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Metabolic syndrome (MetS) affects the population worldwide and results from several
factors such as genetic background, environment and lifestyle. In recent years,
an interplay among autophagy, metabolism, and metabolic disorders has become
apparent. Defects in the autophagy machinery are associated with the dysfunction
of many tissues/organs regulating metabolism. Metabolic hormones and nutrients
regulate, in turn, the autophagy mechanism. Autophagy is a housekeeping stress-
induced degradation process that ensures cellular homeostasis. High mobility group
box 1 (HMGB1) is a highly conserved nuclear protein with a nuclear and extracellular role
that functions as an extracellular signaling molecule under specific conditions. Several
studies have shown that HMGB1 is a critical regulator of autophagy. This mini-review
focuses on the involvement of HMGB1 protein in the interplay between autophagy and
MetS, emphasizing its potential role as a promising biomarker candidate for the early
stage of MetS or disease’s therapeutic target.
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INTRODUCTION

Metabolic syndrome (MetS) increases significantly morbidity and all-cause mortality worldwide
(Cornier et al., 2008; Alamdari et al., 2020; Watanabe and Kotani, 2020). MetS is linked to
cognitive decline and Alzheimer’s disease (AD), and this has suggested the term “metabolic-
cognitive syndrome” (Frisardi et al., 2010). Over the past few decades, the prevalence of MetS,
cardiovascular disease, and dementia has risen rapidly. The increasing worldwide prevalence of
childhood obesity and diabetes in the young (DeBoer, 2019; Weihe and Weihrauch-Blûher, 2019)
has promoted the search for biochemical markers of MetS to identify its prodromal phase or to
predict the evolutionary risk. Autophagy is a degradation process facilitating homeostasis and
intracellular energy balance. Emerging discoveries showed the complex and reciprocal interplay
between autophagy and metabolism (Martinez-Lopez et al., 2017; Raj et al., 2020). Obesity, fatty
liver disease and diabetes, the principal components of MetS, show dysregulated hepatic autophagy
(Zhang et al., 2018; Allaire et al., 2019). Vice versa, glycolysis alters the autophagy self-fueling
derangements in other metabolic pathways (Kiffin et al., 2006). A ubiquitous small chromatin-
linked non-histone peptide, High Mobility Group Box-1 (HMGB1), has gained attention lately
as a critical promoter of autophagy processes (Huebener et al., 2014). HMGB1 levels are related
to inflammation (Cal et al., 2015), insulin resistance (IR), hyperglycemia (Migazzi et al., 2021),
and MetS (Jialal et al., 2014; Chen et al., 2020a). Understanding the molecular bases for these
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processes is essential for developing new diagnostic biomarkers
and identifying new therapeutic target and subpopulations at
risk. Not all obese subjects have Mets, while lean subjects could
develop MetS-linked cardiovascular complications.

