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Changes in meta-transcriptome 
of rumen epimural microbial 
community and liver transcriptome 
in young calves with feed induced 
acidosis
Wenli Li1*, Sonia Gelsinger2, Andrea Edwards1, Christina Riehle3 & Daniel Koch4

The common management practices of dairy calves leads to increased starch concentration in feed, 
which subsequently may cause rumen acidosis while on milk and during weaning. Until recently, few 
attempts were undertaken to understand the health risks of prolonged ruminal acidosis in post weaning 
calves. Resultantly, the molecular changes in the digestive tracts in post-weaning calves with ruminal 
acidosis remain largely unexplored. In this study, we investigated the liver transcriptome changes 
along with its correlation with the rumen microbial rRNA expression changes in young calves using our 
model of feed induced ruminal acidosis. In this model, new born calves were fed a highly processed, 
starch-rich diet starting from one week of age through 16 weeks. A total of eight calves were involved 
in this study. Four of them were fed the acidosis-inducing diet (Treated) and the rest of the four were 
fed a standard starter diet (Control). Liver and rumen epithelial tissues were collected at necropsy at 17 
weeks of age. Transcriptome analyses were carried out in the liver tissues and rRNA meta-transcriptome 
analysis were done using the rumen epithelial tissues. The correlation analysis was performed by 
comparing the liver mRNA expression with the rumen epithelial rRNA abundance at genus level. Calves 
with induced ruminal acidosis had significantly lower ruminal pH in comparison to the control group, in 
addition to significantly less weight-gain over the course of the experiment. In liver tissues, a total of 
428 differentially expressed genes (DEGs) (fold-change, FC ≥ 1.5; adjusted P ≤ 0.1) were identified in 
treated group in comparison to control. Biological pathways enriched by these DEGs included cellular 
component organization, indicating the impact of ruminal acidosis on liver development in young 
calves. Specifically, the up-regulated genes were enriched in acute phase response (P < 0.01), pyruvate 
metabolic process (P < 0.01) and proton-acceptors (P ≪ 0.001), indicating the liver’s response to feed 
induced acidosis at the transcriptome level. Twelve transferase activity related genes had significant 
correlation with rumen microbial rRNA expression changes. Among these genes, two up-regulated 
genes were reported with involvement in lipid metabolism in the liver, implying the direct effect of feed-
induced acidosis on both the rumen microbial community and liver metabolism. Our study provides 
insight into the physiological remodeling in the liver resultant from the prolonged acidosis in post 
weaning calves, which may facilitate future RNA-seq based diagnosis and precision management of 
rumen acidosis in dairy calves.

Weaning transition is a critical period for the functional rumen development for dairy calf, during which the 
dairy calves changes from liquid to solid feed consumption1. The rumen is not fully functional at birth. The 
rumen will go through significant development in size, morphology and function2 in order to provide sufficient 
protein and energy to the dairy calves at the time of weaning (at ~eight weeks of age). The solid feed fermentation 
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lead to increased production of volatile fatty acid (VFA), which is reported as the primary stimulant for the func-
tional rumen epithelial tissue development3–5. Thus, for the purpose of fostering rumen development and allow-
ing the calves to be weaned at an earlier age, maximum intake of readily fermented calf starter is common during 
weaning transition period1 (NRC, 2001). However, calves fed starch-source displayed excessive VFA and lactic 
acid production, which leads to significant decrease in rumen pH6. An overall reduction in ruminal pH7,8 caused 
by the ingestion of diets rich in rapidly fermentable carbohydrates with insufficient amount of fiber required for 
efficient rumen buffering can lead to sub-acute Ruminal Acidosis (SARA), a common metabolic disorder in dairy 
cattle. SARA is a well-recognized, economically important disorder in dairy cattle. Studies in Wisconsin (US) 
reported an estimated 20–23% of cows with SARA9,10, while a large study in Australian found 10% of the cows less 
than 100 days in milk had acidosis11. Milk yield reduction, premature culling and increased mortality are among 
the direct consequences of SARA-induced digestive and metabolic disfunction.

Several other deleterious consequences have been associated with SARA. During SARA, free lipopolysaccha-
rides (LPS) also increase in the rumen12,13. When the free LPS enters blood circulation, it activates immunosup-
pression and inflammation responses resultant from the depressed ruminal pH7,14. Once acidosis is developed, 
a sharp increase in the production of VFAs, especially lactic acid can further decrease the rumen pH15. Rapid 
fermentation caused pH reduction has been linked to the impairment of barrier function in the gut16, ruminal 
parakeratosis, erosion, and ulceration of the ruminal epithelium17.

