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Abstract: The coordination chemistry of the title ligands with Mo metal centers was investigated.
Thus, the synthesis and characterization (NMR, X-ray diffraction) of four mononuclear formally
Mo(6+) complexes of (Z)-1-R-2-(4′,4′-dimethyl-2′-oxazolin-2′-yl)-eth-1-en-1-ates (L: R = –Ph, –Ph-
p-NO2, –Ph-p-OMe and –t-Bu), derived from the part enols (LH), is described. The resulting air-
stable MoO2L2 complexes (1–4) exist, as shown by single-crystal X-ray diffraction experiments,
in the cis-dioxido-trans(N)-κ2-N,O-L conformation in the solid state for all four examples. This
situation was further probed using semi-empirical PM6(tm) calculations. Complexes 1–4 represent
the first Mo complexes of this ligand class and, indeed, of Group 6 metals in general. Structural and
spectroscopic comparisons were made between these and related Mo(6+) compounds. Complex 1
(R = –Ph) was studied for its ability to selectively catalyze the production of poly-norbornene from
the monomer in the presence of MAO. This, unfortunately, only resulted in the synthesis of insoluble,
presumably highly cross-linked, polymeric and/or oligomeric materials. However, complexes 1–4
were demonstrated to be highly effective for catalyzing benzoin to benzil conversion using DMSO as
the O-transfer agent. This catalysis work is likewise put into perspective with respect to analogous
Mo(6+) complexes.

Keywords: oxazoline-enolate chelates; molybdenum(6+) oxide complexes; X-ray structure determination;
benzoin oxidation; semi-empirical PM6(tm) calculations

1. Introduction

In recent years, we have been investigating the coordination chemistry and catalytic
potential of metal and non-metal complexes derived from what we call Tohda’s Ligands
(Scheme 1: LH). These ligand precursors were studied from an organic chemistry perspec-
tive for some time [1–10], particularly in the area of heterocyclic synthesis. The materials
themselves can exist in at least three tautomers, i.e., two oxazoline forms, existing as an
enol (Scheme 1, left) or keto isomer (Scheme 1: middle) or in the enamine heterocyclic
configuration (Scheme 1, right). In the solid state, the latter of these is the predominant
isomer [7,9], with the keto isomer sometimes being observed in solution depending on “R”,
the solvent(s), and other factors (e.g., protonation at N) [1–10].

Molecules 2022, 27, x FOR PEER REVIEW 2 of 11 
 

 

 
Scheme 1. Three possible tautomers of Tohda’s Ligands (i.e., LH). 

Our primary interest in these materials stems from their potential to act as ligands, 
either in a monomeric sense, likely solely via N(oxazoline) binding, or by chelation (or 
bridging) bonding motifs involving the same N-atom and the non-heterocyclic-O. This 
latter atom can potentially bind in a neutral sense or anionically following deprotonation 
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mal H+ loss from LH; hence, metal-bound enolate anions (L−) are found within the metal 
coordination sphere. This has been shown in the chemistry of Co2+/3+, Cu2+ [9,11], Ni2+ [12], 
and Ir+/3+ [13], in addition to main group examples [14]. Herein, we detail our exploration 
into the reactivity of formally Mo6+ metal centers with LH derivatives, as the reactivity of 
these compounds with Group 6 metals is currently completely unexplored. In this regard, 
several examples with general formula MoO2(L)2 will be described in addition to some 
preliminary experiments probing the catalytic potential of these new complexes. This Ar-
ticle is part of a special issue of Molecules in celebration of the 80th birthday of Prof. Gerard 
van Koten [15]. 