METABOLIC SYNDROME (MetS):
DYSFUNCTIONAL ADIPOSITY AND IR

Metabolic and vascular factors, especially visceral obesity and
IR, characterize MetS (Cornier et al., 2008). Measuring IR
is demanding, and the lack of assay standardization makes
new syndrome markers necessary. Chronic pro-inflammatory
and pro-thrombotic states, non-alcoholic fatty liver disease
(NAFLD) (Lonardo et al., 2020), and sleep apnea (Castaneda
et al., 2018) contribute to the MetS entity (Jabalie et al., 2019).
MetS represents a clinical spectrum where a lag time exists
between a single risk factor, the syndrome’s definition and
clinical consequences. Receiving a diagnosis of MetS is already
too late (Reaven, 2006) compared to the possibility of having
molecular markers of disease’s evolving risk. Adipose tissue (AT)
is metabolically active (Kershaw and Flier, 2004; Iozzo and
Guzzardi, 2016). Chronic nutrient surplus and hyperinsulinemia
increase adipocytes metabolic glucose flux and lead to cell
hypertrophy. As adipocytes reach the critical size, precursor cells
differentiate (Longo et al., 2019). In this context, lipogenic and
antilipolytic control is impaired with reduced insulin sensitivity
and ectopic fat accumulation. Therefore, the inability to buffer
excess metabolic substrates from nutritional overload exposes
other tissues to lipotoxicity (Cornier et al., 2011). There are
functional differences between healthy (insulin sensitive) and
unhealthy (IR) obesity. Inflammation can induce DNA damage,
such as DNA double-strand breaks (DSBs), which increase
inflammation. Obesity also modifies the immune cells (Olefsky
and Glass, 2010; Trim et al., 2018). Explicitly, in the AT of
obese subjects, monocytes polarize to M1 macrophages and
display several cytokines (including TNF-α, IL-6, HMGB1)
(Zhang et al., 2017). This molecular shift aggravates the chronic
inflammatory state and IR. Furthermore, an increased formation
of advanced glycation products (AGE) and their signaling
via specific receptors (RAGE), including redox mechanisms,
mediate vascular dysfunction and end-organ failure in MetS
(Fournet et al., 2018).

OVERVIEW ON AUTOPHAGY

Although firstly described in 1963, only in the 1990s autophagy
mechanisms were elucidated with identifying autophagy-related
genes (ATG) in yeast (Takeshige et al., 1992; Klionsky, 2007;
Mizushima, 2018). In eukaryotic, energy deprivation and/or
intense physical activity trigger the cellular self-digestion
processes to secure sufficient nutrient supply (Klionsky, 2007;
Maiuri et al., 2007; Mizushima et al., 2008; Levine et al., 2011;
Rubinsztein et al., 2011). Besides its role in preserving normal
cellular functions, autophagy participates in several diseases
(Jiang and Mizushima, 2014). Many stress conditions lead to a

progressive accumulation of toxic molecular components and
activate autophagic processes (Leidal et al., 2018) that rely
upon three primary types: microautophagy, macroautophagy,
and chaperone-mediated autophagy (CMA). Macroautophagy
differs from the others because the waste of damaged organelles,
unneeded cellular materials, and pathogenic agents are first
sequestered and encapsulated in double-membrane vesicles
(autophagosomes). Then, by trafficking from the cytoplasm to
the lysosomes, autophagosomes fuse with lysosomes, and their
contents can be either recycled or degraded (Mehrpour et al.,
2010; Lamb et al., 2013; Figure 1). Six main steps (initiation,
nucleation, elongation closure, maturation, and degradation
or extrusion) characterize autophagy; each of these is highly
regulated (Figure 1). Beclin 1 (BCN1) belongs to the autophagy
machinery, and it plays its effects by the activation of specific
(BCN1)-binding proteins, autophagic inducers and autophagic
inhibitors in a cell- or tissue-dependent fashion (Cuomo et al.,
2019). Autophagy induction might counteract SARS-CoV-2
infection (Carmona-Gutierrez et al., 2020). Although it is far
beyond the goal of this review, the speculation of autophagy
as a possible druggable target in SARS-CoV-2 is undeniably
and surely deserves further investigations, also regarding the
hypothesized link among obesity, IR and COVID-19 (Frisardi,
2020; Street, 2020).