There are no typical clinical signs of SARA in affected cows18,19, and the commonly defined clinical symptoms 
are generally delayed in onset from the time of low ruminal pH insult. Inflammations of different tissues and 
organs have been reported in cows with SARA. The associated pathophysiological cascade of events begin with 
decreased dry matter intake14, reduced in situ fiber degradation20, rumen epithelial damage21 and inflammation22. 
Once the ruminal epithelium is inflamed, the gut bacteria may enter into the portal circulation and into the liver. 
The subsequent bacterial leak into the lungs, kidneys, heart valves and joints can cause chronic inflammatory 
diseases that are hard to diagnose post-mortem (reviewed in Oetzel23). Most commonly, ruminal acidosis pre-
disposes cattle to liver abscesses24,25, which are the primary liver abnormality of feedlot cattle seen at slaughter, 
averaging 67% of all liver abnormalities26. The mean prevalence of liver abscesses in conventionally managed 
feedlot cattle in the US ranges from 10% to 20%26,27, and as high as 90% to 95% in individual groups of grain fed 
cattle28,29. The widely accepted etiology of liver abscess was that acidosis induced damage to the rumen epithelium 
was the main causing factor, supported by previously reported high correlation between ruminal ulcers and the 
occurrence of liver abscess27,30,31. Consistent with this, early studies have reported several microorganisms as 
the causes for liver abscess, including the Fusobacterium necrophorum, Bacteroides spp., Peptostreptococcus spp., 
Staphylococcus spp. by Berg and Scanlan32; Clostridium spp., Pasteurella spp. and Streptococcus spp. by Simon and 
Stovell33, and Trueperella pyogenes by Calkins and Scrivner34. Among these, F. necrophorum (a common inhabit-
ant of the rumen35) was the most commonly isolated pathogen in liver abscess (with its incident rate ranges from 
85% to 100% of the studied cases)36. As part of the cell wall of gram-negative bacteria, lipopolysaccharide (LPS) 
is a form of endotoxin that can transport into the liver via the portal vein. Previous in vitro experiments indicated 
that the liver hepatocytes can excrete endotoxins present in the circulatory system in the bile, and detoxify LPS 
through the activity of liver macrophages (Kupffer cells)37. In this study, though we did not observe visible sighs 
of liver abscess at the time of tissue collection, we did observe significant physiological changes in the treated 
calves, including significantly lower ruminal pH and overall weight-gain, and rumen papillae degradation via 
histology analysis

The liver is a critical organ for nutrient metabolism. However, we currently have very limited knowledge about 
the impacts of feed-induced acidosis on the liver transcriptomics and associated molecular pathways. In this 
study, we specifically focused on the global transcriptome changes and impacted molecular pathways in liver tis-
sues collected from four month old calves. This work is in conjunction with our recently published work38, where 
a highly-processed, starch-rich feed was used to induce ruminal acidosis in bull calves beginning at 1 week of age 
through 16 weeks. Liver tissues were collected after sacrifice at 17 weeks of age, followed by whole transcriptome 
sequencing analysis. We hypothesized that feed-induced acidosis in young calves was associated with significant 
changes in the liver transcriptome. And such changes in the liver were linked to the rumen microbial community 
alterations.

Material and Methods
Ethics statement and animal care.  This study is part of one larger study where other portions of the study 
have been published39,40. All procedures for the animal study were reviewed and approved by the University of 
Wisconsin – Madison Institutional Animal Care and Use Committee (IACUC no. A005848). Throughout the 
experiment, all animals were maintained according to the standard herd practices approved at the USDA Dairy 
Forage Research Center farm.

All the Holstein bull calves were from the same study published by our group recently39,40. In brief, ten 
Holstein bull calves born at the Marshfield Agricultural Research Station (Marshfield, WI) between June 17 and 
July 5, 2017 were used for this experiment. Calves were housed in individual calf hutches (4.8 sq. m/calf) from 
birth to 8 weeks and then divided into larger hutches (5.0 sq. m/calf) through 16 weeks.

Study Design.  For the treated and the control diets, two grain starter diets were used in the study as reported 
in our recently published work39,40. Different from our previously published work where the rumen epithelial 
tissue38 was the focus, this research focuses on the liver transcriptome changes resultant from the dosing trial. 
In brief, the treated diet had a starch concentration of 42.7%, while the control diet had a starch concentration 
of 35.3% (Fig. 1). The detailed nutrient concentration is published in Gelsinger et al.39. For sequencing experi-
ment, there were four calves in each treated and control groups. Treatments were randomly assigned and offered 
to calves beginning at 1 week of age (6.6 d ± 3.4). RNAseq power analysis using Scotty41 indicated that with an 
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average of 60 M reads and four replicates per treatment condition, one can achieve the power of identifying 85% 
of the genes with at least 50% maximum power. And with this experimental design, one can identify 65% of the 
genes with at least 1.5X fold-change, 85% of the genes with at least 2X fold-change and 95% of the genes with at 
least 3X fold-change (Supplemental Fig. 1).

