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ABSTRACT
Motivation: The adhesion of microbial pathogens to host
cells is mediated by adhesins. Experimental methods used
for characterizing adhesins are time-consuming and demand
large resources. The availability of specialized software can
rapidly aid experimenters in simplifying this problem. We have
employed 105 compositional properties and artificial neural
networks to develop SPAAN, which predicts the probability of
a protein being an adhesin (Pad).
Results: SPAAN had optimal sensitivity of 89% and speci-
ficity of 100% on a defined test set and could identify 97.4%
of known adhesins at high Pad value from a wide range of
bacteria. Furthermore, SPAAN facilitated improved annotation
of several proteins as adhesins. Novel adhesins were identi-
fied in 17 pathogenic organisms causing diseases in humans
and plants. In the severe acute respiratory syndrome (SARS)
associated human corona virus, the spike glycoprotein and
nsps (nsp2, nsp5, nsp6 and nsp7) were identified as having
adhesin-like characteristics. These results offer new lead for
rapid experimental testing.
Availability: SPAAN is freely available through ftp://203.195.
151.45
Contact: ramu@igib.res.in

INTRODUCTION
Microbial pathogens encode adhesins that mediate their
adherence to host cell surface receptors, membranes or the
extracellular matrix for successful colonization. Investiga-
tions into this primary event of host–pathogen interaction
have revealed a wide array of adhesins in a variety of patho-
genic microbes (Finlay and Falkow, 1997). New approaches to
vaccine development focus on targeting adhesins to abrogate
the colonization process (Wizemannet al., 1999). However,
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the specific roles of particular adhesins in several pathogens
remain to be elucidated.

One of the best-understood mechanisms of bacterial
adherence is the attachment mediated by pili or fimbriae.
The well-studied adhesins in this category are FimH
and PapG adhesins ofEscherichia coli (Hahn et al.,
2002) and the Type IV pili adhesins inPseudomonas
aeruginosa, Neisseria, Moraxella, enteropathogenicE.coli
andVibrio cholerae (Strom and Lory, 1993). Several adhe-
sins from other commonly known bacterial pathogens include
MrkD protein of Kleibsiella pneumoniae (Gerlach et al.,
1989), Hia of Haemophilus influenzae (Barenkamp and
St Geme, 1996) and many others (for further details see
http://www.igib.res.in/data/seepath/spaan_data.html).

Several vaccine formulations either currently approved or
being evaluated use adhesins as immunizing agents. Examples
include filamentous hemagglutinin and pertactin proteins
againstBordetella pertussis (Halperin et al., 2003), FimH
against pathogenicE.coli (Langermann et al., 2000),
PsaA against pneumococcal disease (Rapolaet al., 2003),
outer membrane vesicle preparations including BabA adhesin
againstHelicobacter pylori infections (Prinzet al., 2003)
and a synthetic peptide anti-adhesin vaccine against
P.aeruginosa infections (Cachia and Hodges, 2003).

Experimental identification of adhesins is an arduous task.
Computational methods such as homology search can aid
in identification, but this procedure suffers from limita-
tions when the homologues are not characterized. Sequence
analysis based on compositional properties provides relief
to this problem. Amino acid composition is a fundamental
attribute of a protein and it has significant correlation to
its location, function, folding type, shape andin vivo
stability (Nakashima and Nishikawa, 1994; Nandiet al.,
2003). Recently, compositional properties have been applied
to the problems as diverse as the prediction of func-
tional roles (Hobohm and Sander, 1995), protein secondary
structures (Rost and Sander, 1993), secretory proteins
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and apicoplast-targeted proteins inPlasmodium falciparum
(Schneider, 1999; Zueggeet al., 2001).

We report a non-homology method using 105 composi-
tional properties combined with artificial neural networks
(ANNs) to identify adhesins and adhesin-like proteins in
species belonging to a wide phylogenetic spectrum.

SYSTEMS AND METHODS

The five attributes
Amino acid frequencies Amino acid frequencyfi = (counts
of i-th amino acid in the sequence)/l, wherei = 1, . . . , 20 and
l is the length of the protein.

Multiplet frequencies Multiplets are defined as homopoly-
meric stretches(X)n where X is the amino acid andn
(integer)� 2 (Brendelet al., 1992). After identifying all the
multiplets, the frequencies of the amino acids in the multiplets
were computed as follows:

fi(m) = (counts ofi-th amino acid occurring as multiplet)/l.