AUTOPHAGY AND MetS: THE VICIOUS
CIRCLE

Various metabolic disorders showed functional defects in
autophagy (Ichimura and Komatsu, 2011; Ueno and Komatsu,
2017; Barbosa et al., 2018; Ren et al., 2018; Zhang et al., 2018).
Over the last years, the use of mice models, yeast screen and
genome-wide analysis has considerably amplified our knowledge
about this topic (Li et al., 2016; Kuma et al., 2017). Silencing
of ATG promotes obesity and triggers metabolic complications.
Consistently, ATG overexpression improves the metabolic profile
in aged mice (Pyo et al., 2013). Since fasting activates autophagy,
dietary interventions promoting autophagy has been explored
(Martinez-Lopez et al., 2017). Different metabolic phenotypes
have been described in various tissues, suggesting that autophagy
genes are differentially expressed and activated in a tissue-
and stage-specific manner during the development. However,
it is worth to note that deficits in the autophagy genes, at
systemic rather than tissue-specific level, affect cell adaptation
to metabolic stress more and facilitates the progression from
a risk factor (ex. obesity) to full-blown diseases (Lim et al.,
2014; Ren et al., 2018). Nutrient limitation and multiple stress
conditions upregulate autophagy because this latter serves
cytoprotective functions and, reducing cellular death, limits the
following inflammatory state. Indeed, autophagy could represent
a protective mechanism following myocardial infarction (Czaja,
2010). Autophagy regulates adipocyte differentiation, lipid
metabolism, endothelial activity, pancreatic β-cell maturation,
molecular processes related to inflammation/immune responses
(Ryter et al., 2014) and storing of lipids. Whenever autophagy is
inhibited, lipids accumulate, and many processes’ dysregulation
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FIGURE 1 | Schematic representation of macroautophagy, chaperone-mediated autophagy (CMA), and microautophagy. (A) In macroautophagy, cargos are
sequestered by phagophores, which elongate and form a double membranous structure, the autophagosome. Autophagosomes then fuse with the lysosome to
form autolysosomes. (1) Nucleation consists of the formation of the phagophore. A class III of phosphoinositide 3-kinases (PI3K) complex consisting of beclin 1
(BCN1), Phosphatidylinositol 3-kinase catalytic subunit type 3 (PIK3C3), Phosphoinositide 3-kinase regulatory subunit 4 (PIK3R4), UV radiation resistance-associated
gene protein (UVRAG), and Autophagy And Beclin 1 Regulator 1 (AMBRA1) is required for phagophore formation. (2) Microtubule-associated proteins 1A/1B light
chain 3B (MAP1LC3) complex anchors to the membrane via a phosphoethanolamine (PE) anchor (LC3-II) and triggers the elongation. (3) The phagophore
sequesters cytosolic cargo and forms a double-membranous vesicle, the autophagosome. (4) Maturation, the completed autophagosome undergoes multiple
maturation steps. (5) Docking and fusion, the autophagosome is released into the lysosome/autolysosome to be degraded by lysosomal hydrolases or to become
available for re-usage (6). (B) In CMA (left), substrate proteins that can be damaged by various factors, such as reactive oxygen species (ROS), bind the Lysosomial-
Heat shock cognate 71 kDa protein (Lys-Hsc70) chaperone through a specific amino acid sequence (the KFERQ motif) and are transported across the lysosomal
membrane for degradation via interaction with lysosomal-associated membrane protein 2A (Lamp2A) proteins. (C) Microautophagy (right) involves the direct
engulfment of portions of the cytoplasm into lysosomes.

occurs (Czaja, 2010). Briefly, cell-intrinsic effects (e.g., nutrient
metabolism, mitochondria, and lipid droplet homeostasis), cell-
extrinsic effects (e.g., the release of pro-inflammatory cytokines),
and potentially lack of feedback inhibition of insulin and mTOR-
C1 (mammalian target of rapamycin-complex 1) signaling
pathways interfere with autophagy mechanisms. As in a vicious
circle, defects in autophagy accelerates lifestyle-induced obesity
that, in turn, inhibits autophagy in the liver, muscle and AT,
worsening symptomatic features of MetS (Figure 2; Yang et al.,
2010; Ruderman et al., 2013; Kaur and Debnath, 2015; Ren and
Xu, 2015; Che et al., 2018; Zhang et al., 2018; Menikdiwela
et al., 2020). In obesity, autophagy is suppressed via an increase
in mTOR activity, which is involved in different cardiovascular
pathophysiology (Wang et al., 2007; Che et al., 2018; Samidurai
et al., 2018). Chronic obesity related-stress with a dysregulation
of insulin/mTOR signaling (Wang et al., 2007; Sohrabi et al.,
2019; Menikdiwela et al., 2020) lead to autophagy machinery
disruption (Figure 2). During fasting, neuroendocrine signals
[e.g., insulin and Insulin Growth Factor 1 decrease vs. glucagon,
fibroblast growth factor 21 (FGF21) increase] regulate autophagy
tightly. Commonly, these neurohormonal signals are altered
in obesity (Levine and Kroemer, 2019). Mesenchymal stem
cells from patients with diabetes and MetS show changes
in oxidative stress and autophagy (Kornicka et al., 2018). Both