ad libitum access to their assigned starter was allowed for the calves throughout the duration of the trial up 
to 4500 g/d. On a daily basis, a measured amount of starter was offered at 0800 with refusals determined daily. 
Beginning at week 6 through week 16, rumen pH values were measured 7 times in a single day every other week. 
The seven time-points were: −8, −4, 0, 2, 4, 8 and 12 hours relative to grain feeding. For the measurement of 
rumen pH, the pH probes were placed in the ventral sac of the rumen via a rumen canula. Blood pH was meas-
ured on weeks 8, 10, 12 and 14. Starter intake and body weight were measured for all calves at a given time every 
week, beginning at week 1 through week 16. Calves were euthanized at 17 weeks of age for tissue collection. In 
conjunction with our recently published works38–40, we have observed lower (P < 0.01) rumen pH in the treated 
calves compared to the control group. Additionally, both the starter intake and weight gain were significantly 
lower in the treated animals across all the weeks during the experiment.

Calf liver tissue collection.  Four calves from each treatment group were subjected to liver and rumen epi-
thelial tissue collection. Liver tissues were collected from the right lobe. Before collection, the right lobe was cut 
into even halves with a sterile scalpel and the tissue sample was collected from the center part of the liver tissue. 
Rumen papillae tissues were taken from same location as described in our previous publication38. All tissues were 
collected right after animal euthanasia. Collected tissues were rinsed in 1X PBS and cut with sterilized scalpels 
into small fragments and put into Eppendorf safe-lock tubes (Eppendorf North America, US) followed by flash 
frozen in liquid nitrogen and stored at −80 °C for long-term storage.

RNA extraction, RNA-seq library preparation and sequencing.  Liver and rumen epithelial tissues 
were homogenized into fine powders separately in liquid nitrogen using a mortar and pestle. RNAs were extracted 
using the miRNeasy protocol with a QIAcube instrument (Qiagen US). RNA samples with RIN value ≥ 8 were 
pursued for RNA quantification using Qbit Broad Range assay (Thermo Fisher, US). RNA-seq library prep fol-
lowed the same procedure as described previously38. In brief, For each sample, an input amount of 1μg of total 
RNA was used for sequencing library preparation. RNA-sequencing library was prepared using a Illumina TruSeq 
ribo-zero gold kit (Illumina, San Diego, US). Concentration of each prepared library was quantified using a 
Kapa quantification kit (Kapa Systems, US) on an ABI7300 RT-qPCR instrument (Thermo Fisher, US). After 
Kapa quantification, libraries were further normalized and pooled using the Pooling Calculator (https://support.
illumina.com/help/pooling-calculator/pooling-calculator.htm), an online tool offered by Illumina. An Illumina 
NextSeq 500, high-output kit was used to sequence the pooled libraries to generate 2 × 75 bp, paired-end reads.

Differential gene expression analysis.  FastQC (https://www.bioinformatics.babraham.ac.uk/projects/
fastqc/) was used to check the quality of raw reads. Additionally, sequencing raw reads shorter than 35 bp were 
excluded for further analysis. Bos taurus UMD3.1 was used as the genomic reference for sequence reads mapping. 
RNA-sequencing reads were aligned to the B. taurus reference genome using a two-step alignment approach 
as described previously38. The first step of read-mapping was done using Tophat242. The unmapped reads from 
the first step were further aligned by Bowtie243 by setting the “–very-sensitive-local” parameter. HTSeq (v0.6) 
HTseq44 was used to calculate the raw read-counts for each annotated gene in the B. taurus gene annotation file, 
using the combined (Tophat + bowtie2) sequence alignment file generated by the two-step alignment approach. 
The expression level of mRNAs in each sample were normalized to Fragments Per Kilobase of exon per Million 
fragments mapped (FPKM) using cufflinks45. Using a FPKM cutoff value of one, the total number of expressed 
genes were calculated.

Differential gene expression (DEG) analysis was performed using R/Bioconductor package DESeq246 with 
raw read-counts calculated by HTseq44 following the previously published procedure38. When using DEseq. 2, 
read-count normalization was performed using the regularized logarithm (rlog) method. An average of ten nor-
malized read-counts was used as cutoff to exclude genes from further differential expression analysis. To be con-
sidered as DEGs, the following cutoff were imposed: adjusted p-value ≤ 0.05 and the fold change ≥1.5. DAVID47 

Figure 1.  The concentration of starch and non-digestive fiber in the feed administered to the treated and 
control groups.
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and stringDB48,49 were employed for gene function annotation and pathway analysis. FPKM values were used to 
identify the top 1% most highly expressed genes in each sample. Using the top 1% most highly expressed genes, 
the shared, most abundantly expressed genes were identified for both treated and control groups and the list of 
the most highly expressed genes unique to treated group was also identified.