Dipeptide frequencies The frequency of a dipeptide
(i, j)fij = (counts of ij -th dipeptide)/(total dipeptide
counts), wherei, j = 1–20.

The theoretical number of possible dipeptides is 400.
The recommended ratio for the number of input vectors
to the number of weight connections is∼2 to avoid over-
fitting (Andrea and Kalayeh, 1991). Therefore, we used
top 20 dipeptides (when arranged in the ascending order
of the P -values assessed usingt-test) whose frequencies in
the adhesin dataset were significantly different from that in
the non-adhesin dataset (single-letter code): NG, RE, TN, NT,
GT, TT, DE, ER, RR, RK, RI, AT, TS, IV, SG, GS, TG, GN,
VI and HR.

Charge composition The frequency of charged amino acids
(R, K, E and D considering the ionization properties of the
side chains at pH 7.2) is given byfc = (counts of charged
amino acids)/l Furthermore, information on the characterist-
ics of the distribution of the charged amino acids in a given
protein sequence was obtained by computing the moments of
the positions of the occurrences of the charged amino acids.

The general expression to compute moments of a given
order; say ‘r ’ is

Mr = r-th order moment of the positions of charged
amino acids

=
∑ (Xi − Xm)r

N
,

where, Xm is the mean of all positions of charged amino acids,
Xm = ∑N

i=1 Xi/N ; Xi is the position ofi-th charged amino
acid; andN is the number of charged amino acids in the
sequence.

The frequency of charged amino acids, the length of the
protein and the moments of order from of 2 to 19 were
used to train the ANN constituting a total of 20 inputs.
Moments of order>19 were not useful in further enhancing
the performance.

Hydrophobic composition The amino acids were classified
into five groups based on their hydrophobicity scores: (−8 for
K, E, D and R), (−4 for S, T, N and Q), (−2 for P and H), (+1
for A, G, Y, C and W) and (+2 for L, V, I, F and M) (Brendel
et al., 1992).

The inputs fed into the neural network for each group are
as follows:

(1) fi = (counts ofi-th group)/(total counts in the protein),
wherei = 1–5.

(2) mji = j -th order moment of positions of amino acids
in i-th group, wherej = 2–5.

A total of 25 inputs representing the hydrophobic composi-
tion of a protein were fed to the neural network.

Taken together, a total of 105 compositional properties
in the five modules were used to predict the adhesin-like
characteristics of a given protein sequence.

Database construction
Adhesins Protein sequences were retrieved from http://www.
ncbi.nlm.nih.gov using the keyword ‘adhesin’. Furthermore,
proteins containing the following keywords were removed
from the primary retrieval: ‘transport’, ‘pyrophosphatase’,
‘peroxidase’, ‘myosin’, ‘chaperone’, ‘hydrolase’, ‘gene
product’, ‘accessory’, ‘regulatory’, ‘patent’, ‘permease’,
‘hypothetical’, ‘keratin’, ‘agrobacterium’, ‘intimin’, ‘ORFA’,
‘ATP binding’, ‘tRNA’, ‘deiminase’, ‘metalloproteinase’,
‘cofactor’, ‘amylase’, ‘methylase’, ‘unknown’, ‘ribosomal’,
‘alternative start’, ‘submitter believes’ and ‘phospholipase’.
The remaining sequences in the adhesin database were manu-
ally curated to generate a set of well-annotated proteins many
of which have been verified experimentally.

Non-adhesins The rationale we used here was to col-
lect sequences of enzymes and other proteins that func-
tion within the cell. They probably have remote possibility
of functioning as adhesins and would differ in composi-
tional characteristics (Nakashima and Nishikawa, 1994).
The keywords used were ‘dehydratase’, ‘dehydrogenase’,
‘ribosomal protein’, ‘kinase’, ‘polymerase’, ‘acyl-CoA
synthase’, ‘decarboxylase’, and ‘hydrolase’. Since effective
implementation of the algorithm requires that the sizes of
the two databases to be similar, we selected sequences
from Methanococcus jannaschii, E.coli andSaccharomyces
cerevisiae as representatives of the three primary kingdoms of
life: Archaea, Eubacteria and Eukarya. This selection offers a
diverse set for obtaining a broad range of limits for the detec-
tion of non-adhesins. In the subsequent step, ‘hypothetical’,
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Fig. 1. The neural network architecture of SPAAN. A given protein sequence was processed through five modules, A, C, D, H and M,
to quantify the five types of compositional attributes. A, Amino acid frequencies; C, Charge composition; D, Dipeptide frequencies; H,
Hydrophobic composition; and M, Multiplet frequencies. The sequence shown is part of the FimH precursor (gi 5524634) ofE.coli. The
direction of arrows show data flow.

