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Mutations in PINK1, which impair its catalytic kinase activity,

are causal for autosomal recessive early-onset Parkinson’s dis-
ease (PD). Various studies have indicated that the activation of

PINK1 could be a useful strategy in treating neurodegenerative

diseases, such as PD. Herein, it is shown that the anthelmintic
drug niclosamide and its analogues are capable of activating

PINK1 in cells through the reversible impairment of the mito-
chondrial membrane potential. With these compounds, for the

first time, it is demonstrated that the PINK1 pathway is active
and detectable in primary neurons. These findings suggest

that niclosamide and its analogues are robust compounds for

the study of the PINK1 pathway and may hold promise as a
therapeutic strategy in PD and related disorders.

Loss-of-function mutations in the genes encoding the phos-

phatase and tensin homologue deleted on chromosome 10
(PTEN)-induced kinase 1 (PINK1) and the E3 ubiquitin ligase

Parkin lead to autosomal recessive early-onset Parkinson’s

disease (PD).[1] PINK1 is a serine/threonine protein kinase that

possesses an N-terminal mitochondrial targeting sequence, a
transmembrane domain, and three insertional loops within its

catalytic kinase domain.[2] A large body of cell biological and

biochemical analyses has linked PINK1 to the regulation of mi-
tochondrial homoeostasis.[3] Indeed, it is now understood that,

upon mitochondrial membrane depolarisation, PINK1 becomes
activated and, consequently, phosphorylates Parkin and ubiqui-

tin at a conserved residue (Ser65). This stimulates Parkin re-
cruitment to the mitochondria, whereupon it becomes maxi-

mally active and ubiquitylates multiple substrates on the outer

mitochondrial membrane to trigger degradation of damaged
mitochondria through autophagy (mitophagy).[4]

The majority of PD-related PINK1 mutations abrogate its
kinase activity[5] and prevent the initiation of mitophagy in

cells upon mitochondrial damage, leading to the accumulation
of reactive oxygen species and premature neuronal loss.[6] This

underlines the kinase activity of PINK1 as being critical to the

prevention of neurodegeneration. Such a hypothesis has been
verified in Drosophila models of PINK1, in which kinase-inactive

versions of PINK1 failed to rescue neurodegeneration relative
to that of the wild-type (WT) gene.[7] This important finding

highlighted the activation of PINK1 as a promising strategy for
inducing and maintaining neuroprotective effects.

To date, a series of agents have been reported to efficiently

activate PINK1 in various immortalised human cell lines. These
could be divided into two groups: compounds that act directly
as PINK1 ATP neosubstrates[8] and indirect PINK1 activators
that cause the loss of the mitochondrial membrane potential

(Dym).[9] Undoubtedly, the latter class of compounds, which
include the proton ionophore, carbonyl cyanide m-chlorophen-

yl hydrazone (CCCP), the potassium uniporter valinomycin, or a
combination of antimycin A and oligomycin A (A/O) have at-
tracted more interest in the study of PINK1 signalling. Despite
the promise of these agents in activating PINK1, their cellular
toxicity has limited their translation to activating PINK1 in vivo.

Hence, the elaboration of novel and safe (direct or indirect) ac-
tivators of PINK1 is of great biological and therapeutic interest.

Because indirect PINK1 activation can be triggered by the
uncoupling of the mitochondria,[9] we focused our search for
small-molecule PINK1 activators on niclosamide (Figure 1 A); an

anthelminthic drug previously reported for its potential in
treating myeloma through the uncoupling of oxidative phos-

phorylation in the mitochondria.[10] Given that niclosamide has
been used for a long time as a safe anthelminthic drug[11] and
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studied in vivo with no apparent severe side effects,[12] we

were encouraged to explore the activation of PINK1 by this
clinical agent. Accordingly, untagged Parkin was expressed in

both WT and PINK1 knockout HeLa cells generated by TALEN

technology.[13] The cells were treated with different concentra-
tions of niclosamide (0.2–20 mm) for 40 min, DMSO or 10 mm/