Expression correlation analysis of rumen epithelial microbial community and liver 
mRNA.  RNA-sequencing reads used for rumen epimural microbial community expression were obtained 
using the method from previously published work by our group Li et al.38. In brief, raw-reads generated by total 
RNA sequencing using the rumen papillae tissues were used for the epithelial of rRNA reads for the rumen 
epithelial microbial community. Genus level expression quantification was done using Kraken50. Genus level 
raw-read counts generated by Kraken were further normalized by dividing the total number of raw-reads for each 
genus with the per million factor (PMF). To calculate the PMF, the total number of reads mapped to genus level 
for a given sample was divided by 1,000,000. Then, the mapped raw reads at each genus was divided by the PMF, 
yielding a normalized read count. The top 10% most highly expressed genus for the treated and control groups 
were identified by the following steps: (1) the average, normalized read-count for each group was calculated for 
each genus; (2) the genus with normalized read-counts at the 10% percentile were identified for the treated and 
control groups respectively.

To identify the correlation between liver mRNA and rumen epimural microbial rRNA abundance, we per-
formed association analysis using pearsons’r from scipy.stats (SciPy v1.2.0) as described previously38. For rumen 
microbial rRNA abundance data, normalized read-counts at genus level were included in the correlation analysis. 
The list of significantly differentially expressed, microbial genus identified in our previously published work was 
included in the analysis38. p-values ≤ 0.001 and the absolute value of correlation coefficient more than 0.8 were 
used as the cutoffs.

Verification of target genes expression profile using RT-qPCR.  The expression profile for four ran-
domly selected DEGs identified by RNA-seq was analyzed in both treated and control groups using RT-qPCR. 
These genes were: ARHGDIA, SUSD2, IGF2R and RASSF4. ARHGDIA was reported with a key role in the regula-
tion of cell motility through Rho GTPases51

(https://www.genecards.org/cgi-bin/carddisp.pl?gene = ARHGDIA); SUSD2 plays important roles in 
cell-to-cell and cell-matrix adhesion. This gene encodes a type I transmembrane protein of 820 amino acids 
consisting of a large extracellular region containing Somatomedin B52. IGF2R was reported with various func-
tions, including the activation of transforming growth factor beta and the intracellular trafficking of lysosomal 
enzymes53,54. RASSF4 belongs to the Ras associated domain family. The RASSF proteins have reported roles in 
microtubule stability, regulating mitotic cell division, and modulating cell migration and adhesion55. The follow-
ing Taqman probes were ordered from Thermo Fisher (Thermo Fisher, US): ARHGDIA, Bt03224507_g1; SUSD2, 
Bt04284484_m1; IGF2R, Bt03223452_m1; and RASSF4, Bt03241299_m1.

cDNA synthesis was performed using 2000 ng of total RNA with High Capacity cDNA master mix following 
manufacturer’s instruction (Thermo Fisher, US). All RT-qPCR reactions were performed using the QuantStudio 
5, 396-well system (Thermo Fisher, USDA), using pre-designed Taqman assay probes along with the Taqman 
fast advanced master mix (Thermo Fisher, US). The thermocycler steps were set following the manufacturer’s 
instruction as the following: one step of uracil-N-glycosylase (UNG)56,57 treatment at 50 °C for 2 min, followed 
by an initial denaturation/activation step at 95 °C for 2 min, then 40 cycles at 95 °C for 1 s and 60 °C for 20 s. The 
experiments were carried out in triplicate for each targeted gene. Two reference genes, Beta-actin (ACTB) and 
hydroxymethylbilane synthase (HMBS) were used to normalize the expression quantification of targeted genes. 
Bovine specific, predesigned Taqman probes (Bt03279174_g1 for ACTB and Bt03234763_m1 for HMBS) for 
these two reference genes were used in the assay. The relative quantification of gene expression was determined 
using the 2−ΔΔCt method58.

Statistical analysis.  Pearsons’r from scipy.stats (SciPy v1.2.0) was used to calculate the correlation between 
liver mRNA expression and rumen epimural microbial rRNA abundance. DEG analysis was done using DESeq246 
using regularized log-transformation for read-count normalization. RT-qPCR data were done using t-test if the 
data were normally distributed. For non-normally distributed data, the statistical significance was calculated 
using mood’s median test. Starter intake, body weight gain, ruminal and blood pH parameters were analyzed as 
previously described38,40.

