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Disordered array of Au covered 
Silicon nanowires for SERS 
biosensing combined with 
electrochemical detection
Annalisa Convertino1, Valentina Mussi2 & Luca Maiolo1

We report on highly disordered array of Au coated silicon nanowires (Au/SiNWs) as surface enhanced 
Raman scattering (SERS) probe combined with electrochemical detection for biosensing applications. 
SiNWs, few microns long, were grown by plasma enhanced chemical vapor deposition on common 
microscope slides and covered by Au evaporated film, 150 nm thick. The capability of the resulting 
composite structure to act as SERS biosensor was studied via the biotin-avidin interaction: the Raman 
signal obtained from this structure allowed to follow each surface modification step as well as to 
detect efficiently avidin molecules over a broad range of concentrations from micromolar down to the 
nanomolar values. The metallic coverage wrapping SiNWs was exploited also to obtain a dual detection 
of the same bioanalyte by electrochemical impedance spectroscopy (EIS). Indeed, the SERS signal 
and impedance modifications induced by the biomolecule perturbations on the metalized surface of 
the NWs were monitored on the very same three-electrode device with the Au/SiNWs acting as both 
working electrode and SERS probe.

Surface enhanced Raman scattering (SERS) occurring at the surface of rough noble metals is an analytical tech-
nique allowing ultrahigh sensitivity and in situ recognition of molecules even in a liquid environment. These 
features and the strong progress in the development of new lasers and compact user-friendly spectrometers make 
the SERS method an appealing analytical tool in diverse fields, including medicine, environmental monitoring 
and trace chemical analysis1–6.

Actually, the development of effective SERS active materials is the key aspect for the successful transition of 
the technique to a practical biological and chemical sensing methodology. The advances in nanofabrication tech-
nologies have led to the emergence of a myriad of novel SERS substrates, including colloidal metal (essentially Au 
or Ag) nanoparticles (NPs)7,8, assembly of metal nanostructures on different surfaces9–12, metal decorated porous 
materials13,14, metal films evaporated on nanosphere-coated substrates15. Although these nanomaterials show 
large Raman enhancement ability, most of them are too technologically demanding and expensive to be used to 
fabricate large quantities of substrates for practical applications with high reproducibility and long term storage 
properties.

Silicon nanowires (SiNWs) decorated with metal NPs are now being intensively investigated as SERS sub-
strates due to their high enhancement factors and improved detection limits recently demonstrated16–22. These 
structures offer the opportunity to combine huge surface-to-volume ratios, facile surface modification, and full 
compatibility to the well-established silicon technology. It is worth to highlight that successful fabrication of 
ultrasensitive electrochemical and optical sensors based on SiNWs has been recently demonstrated for biomol-
ecule and gas detection23–28. Thus the development of SERS sensors based on SiNWs would widen the potential 
applications of this sensing platform permitting the use of different transduction signals.

We have recently showed as a highly disordered array of SiNWs covered by a film of Au (Au/SiNWs) can act 
as performing electrochemical biosensor via electrochemical impedance spectroscopy (EIS)29. The key benefit is 
that disordered SiNWs can be easily obtained through high yield and large-area fabrication techniques as well as 
relative low temperature (350 °C) procedures compatible with polymeric films, i.e. Polyimide, and glasses. The 

1Institute for Microelectronics and Microsystems, C.N.R., via del Fosso del Cavaliere 100, 00133 Rome, Italy. 2Institute 
for Complex Systems, C.N.R., via del Fosso del Cavaliere 100, 00133 Rome, Italy. Correspondence and requests for 
materials should be addressed to A.C. (email: annalisa.convertino@cnr.it)

received: 09 December 2015

accepted: 11 April 2016

Published: 26 April 2016

OPEN

mailto:annalisa.convertino@cnr.it


www.nature.com/scientificreports/

2Scientific Reports | 6:25099 | DOI: 10.1038/srep25099

accommodation of SiNW based biosensors on plastic and glass provides an effective and cheap method to inte-
grate these sensing nanoelements into macroscopic and/or commercial readout devices including assay plates and 
microscope slides implementable in benchtop microscopies. The idea of this work is directed to investigate the 
very same composite structure as Raman probe, allowing ultimately the combination of SERS detection with EIS 
control. This combination of an optical and electrochemical signal transduction in the same Au/SiNWs can offer 
an improved method to identify and quantify the bio-analytes over either technique independently. Indeed, EIS 
is widely used in diagnostic biosensing, because it allows detecting a wide range of analytes with high sensitivity 
by using chip and miniaturized devices30. On the other hand, the impedance biosensors do not provide chemical 
identification of the analyte and can reveal also non-target biomolecules stuck to the probe causing a false posi-
tive signal. This is a critical issue when biological fluids containing a large background of nonspecific interferents 
(blood, saliva etc.) are analyzed. The SERS offers the complementary chemical information due to the ability to 
identify analytes from unique Raman signatures reducing the issue of false positive signals.