lipogenesis and adipogenesis are redox-sensitive; healthy obesity
is consistent with the lack of the redox stress signature
(Jankovic et al., 2015; Bañuls et al., 2017; Böhm et al.,
2020). On the contrary, constant nutritional overload and
oxidative pressure may compromise autophagy machinery ability
to counteract metabolic derangement. As oxidative injuries
accumulate, irreversible damage appears with signaling pathways
disruption. Consistently, data suggest that oxidative injury may
precede adipocyte dysfunction and other metabolic disorders
even in yet metabolically healthy obese subjects (Jankovic et al.,
2015). Evidence support an association between mitochondrial
dysfunction and MetS in prediabetic and diabetic states (Bugger
and Abel, 2008; Montgomery, 2019; Böhm et al., 2020).
Mitophagy (selective autophagy in mitochondria) is a vital
mechanism to keep stable the metabolic homeostasis (Xu et al.,
2020). Therefore, enhancement of autophagy activity might be
a novel therapeutic approach against organ failure’s evolving
metabolic disorders.

HMGB1: A MULTIFACETED PROTEIN

High mobility group box 1 (HMGB1) is an evolutionarily highly
conserved small chromatin-linked non-histone peptide, first
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FIGURE 2 | The schematic interplay among HMBG1, autophagy, and Metabolic Syndrome. HMGB1, High mobility group box 1; c23, c46, c106, cysteine at 23, 46,
106 position; ROS, reactive oxygen species; BCN1, Beclin-1; ATG, autophagy-related genes; Neuroendocrine hormones F/S, fasting/starvation; mTOR, mammalian
target of rapamycin; NF-κb, nuclear factor kappa-light-chain-enhancer of activated B cells; IL, interleukines; TNF-α, tumor necrosis factor-alpha; p53, protein 53;
p73, protein 73; RB, retinoblastoma protein; Rel/Nf-κB, member of Rel/Nf-κB family; ER, estrogen receptor; C, caspases, non-canonical inflammasome; RAGE,
advanced glycosylation end product-specific receptor; TLR2 and TLR4, Toll-like Receptor 2 and 4; TIM-3, T-cell immunoglobulin mucin-3; CXCR4, chemokine
C-X-C motif receptor 4; Mac-1, macrophage-1 antigen; CD138, syndecan-1; CD24, cluster of differentiation 24; M, macrophages; IR, Insulin Resistance; AT,
Adipose Tissue. HMGB1 functions as a Damage Associated Molecular Pattern (DAMP) protein in the extracellular space. A mixture of different HMBG1 isoforms
(CH = reduced form; SH2: disulfide HMBG1, SH3 oxidized form) in the extracellular space activates different pathway signaling. As the disulfide HMBG1 is
responsible for autophagy activation, which counteracts the metabolic consequences of MetS. During an overload of food nutrients, there is an increase in ROS. The
oxidative environment modifies the Reduced/oxidized HMBG1 ratio, increasing the dysregulation in Insulin/mTOR signaling, which blocks the autophagy machinery.
It follows an increased risk for the “unhealthy” obese to develop MetS complications due to an unbalance among the downstream IR pathway, chronic inflammatory
pattern and inability to counteract metabolic derangements via autophagy machinery disruption. HMGB1 is an autophagic regulator that mediates stress response:
in normal condition, cytosolic HMGB1 as BECN1-binding protein induces autophagy. Extracellular HMGB1 binds RAGE, which inhibits mTOR and promotes
autophagy. In chronic obesity and switching from insulin-sensitive to IR state, change in oxidative environment modifies the HMBG1 activity altering its inducer role in
autophagy. In the nucleus, HMBG1 interact with and enhances the activities of number of transcription factors, including p53, p73, RB, Rel/Nf-κB, and ER. Once
released, HMBG1 binds to various receptors to activate DAMP signaling involved in multiple cellular processes. Inflammasomes are a cytosolic multiprotein complex
formation that are recruited by external pathogen and/or internal stimuli. Chronic inflammasomes lead to chronic inflammatory status increasing the risk of clinical
consequences of MetS. HMGB1 triggers C (Caspase-4/caspase-5) which are components of the “non-canonical inflammasome” with cytokines release and
induction of pyroptosis (a kind of proinflammatory cell death combining features of both apoptosis and necrosis).