Results
Physiological effects of the animal model: blood and ruminal pH, body weight, starter intake 
and rumen papillae tissues.  Mean ruminal pH differed by diet (P < 0.01), but not by age (P = 0.12); 
whereas, blood pH decreased linearly with age (P = 0.01), but was not different between diets (P = 0.20). There 
was no interaction between diet and age for either metric (P > 0.69). Mean ruminal pH reached a nadir for all 
calves during week 8. Mean ruminal pH ± S.E. (min, max) was 5.37 ± 0.24 (3.3, 7.2) and 5.63 ± 0.24 (3.5, 6.8) 
for treatment and control calves, respectively. Body weight and feed intake increased linearly (P < 0.01) with 
age. Calves fed the control diet consumed a greater amount of feed (P < 0.01) and attained greater body weight 
(P < 0.01) at weeks 4 and 5, respectively. These differences were maintained through week 16 (P < 0.001). For 
rumen papillae tissues: Papillae length and width were not different (P = 0.38), but a greater degree of tissue deg-
radation was observed in acidotic calves (P < 0.01)40.

RNA quality and sequencing reads alignment for liver transcriptome.  The extracted RNA samples 
of liver tissues were of high quality, with the average RNA integrity number (RIN) of 8.3 ± 0.11 (standard error 
(s.e.)). An average of 76.8M ± 1.29M (s.e.) reads were obtained for the sequenced samples, with a range of 62 M 
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to 78 M. Using the FPKM cutoff value of one, the total number of expressed genes ranged from 11,684 to 12,606. 
All samples had similar distribution of gene expression, with majority of the genes expressed in the range of 0.2 
to 15 FPKMs (Supplemental Dataset 1).

Liver transcriptome changes between treated and control groups.  The expression profile of the 
selected genes was successfully confirmed by RT-qPCR method (Fig. 2). A list of 74 genes was identified as the top 
1%, mostly abundantly expressed across all samples. Gene ontology (GO) analysis indicated that these genes were 
enriched in the cellular component in the extracellular region (GO:CC~GO:0005576; 41 genes, P ≪ 0.00001). 
For the top 1% most highly expressed genes in the control and treated group, 18 genes were uniquely expressed in 
the treated group (APOC2, A1BG, FMO1, P4HB, BRP44L, LDHB, HP, SAA3, APOA1, APOA5, MT1E-2, MT1A, 
ARG1, HSD17B10, ITIH3, HMGCS2, SERPINA3, ACADM). Pathway analysis indicated that these genes were sig-
nificantly enriched in organic acid metabolic process (GO:BP~GO:0006082; 8 genes; P ≪ 0.00001), high-density 
lipoprotein (Uniprot, keywords_results; 4 genes; P ≪ 0.0001), and positive regulation of triglyceride metabolic 
process (GO:BP~GO:0090208; 3 genes; P ≪ 0.00001).

A total of 428 differentially expressed genes (DEGs) were identified between the treated and control groups 
(Supplemental Dataset 2). And the top 50 most significant DEGs clearly separated the two treatment groups 
(Fig. 3). Among the list of DEGs, 244 of them were up-regulated and 184 of them were down-regulated in the 
treated group. Pathways and GO analysis using the combined list of DEGs indicated the enrichment of pathways 
involving cell division and growth. They included cellular component organization or biogenesis (GO:0071840; 69 
genes; P ≪ 0.0001) and membrane bounded organelle (GO:0043227; 120 genes; P ≪ 0.0001). For down-regulated 
genes, they were predominantly enriched in the GO terms related to cellular growth and signaling, including 
cellular component biogenesis (GO:BP, GO:0044085; 25 genes, P < 0.005); intracellular signal transduction 
(GO:BP, GO:0035556; 23 genes, P < 0.01); For up-regulated genes (Fig. 4), they showed enrichment in genes 
involved in acute phase response (GO:BP, GO:0006953, 4 genes; P < 0.002), pyruvate metabolic process (GO:BP, 
GO:0006090, 5 genes; P < 0.01), response to nutrient levels (GO:BP, GO:0031667, 10 genes; P < 0.01), and 15 
genes have shared motif “proton acceptor” (Fig. 5) (Supplemental Dataset 3).

rRNA transcriptome analysis of rumen epithelial microbial community and its association with 
liver mRNA expression changes.  The expression changes of 95 genes were identified with significant 
correlation with the abundance variation with the rumen epithelial microbial community at the genus level. 
Among these, 77 of the genes (Supplemental Dataset 4) had positive correlation with the rumen microbial rRNA 
expression, while 18 of the genes (Supplemental Dataset 5) had negative correlative with the rumen microbial 
rRNA expression. For the genes with positive correlation with the microbial rRNA expression, they were enriched 
in the pathways of membrane-bounded organelle (GO:0043227; 43 genes; P < 0.001) and transferase activity 
(GO:0016740; 11 genes; P < 0.05) (SIK3, TAF6L, ACAT2, BHMT2, CAMK2N2, CSNK1G1, GPT, HIPK1, KCNH3, 
PIAS3 and SIRT6).