To show the potential of this approach SiNWs, few microns long, were grown by plasma enhanced chemical 
vapor deposition (PECVD) and covered by an evaporated thin Au layer, 150 nm thick. Common microscope 
glass slides were used as substrates to demonstrate these nanostructures can be built via scalable and low-cost 
fabrication methodology on supports that can be easily integrated into Raman spectrophotometers. The proper-
ties of Au/SiNWs as Raman probe and their sensing performance were studied via the ligand-receptor binding of 

Figure 1.  Photograph of the Au/SiNWs grown on microscope slide (a). Tilted view (ca. 50°) SEM images of the 
as grown SiNWs (b) and after Au coverage (c). EDX spectra of the as grown SiNWs (d) and after Au coverage (e).
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biotin-avidin system. Finally we fabricated a three-electrode device with the working electrode (WE) consisting 
of the investigated Au/SiNWs and showed the detection of the biotin-avidin interaction through two different 
methods of transduction: SERS and electrochemical.

Results and Discussion
Material characterization.  A representative photograph of the Au/SiNWs grown on a microscope slide is 
in Fig. 1a. The brown circles are the large active areas formed by NWs. The materials are characterized by scan-
ning electron microscopy (SEM) and energy-dispersive X-ray (EDX) analysis. The SEM images of these structures 
as grown and after Au coverage are in Fig. 1b,c, respectively. These images reveal a dense ensemble of disordered 
and randomly oriented NWs. The as grown SiNWs (see Fig. 1b) are long around 2–3 μ m with an average diameter 
at the bottom of about 40–70 nm and show a tapered shape. The size of the NWs was determined by combined 
measurements from plan and cross views. The EDX spectrum of the pristine NWs in Fig. 1d shows the strong 
Si peak related to the Si NWs and a weak Au peak due to the presence of the catalyst particles that are visible as 
bright spots at the tip of the longer NWs in Fig. 1c. After evaporating the Au layer, in Fig. 1d we observe Au/
SiNWs with a more cylindrical shape and an increased average radial size, which is around 100–120 nm at the 
bottom. The Au catalysts particles are no more visible because completely covered by the evaporated metal film 
and any relevant variation in NW length is evident. In the inset of Fig. 1d, high-resolution image reveals very 
rough sidewalls, which could favor Raman signal enhancement16. The SEM images of the covered NWs (Fig. 1d) 
show, to a visual inspection, a quite uniform Au coating and the EDX analysis (Fig. 1e) highlights strong Si and 
Au peaks, corresponding to the Si NW array and the overlaying Au film, respectively.

Since the evaporation is not a conformal coating technique, it is reasonable to expect not completely coated 
NWs due to some shadowing effects during the metal evaporation. Nevertheless, the Au coverage will result 
enough to make the surface of the wire ensemble ready to be modified with NHS-biotin and then to interact with 
avidin, as it will be clear later.

From our morphological study a key feature for biosensing applications can be finally evidenced: the Au/
SiNWs form a three-dimensional (3D) macroporous framework and offer a huge surface area to immobilize 
ligand molecules, easily accessible to vapors and liquids containing biomolecule analyte.

Effects of the NW morphology on the optical properties.  Before performing Raman experiments, 
we investigated the optical properties of the Au/SiNW composite system. The effects of morphology on the opti-
cal properties of semiconductor NW arrays are well known: the light passing through a NW forest undergoes 

Figure 2.  Total integrated reflectivity spectra of the Au/SiNWs (red line) compared with Au planar layer (blue 
line) (a). Relative variation of the reflectivity, =∆ −R
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multiple scattering events from each NW. The scattering events fold the light path many times in a random walk 
inside the NW forest causing an enhancement of the light absorption with consequent drastic reduction of the 
reflectivity at the frequencies absorbed by the NW material, i.e. light trapping31–33.