identified in the HMG family. HMGB1 (215 amino acids) is
organized in three distinct regions: Box A and Box B and the
C-terminal domain. While Box A and B are essential for the
HMGB1 binding to DNA and thereby regulating transcription
of target genes, the C-terminal domain contains the binding
sites for RAGE and Toll-like receptor (TLR) (Livesey et al.,
2012; Jiang et al., 2020). Each of these receptors mediates
HMGB1 signals (Park et al., 2004), also activating the NF-
κB proinflammatory pathway (nuclear factor kappa-light-chain-
enhancer of activated B cells) (Jiang et al., 2020; Figure 2).
NF-κB was also detected in the mitochondria, where it intervenes
in mitochondrial dynamics, apoptosis, respiratory control, gene
expression, and disease mechanisms (Albensi, 2019). HMGB1
is involved in maintaining genomic structure and function, and
it is predominantly located in the nucleus in the reduced form
Tang et al. (2010a). However, a small amount of HMBG1 is
also present in the cytosol, which controls cell stress responses
and inhibits apoptosis (Yang et al., 2013). During inflammation,
HMGB1 promotes autophagy via binding to BCN1 and ATG5

and regulating mitochondrial morphology and function (Zhu
et al., 2015; Figure 2).

HMBG1 can be released either passively from damaged cells
or actively from immunologically activated immune cells under
distress conditions. Extracellular HMGB1 acts as an alarmin
and a Damage Associated Molecular Pattern (DAMP) protein
(Raucci et al., 2019) by binding to several pathogen-associated
molecular patterns (PAMPs) (Jiang et al., 2020) and activating
downstream signals (Figure 2). An excessive accumulation of
extracellular HMGB1 has been associated with the pathogenesis
of many disorders, including diabetes (Wang et al., 2016; Zhang
et al., 2020; Li and Lu, 2021). HMGB1 has several extracellular
receptors (Figure 2). Actually, only RAGE and TLR4 are mainly
studied and reported receptors (Andersson et al., 2018). HMGB1
serves as a redox sensor. In this regard, the three conserved
redox-sensitive cysteine residues Cys23, Cys45, and Cys106 play
a critical role (Li et al., 2003). Depending on the redox state,
HMGB1 switches from the active to the inactive conformation. In
particular, when Cys106 is oxidized, HMGB1 is inactive and likely
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promotes immune tolerance with the release of proinflammatory
cytokines. Moreover, Cys106 oxidation induces the HMGB1
dimerization in cells exposed to oxidative stress. It follows that
HMGB1 binds to DNA with a higher affinity than monomeric
HMGB1, protects DNA from damage due to hydroxyl free
radicals and prevents cell death (Kwak et al., 2021).