Discussion
Acidosis-inducing diet caused liver remodeling at the transcriptome level.  In our study, a signif-
icant enrichment of genes involved in cellular morphogenesis were observed for the complete list of DEGs, indi-
cating the potential effect of ruminal acidosis on liver cellular growth and development at the transcriptome level. 
Consistent with this finding, Guo et al.59 observed histopathologic changes in the liver tissue in dairy cows with 
SARA. These included the glycogenated nuclei, inflammatory cells infiltration and liver cells injury ballooning59. 
Reduced body condition was also associated with the occurrence of SARA despite the high energy intake60,61. 
Consistently, we observed significantly reduced weight gain in our study38. However, we did not observe visible 
signs of inflammation in the joints or any other visible signs of inflammation. Since the significant number of the 
DEGs identified in the liver tissues was involved in cellular component organization and biogenesis, our finding 

Figure 2.  RT-qPCR confirmation of four differentially expressed genes identified by RNA-seq. Fold-change 
(Treated vs control) of target genes were calculated by both RNA-seq and RT-qPCR methods.
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implied that before any fundamental signs related to inflammation, significant changes in the liver transcriptome 
have already occurred. The liver is a critical organ for nutrient metabolism and host health. Most importantly, 
it has been recognized as an important immune organ in vertebrates62–64. Besides receiving blood from the por-
tal circulatory system, the liver receives blood coming back from the intestine. Thus, the liver is exposed to a 
wide array of antigens coming from the gut. Specifically during ruminal acidosis, once the ruminal epithelium 
is inflamed, the gut bacteria may enter into the portal circulation and into the liver, initiating a broad range of 
immune responses in immune-related cellular components. For example, different population of liver lympho-
cyte, including the macrophages, natural killer cells and T lymphocytes have been identified with response to 
different antigenic peptides64,65. For further follow up, comparative gene expression analysis between liver and 
circulation blood might help identify blood-based biomarkers indicative of host response to feed-induced acido-
sis. Such easily accessible biomarkers may improve feed management before the typical signs of ruminal acidosis 
to avoid serious complications.

Acidosis-inducing diet on most highly expressed genes in the liver.  For the top 1%, most highly 
expressed genes between control and treated groups, 18 of them were uniquely expressed in the liver tissues of the 
treated group. These genes were enriched in high density lipoprotein (HDL) and positive regulation of triglyc-
eride metabolism. Of interest, three genes encoding the class of high-density lipoproteins were among the most 
highly expressed genes in treated calves compared to the control group. HDLs are the most abundant lipoproteins 
in the cow’s serum66. With the induction of SARA, Stefanska et al.67 observed significantly higher concentration 
of HDL in the blood of the affected cows. And this increase of HDL in acidotic cows might be associated with the 
cow’s ability to fight against the pathological condition. Though we did not see any signs of ulcer in the liver of 
treated animals, the most highly expressed HDL-encoding genes (Apoa1, Apoa5 and SAA3) in treated animals are 
consistent with previously published work where high concentration of HDL was observed in acidotic animals. 
APOA1, APOA2 and APOA5 belong to the exchangeable apolipoprotein family.

APOA2 is the second most common proteins in high-density lipoproteins68. Its increased expression level 
has been linked to atherosclerosis69. Both APOA2 and APOA5 were linked to increased risk of obesity and meta-
bolic syndrome70,71. Specifically, APOA5 is a liver-specific protein, which functions as an important modulator in 

Figure 3.  Clustering heat-map of top 50 most significant differentially expressed genes between the treated and 
control groups.
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lipoprotein metabolism72. The close relationship between plasma levels of APOA5 and obesity has been confirmed 
recently73. These uniquely, highly expressed genes identified in our study indicated that feed-induced ruminal aci-
dosis impacted the lipoprotein metabolism in the liver as a potential buffering response before the development 
of bacteria-causing ulcers or sepsis in the liver. This response may function at the expense of the overall metabolic 
health of the liver. Thus, further investigation on liver lipid metabolism may shed light into the responsive mech-
anism associated with SARA in young calves.