2. Results 
2.1. Synthesis and Characterisation 

The synthesis of the (Z)-1-R-2-(4′,4′-dimethyl-2′-oxazolin-2′-yl)-eth-1-en-1-ols used 
here (L1H: R = –Ph; L2H: R = –Ph-p-NO2; L3H: R = –Ph-p-OMe; L4H: R = –t-Bu: Scheme 2) 
was carried out as previously described [2,9,16]. The treatment of alcoholic solutions (LnH; 
n = 1, 2 and 4: MeOH; L3H: 95% aq. EtOH) of LH (∼2 equivalents) with cis-MoO2(acac)2 
(acac = κ2-O,O’-acetylacetonato) [17–19] leads to the facile formation of complexes 1–4, 
presumably involving the loss of acacH (Scheme 2), in good to moderate yields (see Sec-
tion 4). 

 
Scheme 2. General synthesis methodology to yield complexes 1–4 (1: R = –Ph; 2: R = –Ph-p-NO2; 3: 
R = –Ph-p-OMe; 4: R = –t-Bu). 

Complexes 1–4 are air- and moisture-stable solids and range in color from yellow-
orange to orange to red. Elemental analysis of all four species was consistent with materi-
als having the empirical composition of MoO2(L)2. Spectroscopic characterization (1H and 
13C) revealed a situation in which both the methyl and the methylene protons of the oxa-
zoline ring of L were in a non-symmetrical environment, and hence diastereotopic H at-
oms were noted. This suggested a lack of mirror plane symmetry with respect to these 
units. Hence, the all-trans isomer and the trans-dioxido-cis-bis-κ2-N,O-L isomers of a hy-
pothetical mononuclear octahedral Mo6+ complex were unlikely structural variants 
(Scheme 3: I and II). However, the above NMR studies could not confirm either the mon-
onuclear nature of these materials (i.e., [MoO2(L)2]n; n = 1) or the most stable of the cis-
MoO2 isomer(s) (Scheme 3: III–V). We therefore approached these isomeric possibilities 
using a combination of X-ray diffraction studies and semi-empirical PM6(tm) calculations. 
This latter technique has been found useful for relatively complex systems in terms of 
approximating the relative stability of various isomeric forms of transition metal com-
plexes [20,21]. 
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Our primary interest in these materials stems from their potential to act as ligands,
either in a monomeric sense, likely solely via N(oxazoline) binding, or by chelation (or
bridging) bonding motifs involving the same N-atom and the non-heterocyclic-O. This
latter atom can potentially bind in a neutral sense or anionically following deprotonation
of the LH unit. Thus far, we have only observed the κ2-N,O bonding motif following
formal H+ loss from LH; hence, metal-bound enolate anions (L−) are found within the
metal coordination sphere. This has been shown in the chemistry of Co2+/3+, Cu2+ [9,11],
Ni2+ [12], and Ir+/3+ [13], in addition to main group examples [14]. Herein, we detail our
exploration into the reactivity of formally Mo6+ metal centers with LH derivatives, as the
reactivity of these compounds with Group 6 metals is currently completely unexplored. In
this regard, several examples with general formula MoO2(L)2 will be described in addition
to some preliminary experiments probing the catalytic potential of these new complexes.
This Article is part of a special issue of Molecules in celebration of the 80th birthday of Prof.
Gerard van Koten [15].

2. Results
2.1. Synthesis and Characterisation

The synthesis of the (Z)-1-R-2-(4′,4′-dimethyl-2′-oxazolin-2′-yl)-eth-1-en-1-ols used
here (L1H: R = –Ph; L2H: R = –Ph-p-NO2; L3H: R = –Ph-p-OMe; L4H: R = –t-Bu: Scheme 2)
was carried out as previously described [2,9,16]. The treatment of alcoholic solutions (LnH;
n = 1, 2 and 4: MeOH; L3H: 95% aq. EtOH) of LH (~2 equivalents) with cis-MoO2(acac)2
(acac = κ2-O,O’-acetylacetonato) [17–19] leads to the facile formation of complexes 1–4,
presumably involving the loss of acacH (Scheme 2), in good to moderate yields (see
Section 4).
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R = –Ph-p-OMe; 4: R = –t-Bu).