Conversely, the reduced HMGB1 form switches its activity
into the proinflammatory state (Zhang et al., 2017). Although
the oxidized HMGB1 is thought to be non-inflammatory,
a role in promoting the intrinsic apoptotic pathway has
been reported (Tang et al., 2010b). Moreover, a mixture of
oxidized/reduced HMGB1 isoforms has been described in the
extracellular compartments exerting different effects on cell
defense mechanisms (Xue et al., 2020).

HMGB1, AUTOPHAGY AND MetS: A
SUGGESTIVE TRIANGULATION

Accumulating evidence supports the relationship between
autophagy and HMGB1. There is a mutual regulation where
one’s inhibition affects the release of the other (Zhang et al.,
2017), while uncontrolled autophagy increases the HMGB1
release (Tang et al., 2010b; Kim et al., 2020). HMGB1 is crucial
for normal autophagy functioning (Tang et al., 2010a; Foglio
et al., 2019). As a transcriptional co-factor, HMGB1 regulates the
expression of heat shock protein β-1 (Tang et al., 2011; Foglio
et al., 2019), which sustains dynamic intracellular trafficking
during autophagy. Cytosolic HMGB1 competes with Bcl-2 for
interaction with BCN1 by intramolecular disulfide bridge of
HMGB1 promoting BCN1-mediated autophagosomes (Kang
et al., 2010; Tang et al., 2010a; Foglio et al., 2019). HMGB1
triggers autophagy through binding to RAGE (Tang et al., 2010a).
This latter is a positive regulator of autophagy and a negative
regulator of apoptosis during oxidative stress, DNA damage, and
hypoxia (Kang et al., 2010). In in vitro and in vivo experiments,
deletion, depletion or inhibition of HMGB1 reduces autophagy
(Tang et al., 2010a,b). HMGB1-mediated autophagy prevents a
worse evolution of several diseases (Kang et al., 2014). In contrast,
conditional knockdown of HMGB1 in the liver or heart does
not affect autophagy and mitochondrial quality (Huebener et al.,
2014). These conflicting results could be imputable first to the
difference in cellular line; second, we can hypothesize that as a
DAMP, over secreted HMBG1 could play its role in a paracrine
mode by linking RAGE in the target organ. In the Huebener et al.
(2014) experiment, HMGB1 was deleted in hepatocytes but not
in non-parenchymal liver cells. RAGE expression was only found
on ductal cells and Kupffer’s cells but not on hepatocytes and this
could the explanation of why in the experiment performed by
Huebener et al. (2014) deleted HMBG1 in hepatocytes does not
alter mitophagy, autophagy, or gene expression.

Furthermore, in basal condition, maybe HMBG1 could be
dispensable for autophagy. Nevertheless, under stress conditions,
if we modify the cellular micro-macro environment, for
example, by aging, cumulating oxidative damage or nutrients
overload, HMBG1 could be essential (Ferrara et al., 2020).
In atherosclerotic lesions in human carotid, BCN1 was found

to co-localize with HMGB1 and were both found in foamy
macrophages suggesting an interplay between HMGB1 and
autophagy in atherosclerosis (Umahara et al., 2020). Further
studies are re required to investigate the HMGB1 contributes to
autophagy in tissue-specific contexts and conditions.

Differently than in the inflammation (Cal et al., 2015; Yao et al.,
2015; Biscetti et al., 2019) and autophagy, the role exerted by
HMGB1 in MetS and its potential contribution to cardiovascular
complications remains mostly unexplored despite the increasing
number of evidence underlining this association (van Niekerk
et al., 2019). A linear relationship has been consistently observed
among HMGB1 levels and inflammation, IR, and hyperglycemia
(Montanini et al., 2016; Cirillo et al., 2019, 2020). In particular,
a study comparing control mice to MetS mice, fed with
a high-fat diet, showed increased secretion of HMGB1 in
the AT of the affected mice (Jialal et al., 2014). Increased
circulating HMGB1 concentrations have been described in
obese children with MetS compared to healthy controls
(Arrigo et al., 2013).