‘transport’, ‘unknown’ and ‘membrane’ protein sequences
were removed.

Eliminating redundant entries We used CLUSTALW
(Thompson et al., 1994) to analyze sequence similarit-
ies between the sequences in pairwise comparisons. Only
one sequence entry was retained among pairs that had a
CLUSTALW score of 100. Partial sequence entries were
also removed. The total number of adhesins was 469 and
the total number of non-adhesin proteins fromE.coli was
282, M.jannaschii was 162 andS.cerevisiae was 259 which
summed to 703 entries.

Neural network
The feed forward error back propagation neural network
algorithm was used. The program was downloaded from the
website http://www.cs.colostate.edu/∼anderson a gift from
Charles W. Anderson (Department of Computer Science,
Colorado State University, Fort Collins, CO, e-mail:
anderson@cs.colostate.edu)

ALGORITHM

Neural network architecture
The neural network used here has a multilayer feed forward
topology. It consists of an input layer, a hidden layer and an
output layer. This is a ‘fully-connected’ neural network where
each neuroni is connected to each neuronj of the next layer
(Fig. 1). The weight connections are denoted bywij . The state
Ii of each neuron in the input layer is assigned directly from
the input data, whereas the states of hidden layer neurons are
computed from the states of input layer neurons using the
sigmoid function,

hj = 1
/ [

1 + exp−
(
wj0 +

∑
wij Ii

)]
,

wherewj0 is the bias weight. The back propagation algorithm
was used to minimize the differences between the computed
output and the target value. The target value for adhesins was
set as ‘1’ and for non-adhesins it was set as ‘0’.

In the initial optimization experiments, a training set and a
validate set were used. The training set had 367 adhesins and
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580 non-adhesins. The validate set had 102 adhesins and 123
non-adhesins. A total of 10 000 cycles (epochs) of training
iterations were performed. Subsequently, the best epoch with
minimum error on the validate set was identified and the
corresponding weight matrix was used for the prediction.

Five networks were prepared, one for each attribute (Fig. 1).
The number of neurons in the input layer was equal to the num-
ber of input data points for each attribute. The optimal number
of neurons in the hidden layer was determined through experi-
mentation for minimizing the error at the best epoch for each
network individually. An upper limit for the total number
of weight connections was set to half of the total number
of input vectors to avoid overfitting as suggested previously
(Andrea and Kalayeh, 1991). The final number of neurons in
the hidden layer for each module was Amino acid frequen-
cies: 30, Multiplets frequencies: 28, Dipeptide frequencies:
28, Charge composition: 30 and Hydrophobic composition:
30. During predictions, the network is fed with new data from
the sequences that were not part of the training set.

Probability of being an adhesin, the Pad value
Query proteins were processed modularly through the
networks trained for each attribute. Thus, five probability
outputs for each sequence were obtained. Final prediction
was computed using the following expression, which is a
weighted linear sum of the probabilities from five modules:

Pad = (PA ∗ fcA + PC ∗ fcC + PD ∗ fcD + PH ∗ fcH + PM ∗ fcM),

(fcA + fcC + fcD + fcH + fcM)

where fci is the fraction of correlation ofi-th module
of the trained neural network, wherei = A (Amino
acid frequencies), C (Charge composition), D (Dipeptide
frequencies), H (Hydrophobic composition) or M (Multiplet
frequencies). The fractions of correlation fci represent
the fractions of total entries that were predicted correctly
(Pi,adhesin> 0.5 and Pi,non-adhesin< 0.5) by the trained
network on the validate set (Charles W. Anderson,
http://www.cs.colostate.edu/∼anderson). fcA = 0.84, fcC =
0.71, fcD = 0.84, fcH = 0.79, fcM = 0.83.

Matthew’s correlation coefficient for assessing the
performance of SPAAN
The Matthew’s correlation coefficient (Mcc) (Matthews,
1975) is defined as follows:

Mcc = (TP∗ TN) − (FP∗ FN)√
(TN + FN)(TN + FP)(TP+ FN)(TP+ FP)

,

where TP stands for true positives, TN the true negatives, FP
the false positives and FN the false negatives.