Complexes 1–4 are air- and moisture-stable solids and range in color from yellow-
orange to orange to red. Elemental analysis of all four species was consistent with materials
having the empirical composition of MoO2(L)2. Spectroscopic characterization (1H and 13C)
revealed a situation in which both the methyl and the methylene protons of the oxazoline
ring of L were in a non-symmetrical environment, and hence diastereotopic H atoms
were noted. This suggested a lack of mirror plane symmetry with respect to these units.
Hence, the all-trans isomer and the trans-dioxido-cis-bis-κ2-N,O-L isomers of a hypothetical
mononuclear octahedral Mo6+ complex were unlikely structural variants (Scheme 3: I and
II). However, the above NMR studies could not confirm either the mononuclear nature
of these materials (i.e., [MoO2(L)2]n; n = 1) or the most stable of the cis-MoO2 isomer(s)
(Scheme 3: III–V). We therefore approached these isomeric possibilities using a combination
of X-ray diffraction studies and semi-empirical PM6(tm) calculations. This latter technique
has been found useful for relatively complex systems in terms of approximating the relative
stability of various isomeric forms of transition metal complexes [20,21].

2.2. Semi-Empirical PM6(tm) Treatment of Hypothetical Complex 5

A semi-empirical treatment at the PM6(tm) level of theory was initially used to gain
some insight into the likely ligand disposition around the MoO2(L)2 unit [21]. For compu-
tational simplicity, a hypothetical complex in which R = –CH3 (Scheme 2: complex 5) was
used for the five possible structural forms (Scheme 3: I–V). The PM6(tm) results clearly sug-
gested (see Section 4.3) that the two trans-dioxido isomers I and II were indeed energetically
unfavorable with respect to the cis-forms, as attempts to model these led to convergence at
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the cis-isomers. This observation is in agreement with the spectroscopic characterization
of the isolated complexes 1–4. Hence, it is likely that 1–4 retain the cis-orientation of the
two Mo=O units known to be present in the starting complex MoO2(acac)2 [17–19]. Of
the cis-dioxido isomers, form III (trans-Nox: ox = oxazoline) was found to be the most
stable (relative values of ∆Hf = 0.00; +56.8 and +44.5 kJ mol–1 respectively, for III, IV and
V). As both the level of theory and the adjusted R group on L may inadvertently skew
these results, we took to employing solid-state X-ray diffraction studies of complexes 1–4
to unequivocally solve this isomeric dilemma.
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2.3. X-ray Structural Studies

Suitable crystalline material of the complexes described herein were obtained by the
solvent layering technique using either CHCl3 (1, 3 and 4) or acetone (2) solutions of the
complex that had been thereafter layered with hexanes and then left sealed and undisturbed
for several hours or days to induce crystal formation. ORTEP representations [22] of a
unit cell molecule of each complex are displayed in Scheme 4. Table 1 below reports the
observed crystal parameters for the solid-state characterization of 1–4, and Table 2 presents
selected bond lengths and angles for the four complexes [23,24].

These data (Tables 1 and 2 and Supplementary Information) confirmed the presumed
mononuclear nature, i.e., [MoO2(L)2]n: n = 1, of all four complexes described. As anticipated
from the computational evaluation, the complexes adopted a distorted octahedral ligand
atom arrangement around the Mo center in all cases. A cisoidal orientation of the oxido
ligands was observed with trans-spanning imine N-atoms of the oxazoline units, thus
requiring a cisoidal positioning of the remaining, formally enolate, O-donor atoms. These
results were fully consistent with the PM6(tm) treatment.