Other biochemical molecules have also been reported with increased concentration in acidotic cows. One of 
them is rumen LPS, which is part of the cell wall of gram-negative bacteria. Gozho and coauthors7 reported the 
increased concentration of ruminal free LPS upon the induction of SARA via the feeding of high-concentrate 
diet74. Similarly, Shen et al.75 recorded a higher LPS (P < 0.05) in the rumen fluid from the cows fed a 
high-starch diet (39% starch, DM basis) versus a low-starch diet (24% starch, DM basis). And in dairy cows fed 
a high-concentrate diet, inflammatory injuries were observed in the liver due to the LPS traveled from the diges-
tive tract back to the liver59. Once ruminal free LPS enters the blood stream through the portal vein, the LPS can 
initiate potent pro-inflammatory response, leading to laminitis and sudden death syndrome13. Previous studies 
increasingly indicated the role of HDL and other lipoproteins in controlling the host response to free LPS76, 
through the binding of HDL to LPS77. This binding inhibited the ability of LPS to interact with toll-like receptors 
and activate macrophages, and thus reduced the chances of septic shock and related death78. Furthermore, Read 
et al.79 indicated that the binding of LPS by HDL has a protective effect of increasing excretion of LPS via bile and 
prevention of immune response.

Genes encoding acute phase proteins and proton-acceptors in the liver.  Traditionally measured 
by ruminal pH, the diagnosis of ruminal acidosis still needs further improvement to achieve higher precision 
and earlier prognosis. Acute phase response is a non-specific defense mechanism due to tissue injury, infection 
or exposure to pro-inflammatory molecules. This type of response constitutes a complex network of numer-
ous cell types and organs that produce and react to a multitude of cytokines and other mediators80. In human 
clinical studies, the interplays between acidosis, altered inflammation/innate immunity and metabolic diseases 
(e.g., diabetes and obesity) has been established. By studying the effect of lowered pH on the response of murine 
macrophage-like cells, Kellum and co-authors indicated that acidosis was associated with the increased response 
to LPS stimulation81. This finding is consistent with other studies, where low pH was reported with a proinflam-
matory effect82,83. And low-grade inflammatory activity has also been reported with a link to increased mortality 

Figure 4.  Gene ontology (GO) pathway analysis of up- and down-regulated genes. GO pathways enriched 
by up-regulated genes were indicated by the triangles, while these enriched by down-regulated genes were 
indicated by the circles. For each circle or triangle, the size is proportional to the number of genes in each GO 
pathway, as represented by log2(number of genes); and the gradient of color (from green to blue) is associated 
with the p-value.
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and predisposition to metabolic diseases. Thus, investigating the link between acidosis, inflammation and metab-
olism holds high potential to uncover the pathophysiology of severe metabolic disease and help devise new ther-
apies (reviewed in Farwell and Taylor84 and Rizvi85).

As a class of primarily liver-produced proteins, acute phase proteins (APPs) are up-regulated during acute phase 
response. Several acute phase proteins (APP) have been reported in cattle, including serum amyloid A (SAA), hap-
toglobin, and fibrinogen86,87. Thus, the measurements of these APP provide a tool to detect infection, inflammation 
and to monitor inflammation status changes88. Consistent with this, in dairy heifers, ruminal acidosis has been 
linked to increased levels of serum APPs and leukocytes89. As a proof of concept, one of the APP-encoding genes 
identified in our study was SAA, which was considered by Gozho and coauthors7 as the most sensitive APP with 
faster response to inflammation stimuli with its early detection in blood.

Aside from the elevated expression of APPs in heifers with SARA or acute ruminal acidosis, investigation 
and development of other easily accessible molecular biomarkers holds great potential for precision diagno-
sis and real-time monitor of ruminal acidosis in cattle. Our comparative tissue transcriptomics work in both 
rumen and liver indicated that the proton related proteins might be a fruitful avenue. In our recent work38, the 
comparative analysis of whole transcriptome sequencing in the rumen epithelial tissue of the treated and con-
trol groups yielded an enrichment of highly expressed genes involved in proton-transport. Along with signifi-
cantly lowered ruminal pH we observed in the treated calves, these most highly expressed genes in the rumen 
indicated the direct response from the rumen epithelium to the elevated accumulation of protons resultant 
from carbohydrate-concentrated feed. Consistently, we observed an enrichment of proton-acceptors in the 
up-regulated genes in treated calves. Along with the lungs and kidneys, the liver has been recognized as an impor-
tant regulator of acid-base homeostasis90. The significantly increased expression of proton-acceptors suggested 
the direct response of liver to feed-induced acidosis. For future follow up studies, it might be valuable to inves-
tigate the timing at which these proton acceptors are up-regulated during the process of acidosis development. 
These genes carry the high potential to be developed into sensitive, early diagnosis biomarkers.