To understand the effect of the NW light trapping to the overlying Au film in our composite system, we meas-
ured its total integrated reflectivity, R, in the spectral range between 200–2000 nm and compared it with that of a 
reference sample consisting of a planar Au film with the same nominal thickness of the NW coverage. In Fig. 2a, 
spectra obtained from the Au/SiNWs (red line) and reference sample (blue line) are plotted and compared. The 
reference sample shows the typical Au bulk reflectance34 of around 95% in the infra-red (IR) range with a steep 
decrease below λ  =  650 nm.

Although the profile of R for the Au on NWs remains quite similar to that of the planar Au, the intensity of R 
is drastically diminished in the nanostructered sample over the whole spectral range. R is in fact reduced down to 
20% in the IR and few percent in the visible range. The NW sizes and their broad size distribution, as evidenced 
by the SEM images, assure indeed a large light scattering at all wavelengths in the IR-visible range by allowing the 
Au on the NW to absorb significantly more photons than an equivalent volume of bulk material31–33. Hence the 
reduction of the R intensity, defined as =∆ −R

R
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/  where RAu and RAu/SiNW are respectively R of the planar 
and nanostructured Au, corresponds to the amount of light trapped inside the NW forest and then absorbed by 
the overlying Au film. If we plot ∆R

R
as a function of the wavelength (Fig. 2b) we can observe a quite constant value 

of about 80% over the whole IR range and a peak of 92% at 532 nm with a shoulder at around 610 nm, inset of 
Fig. 2b. The shape of the curve and peak position in Fig. 2b suggest the mechanism by which such an absorption 
occurs could be transverse and longitudinal modes of a plasmonic resonance35 probably related to the smaller 
NWs or NW section, which after Au coverage form Au nanopillars. Anyway, a full understanding of the origin of 
the plasmonic resonances observed in our composite NWs requires deeper investigations that are beyond the 
scope of this work and will be performed in more details elsewhere.

Avidin detection by Raman spectroscopy.  To test the capability of Au/SiNWs to act as SERS biosensor 
we progressively modified their surface by adding cysteamine to achieve a self-assembled monolayer (SAM) 
coating, NHS-biotin to build the sensing layer, finally avidin as the detected material.

Visual inspection of the sample after each functionalization step shows a change of the surface color as it 
results in Fig. 3 where optical images of the pristine Au/SiNWs (Fig. 3a), modified with cysteamine (Fig. 3b) 
and NHS-biotin (Fig. 3d), and after immersing in an avidin solution with a protein content of 1 μM (Fig. 3e) are 
shown. As control experiment we immersed in the 1 μ M avidin solution the Au/SiNWs coated by sole SAM layer, 

Figure 3.  Optical images obtained on the sample at different stages of the functionalization process: 
the pristine Au/SiNWs (a); treated with cysteamine (Au/SiNWs+ Cys) (b); after NHS-biotin binding 
(Au/SiNWs+ Cys+ Btn) (d); finally after the immersion in solution with 1 μ M content of avidin (Au/
SiNWs+ Cys+ Btn+ Avd) (e). The image obtained after control experiment: Au/SiNWs modified with sole 
cysteamine and after exposure to 1 μ M content of avidin solution (Au/SiNW+ Cyst+ Avd) (c). Scale bar is 
100 μ m.
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and Fig. 3c shows the related optical image. Any change in the surface aspect is visible after cysteamine SAM 
formation (Fig. 3b), maybe due to the very small size of the cysteamine monolayer which does not produce any 
interference effects visible with an optical microscope.

After NHS-biotin treatment a change of the surface color from green to blue can be noticed (Fig. 3d), indi-
cating a quite uniform adsorption of the NHS-biotin molecules onto the Au/SiNW surface. Then the blue color 
becomes attenuated in a very large areas of the samples after avidin exposure (Fig. 3e), whereas any color change 
can be observed when avidin is added on the sample modified with sole cysteamine (control experiment in 
Fig. 3c). These observations suggest the avidin immobilization onto the surface of the Au/SiNWs through its 
capture from the biotin ligand. This is best confirmed by the Raman analysis in Fig. 4a where the Raman spectra 
corresponding to each step involved in the biosensing experiment are plotted.