1 mm A/O for 3 h. The cell lysates were immunoblotted with an
anti-phospho-Parkin Ser65 antibody to monitor PINK1 activi-

ty.[4c] Niclosamide has been shown to uncouple the mitochon-
dria to prevent the creation of adenosine triphosphate

(ATP).[12b] To monitor the ability of niclosamide and A/O to

induce mitochondrial uncoupling, we probed the cleavage of
the mitochondrial protein, optic atrophy protein 1 (OPA1), that

is catalysed by the zinc metalloprotease, OMA1, upon mito-
chondrial membrane depolarisation in cells.[14] We observed

mild activation of PINK1, as determined by Parkin Ser65 phos-
phorylation at 0.2 mm, and more striking activation at 2 mm or
higher concentrations of niclosamide comparable to that in-

duced by A/O treatment at 3 h (Figures 1 B). This was associat-
ed with ubiquitylation of the mitochondrial Fe/S domain-con-
taining protein, CISD1, that is a readout of Parkin ubiquitin E3
ligase activity (Figure 1 B).[15]

Importantly, the ability of niclosamide and A/O to induce
Parkin Ser65 phosphorylation and CISD1 ubiquitylation was

abolished in PINK1 knockout cells (Figure 1 B). However, their
ability to induce uncoupling was not affected, as determined
by cleavage of OPA1 (Figure 1 B). Under similar transfection
and cell conditions, we next undertook a time-course analysis
of Parkin Ser65 phosphorylation and CISD1 ubiquitylation in

the presence of 20 mm niclosamide. We observed robust niclo-
samide-induced Parkin Ser65 phosphorylation after 20 min of

treatment (Figure S1 in the Supporting Information) associated
with ubiquitylation of CISD1 (Figure S1 A). In vitro kinase assays
of PINK1 in the presence or absence of niclosamide showed no

evidence of direct activation of PINK1 by the compound (data
not shown).

Facile chemical modification of the salicynalide scaffold of
niclosamide enabled synthesis of three brominated analogues

known to exert pharmacological efficacy, AM85 (Dibromsalan),
AM86 (Tribromsalan) and AM87 (Metabromsalan; Figure 2 A;

also see the Supporting Information).[16] To compare the effects
of these niclosamide analogues on PINK1 activation, HeLa cells
were treated with 20 mm niclosamide or AM85–AM87 for

40 min and this revealed AM85 to be the most potent ana-
logue, as determined by Parkin Ser65 phosphorylation and

CISD1 ubiquitylation (Figure 2 B). Interestingly, less potent
PINK1 activators AM86 and AM87 induced similar cleavage of

OPA1 to A/O and niclosamide, which indicates broadly similar

effects on Dym (Figure 2 B). We next undertook a dose–re-
sponse analysis of AM85 on PINK1 activation and observed

robust Parkin Ser65 phosphorylation and CISD1 ubiquitylation
at 2, 8, and 20 mm, but not at lower concentrations (Figure 2 C).

CISD1 ubiquitylation was also confirmed by pull down of ubiq-
uitylated substrates with HALO-UBQLN1 resin, as previously

Figure 1. Niclosamide activates PINK1 in HeLa cells. A) Chemical structure of
niclosamide. B) Niclosamide dose–response analysis. WT and PINK1 knockout
(PINK1 KO) HeLa cells transfected with Parkin were stimulated with either a
combination of A/O for 3 h or with different concentrations (0.2, 0.8, 2, 8,
20 mm) of niclosamide (Niclo) for 40 min. Parkin Ser65 phosphorylation
(pS65Parkin), Parkin, Full length OPA1 (F/L), Cleaved OPA1, ubiquitylated
CISD1 (CISD1-Ub) and CISD1 were detected by immunoblotting. GAPDH was
used as a loading control.