2.4. Catalytic Explorations
2.4.1. Norbornene Polymerization

Compound 1 was tested for its potential as a promoter of the ring-opening metathesis
polymerization (ROMP) of norbornene as the test substrate (Scheme 5: top). Structurally
related Mo6+ complexes are known to be effective at such polymerization in the presence
of alkyl-aluminum promoters such as methylaluminoxane (MAO). Thus, complex 1 in
catalytic proportions (10 mol%) was exposed to a solution of norbornene with excess MAO
under typical polymerization conditions (see Section 4.4.1). Although polymerization was
noted, the resulting polymeric and/or oligomeric matrix was found to be completely insol-
uble in any tested solvents. It was assumed that highly cross-linked poly-norbornene was
the likely product [25], and thus further attempts to optimize this process were abandoned.
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Table 1. Crystallographic parameters for the solid-state characterization of complexes 1–4 a.

Data Complex 1 Complex 2 Complex 3 Complex 4

Empirical Formula C26H38N2O6Mo C26H26N4O10Mo C28H32N2O8Mo C22H36N2O6Mo

Formula Weight (g/mol) 560.44 650.45 620.50 520.47

Temperature (K) 150(2) 150(2) 150(2) 150(2)

Wavelength (Å) 0.71073 0.71073 0.71073 0.71073

Crystal System monoclinic monoclinic orthorhombic trigonal

Space group P 21/n C 2/c P b c n P3c1

Unit Cell Dimensions (Å) a = 11.1664(4) a = 20.5793(6) a =11.2202(2) a = 19.9342(10)

(Å) b = 11.1623(4) b = 8.1384(3) b = 12.9081(3) b = 19.9342(10)

(Å) c = 20.4516(4) c = 17.5927(6) c = 18.7510(4) c = 11.5030(4)

(◦) α = 90 α = 90 α = 90 α = 90

(◦) β = 95.6150(19) β = 113.6580(18) β = 90 β = 90

(◦) γ = 90 γ = 90 γ = 90 γ = 120

Volume (Å3) 2563.91(14) 2698.84(16) 2715.73(10) 3958.6(3)

Z 4 4 4 6

Density (calcd; mg/m3) 1.467 1.601 1.518 1.310

Absorp. Coefficient
(mm−1) 0.560 0.551 0.536 0.532

F(000) 1152 1328 1280 1632

Crystal Size (mm3) 0.40 × 0.30 × 0.22 0.20 × 0.18 × 0.16 0.18 × 0.14 × 0.12 0.20 × 0.20 × 0.10

θ range for Data
Collection (◦) 2.59–27.48 2.58–27.51 2.64–27.48 2.70–27.48

Index Ranges −14 ≤ h ≤ 14 −26 ≤ h ≤ 23 −14 ≤ h ≤ 14 −22 ≤ h ≤ 22

−14 ≤ k ≤ 14 −10 ≤ k ≤ 10 −16 ≤ k ≤ 16 −25 ≤ k ≤ 25

−21 ≤ l ≤ 26 −22 ≤ l ≤ 22 −24 ≤ l ≤ 24 0 ≤ l ≤ 14

Reflexions Collected 16,606 12,858 19,994 3021

Independent Reflexions 5765 [R(int) = 0.0492] 3089 [R(int) = 0.0391] 3120 [R(int) = 0.0455] 3021 [R(int) = 0.049]

Completeness to θ = x◦
(%) x = 25.25 (99.6) x = 27.51 (99.3) x = 27.48 (99.9) x = 27.48 (99.5)

Absorption
Correction

Semi-empirical from
equivalents

Semi-empirical from
equivalents

Semi-empirical from
equivalents

Semi-empirical from
equivalents

Max./min. Transmission 0.888/0.752 0.917/0.851 0.770/0.629 0.949/0.897

Refinement
Method

Full-matrix least squares
on F2

Full-matrix least squares
on F2

Full-matrix least squares
on F2

Full-matrix least squares
on F2

Data/Restraints/Parameters 5765/0/320 3089/0/188 3120/0/180 3021/0/146

Goodness of Fit on F2 1.069 1.107 1.071 1.041

Final R indices [I > 2σ(I)] R1 = 0.0441; wR2 = 0.0917 R1 = 0.0404; wR2 = 0.0949 R1 = 0.0449; wR2 = 0.1142 R1 = 0.0522; wR2 = 0.1352