Further, in adipocytes, HMGB1 secretion is regulated by
c-Jun (Shimizu et al., 2016), a downstream mediator of the
insulin receptor. HMGB1 is implicated in the development of
non-alcoholic fatty liver Disease (NAFLD) by insulin receptor
downstream effectors (Arrigo et al., 2013; Wang et al., 2015;
Giacobbe et al., 2016). Obese pregnant women as children show
high serum HMGB1 levels (Arrigo et al., 2013; Giacobbe et al.,
2016), directly associated with body mass index. Circulating
HMGB1 significantly increase in obese individuals and T2D
patients (Wang et al., 2015). However, a larger sample size will
be necessary to support the clinical relevance of HMGB1 as a
potential and viable biomarker for the early diagnosis of obesity.
As secreted by the macrophages within AT (Bonaldi et al., 2003),
HMGB1 may promote inflammation by binding to receptors on
effector cell membranes, leading to inflammatory mediators (IL-
6 and TNF-α). In turn, the release of IL-6 and TNF-α leads to
increased HMGB1 release, resulting in a cascade amplification of
inflammation (Zhang et al., 2019).

High mobility group box 1-gene-deficient mice show several
metabolic defects and die of hypoglycemia. Obese individuals
are more prone to DNA damage than normal-weight adolescents
(Azzarà et al., 2016; Rohde et al., 2020) but have improved
the potential to repair occurred lesions. Different repair kinetics
of DSBs in obese versus lean derived lymphocytes, along with
differences in HMGB1 expression level, have been reported,
and specifically, cytoplasmic HMGB1 is more abundant in
VAT (visceral adipose tissue) of obese compared with lean
subjects (Azzarà et al., 2016). To find early biomarkers of
autophagy/apoptosis unbalance concerning MetS principally,
HMGB1 could represent a seducing molecule (Foglio et al., 2019).
Although most evidence came from studies on cancer cell lines,
speculation could be made as the cancer cells are exposed to
a metabolically demanding environment (Marijt et al., 2019).
Conjectures concerning a pivotal role for HMBG1 could also
derive from the observed increased risk among obese subjects
in morbidity and mortality related to COVID-19 (Seidu et al.,
2020). Shortly, HMGB1 is (1) related to an increased risk of
thrombosis; (2) HMGB1 gene polymorphisms are associated with
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hypertension; (3) HMGB1 regulates ACE II receptors which act as
a counterbalance to the Angiotensin-converting enzyme (ACE),
the central component of the renin-angiotensin system (Chen
et al., 2020b) essential for SARS-CoV-2 infection (Chen et al.,
2020b; Street, 2020; Figure 1B). In vitro studies have shown that
in bronchial epithelial cells, hyperglycemia increases HMGB1
while it is lowered by insulin (Montanini et al., 2016; Seidu
et al., 2020), suggesting that this protein might be a vulnerability
marker besides a therapeutic target.

CONCLUSION

This mini-review focused on the hypothetical involvement of
HMGB1 in the current hot topic of autophagy and MetS
to prompt debate and promote further experimental studies.
Chronic nutrient overload impairs the autophagy mechanism’s
ability to counteract the lifestyle-induced metabolic processes,

and it appears that autophagy defects play a role in determining
the cardiovascular complications of MetS. HMGB1, among
many other functions, also regulates autophagy and therefore
represents an attractive biomarker of disease evolution and a
possible therapeutic target. Obese subjects have elevated serum
levels of HMGB1. We underlined the possible importance of
the reducing/oxidized HMGB1 ratio for predicting the risk of
disease evolution in obese healthy subjects using a conceptual
“autophagy bridge.” Early diagnosis of a metabolic state that will
progress to MetS complications is of crucial importance.
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