We observe a progressive increase of the signal in the spectral range comprised between 1280 and 1450 cm−1. 
In particular, a quite large band at about 1380 cm−1 appears in the spectra obtained after the last passage with 
avidin. This contribution is ascribable to the specific interaction of avidin with biotin36 thus demonstrating the 
stable immobilization of the target molecule onto the treated substrate. In addition, two control experiments 
were carried out. As first, to confirm that the observed Raman spectra changes in Fig. 4a are due to the specific 
binding of avidin to the biotin ligand we immersed in the 1 μ M avidin solution the Au/SiNWs coated by the 
sole SAM layer, i.e. without the NHS-biotin ligand. As we can see in Fig. 4b by comparing the Raman spectra 
of the Au/SiNW coated with cysteamine before (Au/SiNW+ Cyst) and after immersion in avidin solution (Au/
SiNW+ Cyst+ Avd), the avidin did not produce any significant change in the signal suggesting a little non-specific 
binding of the protein to the bare cysteamine modified Au/SiNWs. The second control experiment was realized 
to evidence the essential role played by the SiNWs in the enhancement of Raman signal. For this purpose the 
sensing capability to detect avidin was also tested on planar Au film (Fig. 4c), which was coated with cysteam-
ine+ NHS-biotin and successively immersed in the 1 μ M avidin solution. Any relevant signal variation can be 
observed between the pristine NWs and after each modification step, suggesting that the nanostructuring of the 
Au improves the Raman signal. The enhancement of the Raman signal in the Au/SiNWs is most likely due to the 
occurring of plasmonic resonances observed in the spectrophotometric investigation.

On the basis of the control test, we explored the sensing ability of the biotin modified Au/SiNW to detect avidin 
in a wide range of concentration by exploiting the Raman signal without using blocking molecules. Despite the 
non-perfect uniformity of target molecule adsorption over the whole sensor surface, a definite trend of Raman 

Figure 4.  Raman spectra obtained at different stages of the functionalization process of the samples: the 
pristine Au/SiNW substrate (violet line), after cysteamine modification (cyan line), functionalized with NHS-
biotin (green line) and finally treated with avidin at 1 μ M content (red line) (a). Control tests performed by 
skipping the treatment with NHS-biotin and immersing only in avidin at 1 μ M content (b) and on the reference 
Au planar film (blue line) functionalized with cysteamine +  NHs-biotin (black line) and avidin at 1 μ M content 
( red line) (c).
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signal enhancement with protein concentration can be identified. This behavior can be clearly recognized in Fig. 5 
showing Raman spectra at different avidin concentrations extending from 1 μ M down to 1 nM, as reference we 
have also plotted the spectrum before protein adsorption (black line). When avidin is added, the intensity of the 
band at 1380 cm−1 increases with the specific concentration of the target solution. The band intensity evolution can 
be easily quantified by applying a fitting procedure to the collected spectra and used as transduction signal for the 
biosensor. The figure in the inset exhibits, as an example, the result of the fitting procedure applied to the spectrum 
collected at 100 nM, demonstrating the presence of the quite large band ascribed to avidin binding (blue line).

Avidin detection by combined Raman and electrochemical probes.  We tested the biosensing capa-
bility of the Au/SiNWs to detect avidin through two different and independent transduction signals: Raman and 
electrochemical via impedance measurements. For this purpose, we exploited the Au coverage wrapping the 
SiNWs as working electrode (WE) of a three-electrode device, like as shown in Fig. 6a and discussed in more 
details in ref. 29. This device is simply obtained by adding to the Au/SiNWs, the Au counter electrode (CE) and 
the Ag reference electrode (RE). We note that the Au/SiNW WE was fabricated in the very same conditions of the 
above discussed Raman substrates. This configuration enables the collection of both the Raman and electrochem-
ical signal coming from nanostructured WE.

The impedance measurements were performed, after Raman detection, in KCl solution by connecting the elec-
trodes to the potentiostat. The avidin content range was varied between 10 pM and 1 μ M, and Fig. 6b shows the related 
impedance modulus, |Z| measured in the frequency range extending from 100 KHz down to 1 KHz. When avidin is 
added, a significant and continuous increase of the |Z| values in the whole frequency range analyzed is observed. In 

Fig. 6c and d we plot, respectively, the impedance response, calculated as =∆| |
| |
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are observed, and the intensities (area) of the Raman band at about 1380 cm−1 ascribed to the binding of the target 
molecule on the biosensor surface, as function of the avidin content. We observe a very similar trend for both the 
calibration curves: a liner relationship in the log-log plot in the avidin concentration range of 1 nM-1 μ M for Raman 
transduction and 10 pM-1 μ M for impedance signal with saturation at values higher than 1 μ M for both the signals.