R indices (all data) R1 = 0.0689; wR2 = 0.1034 R1 = 0.0521; wR2 = 0.1022 R1 = 0.0702; wR2 = 0.1339 R1 = 0.0852; wR2 = 0.1511

Largest diff.
peak and hole (eÅ−3)

1.525 and 0.816 1.715 and 0.784 2.105 ad 0.975 1.437 and −0.742

a Estimated standard deviations for the measured parameters are in parentheses.
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Table 2. Selected bond lengths (Å◦) and angles (◦) for complexes 1–4 a.

Observed Data Complex 1 Complex 2 Complex 3 Complex 4

Mo=O 1.705(2); 1.709(2) 1.700(2) 1.690(3) 1.697(3)

Mo-O 2.101(2); 2.119(2) 2.103(2) 2.096(2) 2.072(3)

Mo-N 2.117(3); 2.135(3) 2.150(2) 2.138(3) 2.147(3)

C=N 1.331(4); 1.314(4) 1.310(4) 1.324(4) 1.311(4)

C=C 1.369(5); 1.373(5) 1.370(4) 1.371(5) 1.351(5)

O=Mo=O 102.10(11) 102.39(16) 104.3(2) 101.5(2)

N-Mo-N 158.37(10) 159.75(12) 166.28(14) 162.96(16)

O-Mo-O 80.08(9) 79.44(13) 77.41(19) 78.9(2)
a Estimated standard deviations for the measured parameters are in parentheses; C=N refers to the formal C=N
bond of the oxazoline group(s); C=C refers to the formal C=C of the C–C=C–O unit.
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2.4.2. Benzoin Oxidation to Benzil

Complexes 1–4 were also tested for their ability to initiate O-transfer chemistry. The
catalytic oxidation of benzoin to benzil is a well-known benchmark reaction for high-
valent Group 6 dioxido complexes; dimethylsulfoxide (DMSO) is a typical agent used to
transfer the oxygen atom [26]. Unlike the polymerization experiments described above,
all four catalysts gave clean conversion (Section 4.4.2 [26]) of benzoin to benzil using
DMSO at elevated temperatures (Scheme 5: bottom). Somewhat surprisingly, complex 1
(R = –Ph) and 4 (R = –t-Bu) resulted in essentially quantitative conversion; however, 2
and 3, containing the electron-withdrawing –NO2 group or the electron-donating –OMe
group, respectively, yielded slightly lower conversions (80–87%) under identical conditions.
Note that these reactions were performed as described (Section 4.4.2) to simply explore
any potential activity; no attempt was made to optimize these conditions specifically for
this system.

3. Discussion
3.1. Synthesis and Structural Investigations

Complexes 1–4 represent the first Group 6 compounds incorporating metal-bound
enolates derived from the LH ligand set. The straightforward reaction of readily available
cis-MoO2(acac)2 to give the desired air-stable materials occurred in the absence of an added
base, a situation that is typically required to produce reaction conditions necessary to
coordinate the enolate fragment obtained from LH. Hence, these Mo6+-based materials
formed more readily when compared to most of the Ni2+, Co2+, Cu2+, and Ir+ complexes
reported previously [9,11–13]. Molecular modeling (Section 2.2) suggested that the likely
ligand orientation around a mononuclear Mo6+ center was that of isomer III (Scheme 3).
A confirmation of that concept was obtained for all four complexes, regardless of the “R”
group functionality on the ene-scaffold (Scheme 2), as revealed by the X-ray diffraction
studies. The structural results support the notion that the use of relatively simple PM6(tm)
semi-empirical calculations to probe relative isomer stability in such systems is effective
and quite computationally undemanding [20,21]. Surprisingly, little structural diversity
of complexes 1–4 was noted in terms of ligand framework or ligated atoms around each
Mo atom (Table 2; Supplementary Information). The cis-orientation of the dioxido unit
was confirmed in addition to the presence of trans-spanning N atoms and cis-enolate
O-groups. The bond lengths between the metal and these atoms can be compared to
structurally related examples and are otherwise typical [23–41]. These data did not show
large differences in magnitude throughout the series. The main observed variation involved
the N–Mo–N bond angle, which varied from ~166◦ in 3 to ~158◦ in 1.