Here TPs are adhesins and TNs are non-adhesins. Adhesins
with Pad value above a chosen threshold are TPs, whereas
known non-adhesins withPad value below the chosen
threshold are TNs. The sensitivity, Sn, is given by(TP/

(TP+ FN)) and specificity, Sp, is given by(TP/(TP+ FP)).

SPECIFICATIONS
Computer programs used to compute individual compositional
attributes were written in C and executed on a PC with
operating system Red Hat Linux version 7.3 or 8.0.

Sequence inputs
SPAAN accepts input sequence files in the FASTA format.
Multiple sequences can be present in one file. Protein
sequences with ambiguous amino acids and/or of length<50
amino acids were filtered out. Amino acids must use the
single-letter code according to the IUPAC-IUB nomenclature
system.

RESULTS AND DISCUSSION
Sensitivity, specificity and correlation coefficient
In designing SPAAN, we developed a non-homology, com-
positional property based method to predict adhesins and
adhesin-like proteins solely from the sequence data. To assess
the performance of SPAAN, we prepared a test set of 37
well-annotated adhesins and 37 non-adhesins that were not
part of the training set. The results are shown in Figure 2.
It is apparent that SPAAN could identify 89% of known
adhesins with 100% specificity when examined atPad ≥ 0.51.
At Pad ≥ 0.51, the Mcc (Matthews, 1975) was observed
to be highest (0.94). We observed that the combination of
five modules provided the best results.

Assessment of the performance in individual modules
showed that they performed poorly when compared with the
combination of modules. The performances of individual
modules were as follows: Charge composition (Pc = 0.55,
Mcc = 0.658, Sn= 0.756 and Sp= 0.848), Dipeptide
frequencies (PD = 0.54, Mcc = 0.84, Sn = 0.86 and
Sp = 0.94), Hydrophobic composition (PH = 0.61, Mcc=
0.63, Sn= 0.54 and Sp= 0.9) and Multiplet frequencies
(PH = 0.58, Mcc = 0.77, Sn = 0.81 and Sp= 0.9).
Performance of the Amino acid frequencies’ module could
not be assessed unambiguously because the Mcc was nearly
flat over a broad range. These observations suggest that it
would be fruitful to include multiple modules for obtaining
high-quality predictions and are consistent with the experience
of Hobohm and Sander (1995).

SPAAN predicts experimentally characterized
adhesins with high Pad value
Considering the small size of test set, we examined
the general applicability of SPAAN by analyzing several
well-characterized adhesins from a wide range of patho-
gens causing a variety of diseases. The results on 194
adhesins with binding specificity to a wide range of host
receptors are displayed in Table 1 (for further details see
http://www.igib.res.in/data/seepath/spaan_data.html). It is
apparent that except two FimH proteins ofE.coli, pertactin
of B.pertussis, protein F ofStreptococcus pyogenes and PspC
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Fig. 2. Performance of SPAAN. A theoretical polynomial curve of second-order (dashed line) was fitted to the observed curve (smooth line)
with a Karl–Pearson correlation coefficientR2 = 0.9799. The maximum point of the theoretical curve was chosen as a reference (vertical
dotted line) to identify the maximum Mcc on the observed curve (shown by an arrow). Note that the Mcc does not drop down to thex-axis
because the highestPad value attained using adhesins was 0.939 in comparison with the theoretical attainable limit of 1.0.

Table 1. Prediction of well-characterized adhesins from various bacterial pathogens using SPAAN

Species Disease caused Adhesina Host ligand Pad valueb (range) Reference

E.coli Diarrhoea PapG (27) α-d-gal(1–4)β-d-Gal-containing 0.84–0.76 Bocket al. (1985)
receptors

SfaS (5) alpha-sialyl-beta-2,3-b-galactose 0.94–0.94 Mochet al. (1987)
FimH (63) d-mannosides 0.96–0.23c Hahnet al. (2002)
Intimin (12) Tyrosine-phosphorylated form 0.95–0.78 Rosenshineet al. (1996)

of host cell receptor Hp90
PrsG (5) Gal(alpha1–4)Gal 0.86–0.85 Johnsonet al. (1997)

Non-typeable Influenza HMW1, HMW2 Human epithelial cells 0.97 St Geme (1996)
H.influenzae Hia (8) Human conjuctival cells 0.93–0.90