Concerning the sensitivity limits achieved through the two detection methods, the impedance analysis is char-
acterized by a value as low as 10 pM whereas the Raman signal shows, at the chosen laser power of 3 mW, a higher 
value of 1 nM. This is due to the fact that for lower concentrations the Raman signal would require a higher excita-
tion power, associated to a different calibration curve, but such as not to damage and alter the biological sample. 
Moreover, we expect an improvement of performance for both the sensing responses by optimizing some key 
material features, including the NW size, Au coverage thickness and uniformity. Nevertheless the low detection 

Figure 5.  Raman analysis of the biosensor sensitivity. Spectra collected on identical devices at different 
avidin concentrations, from 1 μ M down to 1 nM. The spectrum before protein adsorption is shown as reference 
(black line). In the inset the result of the fitting procedure applied to the spectrum collected at 100 nM of avidin 
concentration. The band ascribed to protein adsorption is centered at about 1380 cm−1 (blue line).
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limit and working range found are among the highest reported in the literature. This comes from the comparison 
of our results with those in Table 1, where some works reported for the (strept)avidin detection based on nano-
sized materials via optical or electrochemical approach are summarized. In addition our biosensor benefits the 

Figure 6.  Photograph of the three-electrode device with Au/SiNW used WE and Raman probe (a). Bode plots 
of the impedance modulus, |Z|, for the biotin modified Au/SiNWs after the immersion in avidin solution with 
different concentration ranging from 10 pM up to 1 μ M (b). Dependence of impedance variation, ∆ Z

Z
, on the 

avidin concentration obtained at the frequency of 10 KHz. The values correspond to the average measurements 
performed on a minimum of three samples, identically treated. The relative standard deviation is indicated by 
the error bars (c). Intensity of the Raman band at about 1380 cm−1 ascribed to the binding of avidin on the 
biosensor surface, tuned as for the impedance measurements. The reported values represent the band area 
obtained by means of a fitting procedure applied to the collected spectra (d).

Ref. Sensing Material Signal Transduction Target Low detection limit Working range

Cui 200124 SiNW FET* Conductance Streptavidin 10 pM

Haes 200237 AgNPs SPR§ Streptavidin 1 pM 1 pM–100 pM

Cheng 200338 AuNPs/optical fiber SPR Streptavidin 100 pM 100 pM–30 nM

Kim. 200739 μ Ag particles SERS Avidin 15 nM 15 nM–10 μ M

Hsiao 200940 Poly–SiNW FET Conductance Streptavidin 0.17 pM 0.17 pM–1.7 nM

Hong, 201041 Ordered Macroporous Ag thin films SPR Avidin 100 pM 100 pM–200 nM

Choi 201042 ZnO NW FET Conductance Streptavidin 2.5 nM 2.5 nM–25 nM

Guo 201043 Au NP/CNT SPR Streptavidin 500 pM (calculated) 1 nM–400 nM

Geagea 201544 Polymer coated AgNPs Impedance Avidin 1.5 nM

Table 1.  Comparison of various biosensors based on nanosized materials detecting (strept)avidin via 
optical or electrochemical methods. *field effect transistor (FET). §surface plasmon resonance (SPR).
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unique advantage to couple the SERS chemical information with the electrochemical quantification that increases 
the analysis efficiency and enlarges the application areas over the common approach based on detection via one 
transduction mechanism.

Conclusion
We explored forest of SiNWs covered by a Au layer as effective substrate for enhancing Raman signal of the 
adsorbed molecules. We showed several unique features of these systems. First, the NW morphology imparts an 
enhancement of light absorption in the overlaying Au with the occurrence of plasmonic peaks resonant to the 
wavelength of Raman excitation source. Second, the disordered arrangement of the NWs offers the advantage 
to use high yield techniques, such as PECVD, that involve relative low temperature procedures compatible with 
non-conventional substrate such as microscope glass slides, rapidly implementable in Raman spectrophotome-
ters. Third, the design involving a conductive coverage of the SiNWs allows developing innovative devices able to 
detect one analyte through both Raman and impedance transduction signals by increasing the analysis efficiency 
and reducing the detection issues related to nonspecific interaction. In conclusion, the proposed composite sys-
tem not only is efficient Raman substrate, fully compatible with the industrial integrated silicon based technology, 
but also can be designed aiming at multi transduction methods, thus putting in perspective the application of 
SERS in innovative analytical contexts.