3.2. Catalysis

High-valent Group 6 oxo complexes are well known to be active complexes for the
catalytic ROMP of olefins [42–47]. Unfortunately, our study of complex 1 in this regard did
not yield conclusive results concerning the nature of the polymers derived from norbornene
under typical conditions. Indeed, completely insoluble and presumably highly cross-linked
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products (Section 2.4.1) were isolated [25]. In contrast, complexes 1–4 were useful in
oxygen-transfer chemistry (Section 2.4.2), and the activity of these materials parallels
similar systems [26–41,48] in the benchmark formation of benzil from benzoin (Scheme 5).

4. Materials and Methods
4.1. Synthesis
4.1.1. General Information

All reactions and purifications were performed under ambient conditions. Solvents
were dried/purified using an mBraun Solvent Purification System (SPS). All reagent
chemicals and solvents used herein were purchased commercially. NMR experiments
were performed with a Bruker AV 400 Spectrometer at ambient temperature. All NMR
spectral data are reported in values of δ against external TMS (δ = 0.00 ppm: 1H, 13C).
Abbreviations for NMR experimental line listings are as follows: s—singlet; d—doublet;
m—multiplet. Uncorrected melting points were obtained using a Fisher Scientific melting
point apparatus. UV–Vis. spectra were recorded from CH2Cl2 solutions using an Agilent
Cary 5000 spectrometer with a 1 cm-path length cuvette. IR spectra were recorded in the
solid state using an Agilent Cary 630 FTIR spectrometer. Compounds L1H–L4H were
synthesized as previously reported [2,9,16].

4.1.2. Complex 1: MoO2(κ2-N,O-L1)2

A sample of L1H (0.50 g: 2.3 mmol) was dissolved in 5 mL of MeOH. To this solution
MoO2(acac)2 (0.36 g; 1.1 mmol) was added, and the mixture was stirred at room temperature
(RT) for 6 h. During this time period, a bright orange-colored precipitate formed. This
material was filtered off, washed with further MeOH (3 mL), and then allowed to dry under
ambient conditions. The yield of this material, complex 1, was 0.49 g (75%). Crystals of 1
suitable for X-ray diffraction were obtained by the slow mixing of a CHCl3 solution of 1
that had been layered with hexanes. Mp = 219–220 ◦C (decomp.); selected IR (υ): 1524, 961,
881, 758 cm−1; UV-Vis. (λmax [log ε]; 3.45 × 10−2 M): 284 [4.42], 326 [4.27], 393 [3.78] nm;
1H-NMR (400 MHz, CDCl3): δ = 1.67 (s, 6H, -CH3), 1.73 (s, 6H, -CH3), 4.05 (d, 2H, J = 8.0 Hz,
-CH2), 4.28 (d, 2H, J = 8.0 Hz, -CH2), 5.56 (s, 2H, =CH), 7.24–7.38 and 7.57–7.59 (m, 10H
ArH); 13C{1H}-NMR (101 MHz, CDCl3): δ = 26.8, 27.5, 68.9, 79.3, 83.2, 126.8, 128.0, 130.5,
137.2, 171.3, 177.7; elemental analysis calcd (%) for C26H28N2O6Mo (560.42): C 55.72, H 5.04,
N 5.00; found: C 55.96, H 5.31, N 4.96.