B.pertussis Whooping cough FHA Sulfated sugars on cell-surface 0.85 Brennan and Shahin (1996)
glycoconjugates

Pertactin Integrins 0.43 Brennan and Shahin (1996)
Yersinia enterocolitica Enterocolitis YadA (5) β1 integrins 0.88–0.79 Schulze-Koopset al. (1993)
Enterococcus faecalis Empyma in patients EfaA Unknown 0.83 Finlay and Falkow (1997)

with liver disease
H.pylori Peptic ulcers BabA (17) Difucosylated Lewis blood 0.87–0.68 Prinzet al. (2003)

group antigen

aThe number of sequences analyzed from different strains and homologs from related species are shown in parentheses.
bRounded off to the second decimal.
cOut of 63 FimH proteins, 54 were fromE.coli, 6 fromShigella flexineri, 2 fromSalmonella enterica and 1 fromSalmonella typhimurium. Except two FimH proteins, the rest had
Pad ≥ 0.51. The two exceptions (gi numbers: 5524636 and 1778448) were fromE.coli. The gi: 5524636 protein is annotated as a FimH precursor but is much shorter (129 amino
acids) than other members of the family. The gi: 1778448 protein is aS.typhimurium homolog inE.coli.

of Streptococcus pneumoniae, the rest 189 adhesins had
Pad ≥ 0.51 indicating an overall sensitivity of 97.4%. These
results demonstrate the general applicability of SPAAN.

SPAAN is a non-homology method based on
sequence properties
To examine the non-homology character of SPAAN, we
prepared a dataset of 130 adhesins that did not have

any protein pairs with CLUSTALW score of 100. Equal
number of non-adhesins was selected with the same criterion.
A histogram plot of adhesins and non-adhesins in the various
ranges ofPad values is displayed in Figure 3a. It is evident
that SPAAN is capable of segregating the adhesins and
non-adhesins into two distinct cohesive groups. Most of the
adhesins (96%) havePad ≥ 0.51 whereas all the non-adhesins
(100%) havePad < 0.51.
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Fig. 3. SPAAN is a non-homology-based software program. A total of 130 adhesins and 130 non-adhesins were analyzed to assess whether
the predictive power of SPAAN could be influenced by sequence relationships. (a) Histogram plots of the number of proteins in the various
Pad value ranges are shown. Shaded bars represent adhesins and open bars represent non-adhesins. Note the ability of SPAAN to segregate
adhesins and non-adhesins into two distinct cohesive groups. (b) Pairwise sequence relationships among the adhesins were determined using
CLUSTALW and plotted onx-axis. Higher CLUSTALW scores indicate similar pairs. The corresponding differences inPad values in the
same protein pair was plotted on they-axis. Each point in the diagram represents a pair. Arrow points to protein pairs of the FimH family
with high �Pad values in spite of high similarity. Since one of the FimH proteins (gi: 5524636) had very lowPad value, all pairs with this
false negative protein show high�Pad values. The protein (gi: 5524636) is of much shorter length compared with other members of the same
family. (c) Plot for non-adhesins. Data were plotted in the four-quadrant format to enhance clarity.
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Table 2. Analysis of predictions carried out using SPAAN on genome scans of a few selected pathogenic organisms

Organism Disease caused Total no. of No. of these supported No. of these supported No. of No. of
proteins by complementary evidence by complementary adhesin-like false
analyzed CDD/BLASTPa/PubMed evidence BETAWRAP proteins positives

E.coli O157:H7 Diarrhoea 50 37b 33 12 1
H.pylori Peptic ulcers 50 25c 36 24 1
Listeria monocytogenes Listeriosis 50 23d 39 24 3
S.pneumoniae R6 Bacterial pneumonia 40 13e 12 23 4
Mycobacterium tuberculosis Tuberculosis 50 — 32 50f —

