new data sets.

Logistic regression analysis.  Binary logistic regression analysis was used to find the association between 
multiple drug resistance (MDR) status and MTBC Spoligotype. The dependant variable used was MDR status 
of MTBC isolate and the independent variable used was whether the MTBC isolate belonged to Beijing or non-
Beijing Spoligotype. The Wald test was used to find statistical significance of Independent variable. The strength 
of the Association between MDR and Spoligotype was determined using the odds ratio and 95% confidence 
interval of the odds ratio.

Ethics approval and consent to participate.  This study was approved by the Ethical Committee of 
ICMR-Regional Medical Research Centre, North-East Region, Dibrugarh. All processes were performed in 
accordance with the related regulations and guidelines. Written informed consent was obtained from all the 
participants or their guardians in the case of minors who provided sputum samples. Patients found positive for 
AFB were referred to the nearest DOTS centre for treatment.
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