4.1.3. Complex 2: MoO2(κ2-N,O-L2)2

A sample of L2H (0.50 g: 1.9 mmol) was dissolved in 5 mL of MeOH. To this solution
MoO2(acac)2 (0.31 g; 1.0 mmol) was added, and the mixture was heated to reflux tempera-
ture for 20 h. During this time period, a yellow-orange-colored precipitate formed. This
material was filtered off, washed with further MeOH (3 mL), and then allowed to dry under
ambient conditions. The yield of this material, complex 2, was 0.50 g (76%). Crystals of 2
suitable for X-ray diffraction were obtained by the slow mixing of a CHCl3 solution of 2 that
had been layered with hexanes. Mp = >230 ◦C; selected IR (υ): 1512, 971, 747 cm−1; UV-Vis.
(λmax [log ε]; 2.63× 10−2 M): 258 [4.22], 266 [4.57] nm; 1H-NMR (400 MHz, CDCl3): δ = 1.66
(s, 6H, -CH3), 1.74 (s, 6H, -CH3), 4.12 (d, 2H, J = 8.0 Hz, -CH2), 4.36 (d, 2H, J = 8.0 Hz, -CH2),
5.58 (s, 2H, =CH), 7.70 (d, J = 8.8 Hz, 4H ArH), 8.14 (d, J = 8.8 Hz, 4H ArH); 13C{1H}-NMR
(101 MHz, CDCl3): δ = 26.7, 27.4, 69.3, 79.6, 85.1, 123.5, 127.4, 142.7, 148.9, 171.1, 174.2;
elemental analysis calcd (%) for C26H26N4O10Mo (622.40): C 48.01, H 4.03, N 8.61; found:
C 48.14, H 4.05, N 8.54.

4.1.4. Complex 3: MoO2(κ2-N,O-L3)2

A sample of L3H (0.50 g: 2.0 mmol) was dissolved in 5 mL of 95% aq. EtOH. To this
solution MoO2(acac)2 (0.33 g; 1.0 mmol) was added, and the mixture was stirred at RT for
20 h. During this time period, a red-colored precipitate had formed. This material was
filtered off, washed with further EtOH (3 mL), and then allowed to dry under ambient
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conditions. The yield of this material, complex 3, was 0.54 g (86%). Crystals of 3 suitable
for X-ray diffraction were obtained by the slow mixing of an acetone solution of 3 that had
been layered with hexanes. Mp = 201–203 ◦C; selected IR (υ): 1532, 882, 778 cm−1; UV-Vis.
(λmax [log ε]; 3.43 × 10−2 M): 297 [4.52], 313 [4.96], 378 [3.91] nm; 1H-NMR (400 MHz,
CDCl3): δ = 1.66 (s, 6H, -CH3), 1.72 (s, 6H, -CH3), 3.79 (s, 6H, -OCH3), 4.02 (d, 2H, J = 8.0 Hz,
-CH2), 4.28 (d, 2H, J = 8.0 Hz, -CH2), 5.55 (s, 2H, =CH), 6.77 (d, J = 8.8 Hz, 4H ArH), 7.55
(d, J = 8.8 Hz, 4H ArH); 13C{1H}-NMR (101 MHz, CDCl3): δ = 26.7, 27.4, 55.3, 68.8, 79.2,
82.0, 113.2, 128.6, 129.8, 161.5, 171.2, 177.5; elemental analysis calcd (%) for C28H32N2O8Mo
(620.47): C 54.20, H 5.20, N 4.51; found: C 54.38, H 5.15, N 4.46.