H37Rv
SARS-associated SARS 5 — — 5g —

corona virus

aThe top-scoring similar sequences withE < 0.001 were only considered for assessing sequence-based relationships. The low complexity filter was ‘off’.
bIncludes Fimbrial adhesins (nine proteins), AidA-I, gamma intimin, hemagglutinin, translocated intimin receptor, putative tail fiber protein andputative major tail protein.
cIncludes putative vacuolating cytotoxin (VacA) (autotransporter adhesin-like), outer membrane protein (adhesin; 2 proteins), outer membrane protein (porin; 3 proteins), flagellin A
and outer membrane proteins (13 proteins).
dIncludes internalin A (mediates adhesion and invasion), other internalins (seven proteins), peptiglycan-linked protein (similar to autotransporter adhesin, eight proteins), autolysin
(amidase, presumably involved in adhesion, three proteins), flagellar hook protein may be involved in adhesion, cell surface protein (adhesin by BLASTP analysis).
eIncludes PsaA (pneumococcal surface adhesin A), pspA similar to CbpA (choline binding protein A), CbpA, CbpD, CbpE, CbF and Cbp (two proteins) all similar to CbpA, two
hypothetical proteins with low-level similarity to CbpA, autolysin.
f PE, PE_PGRS (35 proteins), PPE (12 proteins), two hypothetical proteins with no similarity to either PE or PE_PGRS or PPE proteins.
gThese proteins were the spike glycoprotein with antigenic properties, and nsp2, nsp5, nsp6 and nsp7.

We computed the pairwise sequence similarities using
CLUSTALW (Thompsonet al., 1994) and compared with
the differences between thePad values in the pair (denoted
by �Pad). The relationships for adhesins and non-adhesins
are shown in Figures 3b and c, respectively. In both adhe-
sins and non-adhesins,�Pad values are uniformly low and
appear nearly independent of sequence relationship. Further-
more, among the protein pairs with score<20, 82% of adhesin
pairs and 86% of non-adhesin pairs had�Pad < 0.2. These
data reinforce the non-homology character of SPAAN.

Application of SPAAN to whole genomes
The results of the genome scan for selected pathogens
of humans and plants are displayed in Table 2 (for
detailed data description, see online Supplementary Table
at http://www.igib.res.in/data/seepath/spaan_data.html). We
used a stringent criterion ofPad> 0.7 on the basis of the
results shown in Figure 3a to reduce the detection of false
positives. Subsequently, we restricted our analysis to a max-
imum of 50 top-scoring proteins. This serves as a good
starting point to examine the performance of SPAAN and to
identify top-scoring novel adhesins with high confidence. The
experimentally characterized adhesins from a wide range of
pathogens top the list in genome scans. Several of the pre-
dicted adhesins are supported by complementary evidence
from Conserved Domain Database search (RPS-BLASTP),
BLASTP and the beta helix predictor BETAWRAP (Marchler-
Baueret al., 2002; Altschulet al., 1990; Bradleyet al., 2001).
About 30–78% of these predicted adhesins also contain beta
helix motif. The beta helix motif was found to be associated

with several adhesins, toxins, virulence factors and surface
proteins (Bradleyet al., 2001).

In addition, SPAAN guided the improved annotation of a
number of adhesins by suggesting re-examination of these
proteins using the most commonly used software listed above.
It is also evident that the well-known adhesins in these organ-
isms top the list of predictions using SPAAN (Table 2). Several
proteins with highPad values were identified using SPAAN
for which either limited or no complementary evidence exist.
We have classified these proteins as ‘adhesin-like’. Interest-
ingly, several mycobacterial proteins, namely, 35 PE_PGRS
proteins and 12 PPE proteins were identified with highPad

value. SPAAN could identify these putative mycobacterial
adhesins even though our training dataset was devoid of
mycobacterial proteins. Indeed, experimental analysis has
demonstrated that some of these proteins could mediate
host–pathogen interactions (Brennanet al., 2001). These res-
ults demonstrate that SPAAN could overcome taxonomic
limits and can be used for general purpose.

Although SPAAN was primarily trained on bacterial
adhesins, we examined its ability to predict putative adhe-
sins from eukaryotic systems. The criteria was relaxed by
using the base threshold value ofPad ≥ 0.51 to scan the
genome of SARS-associated human coronavirus. The spike
glycoprotein, nsp2, nsp5, nsp6 and nsp7 were identified as
adhesins. Spike glycoprotein has been implicated to play a role
in viral entry and pathogenesis (Gallagher and Buchmeier,
2001). The role of nsp proteins in viral pathogenesis is not
clear. Since SARS is an important public health problem,
these results could rapidly aid experiments that characterize
host–pathogen interactions.
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A few false positives do appear in the list. A judicious
approach for experimental characterization could be
developed by considering the total number of proteins to
be analyzed, prioritizing proteins with other complementary
evidence while keeping the number of false positives as low
as possible. In summary, SPAAN could serve as an useful
guide to perform experimental characterization of proteins
for adhesin-like properties.
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