Methods
Fabrication of SiNWs.  Au catalyzed SiNWs were produced by PECVD on both microscope glass and Si 
wafer covered by 1 μ M of thermal SiO2. To induce the NW growth, a 2 nm thick Au film was selectively evaporated 
onto the specific area, defined using conventional photolithography and wet etching processes. The growth was 
performed with SiH4 and H2 as precursor at a total pressure of 1 Torr and substrate temperature of 350 °C. The flow 
ratio SiH4/(H2 +  SiH4) was fixed to 1:10. A 13.6 MHz radiofrequency with power fixed at 5 W was used to ignite 
the plasma. The growth time was 7 min. The Au coverage, 150 nm thick, was evaporated onto the specific areas 
sequentially defined by UV-lithography. The three-electrode device was fabricated on Si/SiO2 as reported in ref. 29.

Surface functionalization of SiNWs.  The bio-sensing tests were performed using the biotin-avidin 
scheme. The immobilization of the NHS-biotin group onto the Au/SiNWs was performed via the modification of 
the Au/SiNWs surface with SAM by immersing the samples in cysteamine solution 20 mM and incubating them 
overnight at 70 °C. They were rinsed off the residual cysteamine molecules with deionized water, Raman (and 
also impedance in the case of the three-electrode device) spectra were measured to ensure that the cysteamine 
molecules had been linked to the NW surface. The cysteamine functionalized samples were immersed in a fresh 
solution of 10 mM NHS-biotin in pH 7.4 phosphate-buffered saline (PBS) solution for 60 min at room tempera-
ture, and then cleaned with PBS. Also in this case, the immobilization of NHS-biotin onto cysteamine was con-
trolled by Raman (impedance) investigation. Afterwards, the biotin-functionalized Au/SiNWs were immersed in 
1.5 mL of aqueous avidin solution with different concentrations ranging from 1 μ M down to 10 pM for 30 min at 
room temperature, rinsed again in PBS and dried before being tested. For each avidin concentration fresh samples 
were used and the experiments were sequentially conducted after cysteamine coverage, NHS-biotin modification 
and avidin detection. In order to treat with the biomolecules only the area having the NWs, we delimited it with 
removable Teflon wells fixed on the NW area under mild pressure.

Morphological and optical characterization.  The morphology of the SiNWs was verified by field emis-
sion scanning electron microscopy (FE-SEM), equipped by an energy dispersive X-ray spectrometer for compo-
sition analysis. The SEM images were acquired at an accelerating voltage of 5 kV. The EDX spectra were measured 
at 10 keV. The optical properties were studied by measuring the angle-integrated total reflectivity in the spectral 
range between 200 and 2500 nm with UV-Vis-IR spectrophotometer equipped with an integrating sphere.

Raman spectroscopy.  Raman spectra were acquired with a DXR Thermo Fisher Scientific Raman 
Microscope, by exciting the samples at 532 nm with a 5 mW power and a 50×  objective. The measured spectral 
range was 50–3000 cm−1, and each spectrum resulted from 1 s acquisition time and 200 accumulations over an 
area of about 800 nm (laser spot). The spectra were analysed performing a lorentzian fit to obtain the values of the 
band intensities calculated as the area of the selected spectral features.

Impedance measurements.  The impedance measurements were performed on the three-electrode device 
at room temperature in a Faraday cage at DC 0 V and with an AC signal of 10 mV in a stimulus range between 
30 mHz–100 KHz. The tests were carried out in a solution 100 mM of KCl in deionized and distilled water. A test 
circular area of 1.5 cm2, with the Au/SiNW WE at the center of that area and part of RE and CE immersed in the 
solution, was delimited by using a Teflon tube. In order to avoid solution leakage, an O-ring was placed between 
the test sample and the bottom of the Teflon tube. The potentiostat used was a versaSTAT 4 by PAR. Each meas-
urement was performed with a minimum of four repetitions on the same electrode over a time period of 1 h.
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