Liver transcriptome changes related to the alterations in rumen epimural microbial commu-
nity.  Out of the genes that showed significant expression correlation with the microbial genus abundance 
in the epimural microbial community, 11 of them were involved in the pathway of transferase activity. Acetate, 
butyrate and propionate are the primary VFAs produced by bacterial fermentation within the gastrointestinal 
tract91. VFAs produced by the microbiota in the gut can be found in hepatic, portal and peripheral blood92,93. 
To prevent high VFA concentration in blood, the liver clears major portion of the VFAs from the portal circula-
tion94. In human studies, up to 70% of the acetate (one major form of VFA) is taken up by the liver as a substrate 
for the synthesis of cholesterol in addition to being used as a source of energy94. Three major liver transferase 
enzymes, gamma–glutamyltransferase (GGT), aspartate aminotransferase (AST), and alanine aminotransferase 
(ALT) are important for cholesterol metabolism. Increased level of GGT is independently correlated with elevated 

Figure 5.  Expression profile of 15 proton-acceptor genes. The log2FC (fold-change) is calculated by log2 
transformation of expression fold-change between the treated and control animals.
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serum cholesterol95. Additionally, maximal induction of GGT was reported in butyrate-treated cells, indicating 
the responsive reaction of GGT activity to butyrate96. Different ratios of AST:ALT have also been reported as a 
potential clinical risk marker of liver metabolic syndrome97.

Two genes involved in transferase activity were associated with the most number of rumen microbial genera. 
SIK3 (Salt-inducible kinase 3) was linked to 10 genera, and KCNH3 (Potassium Voltage-Gated Channel Subfamily 
H Member 3) was linked to seven genera. SIK3 is an AMP-activated protein kinase-related kinase. In a mouse 
SIK3-deficent (SIK3 −/−) model, SIK3 −/− mice showed low expression levels for the gene components involved in 
the fatty acids synthesis pathways. Additionally, when fed a high cholesterol diet, SIK3 −/− mice lacked the ability to 
adapt to the increased cholesterol and developed clear liver damage98. Consistent with these findings, another study 
reported SIK3 as a new regulator of lipid homeostasis in the mouse liver by regulating the clearance of cholesterol and 
bile acids99. A growing number of studies have reported the beneficial roles of VFAs (also referred as short chain fatty 
acids) in energy homeostasis and lipid metabolism via stimulating several hormonal and neural signals in multiple 
tissues100,101. Of note, short chain fatty acids have been reported with positive impact in prevention and treatment of 
the metabolic syndrome102,103, ulcerative colitis104,105, Crohn’s disease106, and antibiotic-associated diarrhea107. Due 
to these potentially beneficial effects, the VFA producing ability of the associated microbial genera identified in this 
study may yield fruitful insights into theirs roles in liver metabolism and associated metabolic disease in dairy cattle.

Other genes with positive correlation with the rumen microbial community included SIRT6 and ACAT2. SIRT6 
was previously reported with an anti-inflammatory role in the liver108. ACAT2 is specifically expressed in the hepat-
ocytes. As a major cholesterol esterification enzyme, it controls the amount of hepatic free cholesterol available to 
secrete into the portal blood109. The potential protective roles of these genes in liver damage resultant from ruminal 
acidosis or excessive accumulation of VFAs due to high-concentrated feed warrant future follow-up studies.

Future perspectives.  Our study captured liver transcriptome changes in response to the feed-induced aci-
dosis in young calves. Importantly, our study identified significant expression changes in several groups of genes 
with the high potential of being further developed into biomarkers. These genes included acute phase proteins, 
proton-acceptors in liver tissues, and these involved in HDL and transferase activity. For future follow-up studies, 
the identification of host liver genes associated with lipid metabolism and VFA producing microbial species are 
of particular interest. As these genes sit at the direct junction between liver metabolism and the VFA production 
of gut microbial species. Specifically, functional confirmation of the genes involved in liver lipid metabolism and 
their association with VFA producing microbes will help the development of VFA-producing microbes as a new 
method to promote energy metabolism and liver health when a highly concentrated diet is used. Knowledge 
gained through these studies can be used to formulate precision ruminant feed, with the goals of improving the 
productivity and performance of ruminants while maintaining optimal liver health are met. More importantly, 
the optimized feed will facilitate the improved balances between the host’s metabolism and gut microbial ecology.

Data availability
Gene raw read-counts of liver tissues were included in the supplemental data. rRNA raw reads rumen papilla 
tissues were submitted to NCBI with project accession number of PRJNA493225.
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