Figure 2. Niclosamide analogue AM85 activates PINK1 in HeLa cells and
uncouples mitochondria. A) Chemical structures of niclosamide analogues
AM85, AM86, and AM87. B) WT HeLa cells transfected with Parkin were
stimulated with either a combination of A/O for 3 h or 10 mm niclosamide
(Niclo), AM85, AM86, AM87, for 40 min. C) WT and PINK1 knockout (PINK1
KO) HeLa cells transfected with Parkin were stimulated with A/O for 3 h or
with different concentrations (0.2, 0.8, 2, 8, 20 mm) of AM85 for 40 min.
Parkin Ser65 phosphorylation (pS65Parkin), Parkin, full-length OPA1 (F/L),
cleaved OPA1, ubiquitylated CISD1 (CISD1-Ub), and CISD1 were detected by
immunoblotting. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was
used as a loading control. D) Histograms of CMXRos relative fluorescence in-
tensity [arbitrary units] for HeLa cells treated on site for 3 h with A/O (green)
or for 1 h with niclosamide (Niclo, red) and AM85 (blue). Data are normalized
to the vehicle DMSO set at 1 (black). E) Quantification of CMXRos relative
fluorescence intensity [a.u.] for HeLa cells subjected to drug wash out, after
treatment with A/O (green), niclosamide (Niclo, red), AM85 (blue). Data are
normalized to the vehicle DMSO set at 1 (black). Bars represent the average
ratio:SEM of three independent experiments. ** p<0.01, one-way analysis
of variance (ANOVA) followed by Bonferroni post-test correction.
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described (Figure S2 A).[4c] Furthermore, time-course analysis of
AM85 demonstrated Parkin Ser65 phosphorylation and CISD1

ubiquitylation at 40 min, but not at earlier time points that
were previously observed for niclosamide (Figure S2 B and C).

To quantify the degree of mitochondrial uncoupling be-
tween AM85 and niclosamide, we performed fluorescence-acti-

vated cell sorting (FACS) analysis on HeLa cells treated with
20 mm niclosamide and AM85 for 40 min. Cells were incubated

with CMX ROS, which is a cell-permeable probe that accumu-

lates in active mitochondria and emits at l= 599 nm.[17] Inter-
estingly, both niclosamide and AM85 promoted significant
mitochondrial membrane depolarisation, comparable to that
of 3 h A/O-treated cells (Figures 2 D and S2 D), which was in
agreement with OPA1 cleavage shown above (Figures 1 B and
2 B and C). Critically, the mitochondrial depolarisation effect in-

duced by both niclosamide and AM85 was reversible because

no reduction in ROS was detected after compound wash out
(Figure 2 E). FACS analysis also demonstrated no significant tox-

icity under the compound conditions used for niclosamide and
AM85, relative to those of DMSO (Figure S3).

We next determined the ability of niclosamide and AM85 to
activate PINK1 in cells of pathophysiological relevance to PD.

To date, no studies have assessed PINK1 activity in primary

neurons under conditions at which PINK1 and Parkin are ex-
pressed at endogenous levels. Marked neuronal loss and Lewy

body accumulation occurs in the frontal cortex, particularly the
anterior cingulate gyrus in advancing PD.[18] Therefore, we

studied primary cortical neurons derived from E16.5 embryos.
We initially evaluated Parkin expression in cortical neurons at

various time points from 3 to 21 days in vitro (DIV; Figure 3 A).

We strikingly observed an increase in Parkin expression during
cortical neuronal growth in vitro that paralleled the expression

of the pre- and post-synaptic proteins, synaptophysin and
PSD95, respectively (Figure 3 A).