4.1.5. Complex 4: MoO2(κ2-N,O-L4)2

A sample of L4H (0.50 g: 2.5 mmol) was dissolved in 5 mL of MeOH. To this solution
MoO2(acac)2 (0.41 g; 1.3 mmol) was added, and the mixture was stirred at RT for 3 h.
During this time period, an orange-colored precipitate formed. This material was filtered
off, washed with further MeOH (3 mL), and then allowed to dry under ambient conditions.
The yield of this material, complex 4, was 0.39 g (59%). Crystals of 4 suitable for X-ray
diffraction were obtained by the slow mixing of a CHCl3 solution of 4 that had been layered
with hexanes. Mp = 180–182 ◦C; selected IR (υ): 1533, 870, 774 cm−1; UV-Vis. (λmax [log ε];
3.54 × 10−2 M): 266 [4.28], 308 [3.86], 434 [2.99] nm; 1H-NMR (400 MHz, CDCl3): δ = 1.06 (s,
18H, -CH3), 1.57 (s, 6H, -CH3), 1.64 (s, 6H, -CH3), 3.94 (d, 2H, J = 8.0 Hz, -CH2), 4.13 (d, 2H,
J = 8.0 Hz, -CH2), 5.10 (s, 2H, =CH); 13C{1H}-NMR (101 MHz, CDCl3): δ = 27.0, 27.6, 27.9,
39.3, 68.6, 79.0, 80.6, 171.3, 192.8; elemental analysis calcd (%) for C22H36N2O6Mo (520.44):
C 50.77, H 6.97, N 5.38; found: C 49.35, H 6.43, N 5.08. Note that the obtained C% was
found to be outside the typical acceptable limits.

4.2. Semi-Empirical PM6(tm) Calculations

Calculations at the PM6(tm) level of theory were performed using the Gaussian 16.0
suite of software [49]. Vibrational energy calculations revealed no imaginary frequencies,
and hence a stable conformation on the potential energy surface was assumed.

4.3. X-ray Diffraction

X-ray diffraction data were collected on a Nonius Kappa CCD diffractometer using Mo
Kα radiation (λ = 0.71073 Å) obtained using Collect [50]. Cell refinement and data reduction
were performed with Denzo–SMN [51]. The structure solution employed SIR-92 [52], and
the structure refinement was carried out with SHELXL [53]. The molecular graphics were
obtained using PLATON [54].

4.4. Catalysis
4.4.1. Norbornene Polymerization

Norbornene (5.76 g: 61.2 mmol), toluene (5 mL), and 1 (0.67 g: 1.2 mmol) were mixed
together in a flame-dried Schlenk flash under an N2 (g) atmosphere. To the mixture under
stirring MAO (2.0 M toluene; 1.2 mL: 2.4 mmol) was added, and the resulting mixture was
stirred for 5 h at RT. The color of the mixture gradually changed from orange to brown
to eventually a shade of off purple. The solid mass that resulted from this process, which
eventually became so viscous that it prevented further stirring, was found to be completely
insoluble in all tested solvents.

4.4.2. Benzoin Oxidation

In a typical reaction, 21 mg of benzoin (0.10 mmol), 0.01 mmol of catalyst (10 mol%),
and an internal standard (30 mg C6Me6) were dissolved in 0.7 mL of deoxygenated d6-dmso
in an NMR tube. The tube was heated to 120 ◦C for 24 h and then cooled to RT. The mixture
was then diluted with 0.7 mL of CDCl3, and the yield of benzin was thereafter determined
by 1H NMR spectroscopy [32,33,36,37,40,41,48].
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5. Conclusions

The first examples of Group 6 metal complexes of the title ligands were reported,
represented by a series of MoO2L2 derivatives. These materials appeared to be active
catalysts in O-atom transfer chemistry. Overall, the transition metal chemistry of Tohda’s
Ligands, i.e., (Z)-1-R-2-(4′,4′-dimethyl-2′-oxazolin-2′-yl)-eth-1-en-1-ols, continues to yield
rich coordination chemistry and catalytic potential. Future studies will continue this
exploration including both late and early transition metal chemistry, in addition to the
lanthanide elements.

Supplementary Materials: The following are available online, Tables S1–S45: Full X-ray structural
datasets for 1–4, relevant .mol files for isomers I–V. CCDC 2131173-2131176 also contains sup-
plementary crystallographic data for this paper. These data can be obtained free of charge from
The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures (accessed on
26 December 2021).
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