We next undertook a time-course analysis of 12 DIV neurons
treated with A/O, and observed Parkin Ser65 phosphorylation

occurring at 10 min of stimulation and becoming maximal by

1 h of stimulation and sustained for 9 h (Figure 3 B). Further-
more, we observed significant CISD1 ubiquitylation in 12 and

21 DIV neurons stimulated with A/O for 3 h, but not in 5 or 7
DIV neurons (Figure 3 C). We next tested the ability of niclosa-
mide and AM85 to activate PINK1 in 21 DIV neurons. Neurons
were treated with 30 mm niclosamide or AM85 for 1 h, and this
led to increased Parkin Ser65 phosphorylation (Figure 3 D). In-

terestingly, AM85 exerted a stronger effect on Parkin Ser65
phosphorylation than that of niclosamide; this was also con-
firmed by CISD1 ubiquitylation in neurons under similar condi-
tions (Figure 3 E). This difference was not explained by differen-
ces in uncoupling because both drugs had similar effects on
mitochondrial depolarisation, as assessed directly by FACS or

indirectly by cleavage of OPA1 (Figure 3 F and G).
In summary, we reported the discovery that the anthel-

minthic drug, niclosamide, and its analogue, AM85, can acti-
vate PINK1 in cells. Notably, we detected, for the first time,
PINK1–Parkin pathway activation in neurons and demonstrated

that it could be triggered by small molecules. Additionally, we
showed that the induction of mitochondrial depolarisation was

capable of activating endogenous PINK1 protein in neurons,

leading to Parkin Ser65 phosphorylation and ubiquitylation of
its mitochondrial substrate CISD1. The mechanism of action of
niclosamide and AM85 appears to be indirect and mediated by
their mitochondrial uncoupling properties, although this is not

Figure 3. Niclosamide and analogue AM85 activate PINK1 and uncouple mi-
tochondria in primary cortical neurons. A) Detection of Parkin expression at
different DIV after plating. PSD95 and synaptophysin were used as markers
of increasing neuronal complexity. b-Actin is used as a loading control.
B) Time-course analysis of Parkin Ser65 phosphorylation (pS65Parkin) and
Parkin upon A/O stimulation (10 min, 20 min, 40 min, 1 h, 3 h, 6 h, and 9 h)
in 12 DIV neurons. C) E16.5-derived C57Bl/6J primary cortical neurons after
5, 7, 12, and 21 DIV were stimulated with A/O for 3 h. Parkin Ser65 phos-
phorylation (pS65Parkin) and CISD1 ubiquitylation (CISD1-Ub) were detect-
ed. bI-Tubulin was used as a loading control. D) 21 DIV C57Bl/6J primary
cortical neurons were stimulated with either a combination of 10 mm A/O
for 3 h or 30 mm niclosamide (Niclo) and AM85 for 1 h. Parkin Ser65 phos-
phorylation (pS65Parkin) and Parkin were detected upon A/O stimulation.
E) Pull-down of ubiquitylated CISD1 (CISD1-Ub) after niclosamide and AM85
treatment of PINK1 WT and KO 21DIV neurons. MemCode was used as a
loading control. F) Graph of CMX ROS fluorescence intensity [a.u.] in 21DIV
neurons after treatment with A/O (green), niclosamide (Niclo, red), AM85
(blue), normalised to the vehicle, and DMSO (black). In all graphs, bars repre-
sent the average ratio:SEM of two independent experiments. * p<0.05,
** p<0.01, one-way ANOVA followed by Bonferroni post-test correction.
G) Niclosamide and AM85 treatment induce OPA1 cleavage. Quantification
of cleaved OPA1 in AM85, niclosamide, and A/O treated 21 DIV neurons.
Bars represent the average ratio:neurons. Bars represent the average ra-
tio:SEM of two independent experiments and values are ratios between
uncleaved and cleaved OPA1. ** p<0.01, one-way ANOVA followed by Bon-
ferroni post-test correction. At the bottom, exemplary immunoblot of full
length (F/L) and cleaved forms of OPA1.
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sufficient to explain the greater potency of AM85 in neurons.
Niclosamide has been used safely in humans for over half a

century to treat helminth infections and is currently being
tested in multiple clinical trials in a variety of human cancers,

as well as rheumatoid arthritis.[19] Our data suggests that niclo-
samide and/or its analogues could have therapeutic benefit in

slowing down PD progression through the activation of PINK1.
Further in vivo studies in appropriate PD models are warranted
to test this hypothesis.

Experimental Section

Immunoblotting and immunoprecipitation : Tissues, primary corti-
cal neurons or HeLa cells were sonicated in lysis buffer containing
Tris·HCl (50 mm, pH 7.5), EDTA (1 mm), ethylene glycol bis(b-amino-
ethyl ether)-N,N,N’,N’-tetraacetic acid (EGTA; 1 mm), Triton (1 %,
w/v), sodium orthovanadate (1 mm), sodium glycerophosphate
(10 mm), sodium fluoride (50 mm), sodium pyrophosphate
(10 mm), sucrose (0.25 m), benzamidine (1 mm), phenylmethyl-
sulfonyl fluoride (PMSF; 0.1 mm) and protease inhibitor cocktail
(Roche). Following sonication, lysates were incubated for 30 min
on ice. Samples were spun at 20 800 g in an Eppendorf 5417R cen-
trifuge for 30 min. Supernatants were collected and protein con-
centration was determined by using the Bradford kit (Pierce). Sam-
ples were subjected to SDS-PAGE (4–12 % gels) and transferred
onto Protran 0.2 NC nitrocellulose membranes (Amersham). Mem-
branes were blocked for 1 h at room temperature with 5 % non-fat
milk or bovine serum albumin (BSA) in Tris-buffered saline (TBST;
50 mm Tris·HCl and 150 mm NaCl, pH 7.5) containing 0.1 % Tween-
20 in phosphate-buffered saline (PBS, pH 7.4), and probed with the
indicated antibodies overnight at 4 8C. Detection was performed
using horseradish peroxidase (HRP)-conjugated secondary antibod-
ies and enhanced chemiluminescence reagent.

Ubiquitin enrichment : For ubiquitylated protein capture, extract
(400 mg) was used for pull down with HALO-UBAUBQLN1 resin, as
described previously.[4c] Halo-tagged ubiquitin-binding domains
(UBDs) of UBQLN1 were incubated with HaloLink resin (200 mL,
Promega) in binding buffer (50 mm Tris·HCl, pH 7.5, 150 mm NaCl,
0.05 % NP-40) overnight at 4 8C. Halo Tube beads (20 mL) were
added to neuronal or tissue lysates and incubated for 4 h at 4 8C.
The beads were washed three times with lysis buffer containing
0.25 m NaCl and eluted by resuspension in 1 V LDS sample buffer
(20 mL) with 1 mm dithiothreitol (DTT).

Flow cytometry analysis of mitochondrial membrane potential :
HeLa Cells were incubated with 20 mm niclosamide (Sigma–Aldrich)
and AM85 (for synthesis, see the Supporting Information) for
40 min before trypsinization and collection. Oligomycin (Sigma–Al-
drich) and antimycin (Sigma-Aldrich) 20 mm were used as positive
controls and incubated for 3 h before sample harvest. DMSO
(Sigma Aldrich) was used at the same concentration as a control.
After 10 min from the start of drug treatment, cells were treated
with 100 nm Mito Tracker CMXRos (Cell Signaling Technology) for
30 min directly on wells. Drug wash out was performed by incubat-
ing trypsinized floating cells with 100 nm Mito Tracker CMXRos
(Cell Signaling Technology) for 30 min at 37 8C in the absence of
drug. All harvested cells were incubated for 5 min on ice after
CMXRos incubation and then centrifuged and washed two times
with a 1 % solution of BSA/PBS. Finally, cells were treated with a
solution of 4’,6-diamidino-2-phenylindole (DAPI; 1:200; 1 mg mL@1

DAPI, 50 mg mL@1 RNaseA in 1 % BSA/PBS) and transferred to FACS

tubes for analysis. Samples were acquired by using a BD FACS
Canto system and the results analysed by using FlowJo software.

Statistical analysis : Statistical analysis of groups with normal distri-
butions was performed by means of one- or two-way ANOVA fol-
lowed by Holm–Sidak or Bonferroni post-tests. Differences among
groups were considered statistically significant if p<0.05. Data
throughout the text are reported as average values:SEM, unless
otherwise specified.
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