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In brief

Regulatory T cells (Treg cells) play an

essential role in maintaining appropriate

immune responses, but their low

frequency in circulating blood has

resulted in a limited number of available

genomic resources. Here, Bossini-

Castillo, Glinos, et al. provide a detailed

map of gene expression regulation and

chromatin activity in Treg cells isolated

from 124 healthy individuals.
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SUMMARY
Identifying cellular functions dysregulated by disease-associated variants could implicate novel pathways
for drug targeting or modulation in cell therapies. However, follow-up studies can be challenging if
disease-relevant cell types are difficult to sample. Variants associated with immune diseases point toward
the role of CD4+ regulatory T cells (Treg cells). We mapped genetic regulation (quantitative trait loci [QTL])
of gene expression and chromatin activity in Treg cells, and we identified 133 colocalizing loci with immune
disease variants. Colocalizations of immune disease genome-wide association study (GWAS) variants with
expression QTLs (eQTLs) controlling the expression of CD28 and STAT5A, involved in Treg cell activation
and interleukin-2 (IL-2) signaling, support the contribution of Treg cells to the pathobiology of immune
diseases. Finally, we identified seven known drug targets suitable for drug repurposing and suggested 63
targets with drug tractability evidence among the GWAS signals that colocalized with Treg cell QTLs. Our
study is the first in-depth characterization of immune disease variant effects on Treg cell gene expression
modulation and dysregulation of Treg cell function.
INTRODUCTION

Thousands of disease variants mapped through genome-wide

association studies (GWASs) provide genetic anchors to disease

biology, but functional interpretation of GWAS signals has been

challenging, as the vast majority of variants are non-coding. One

approach for linking genetic variation to downstream effects

includes expression quantitative trait locus (eQTL) mapping, in

which transcript levels are correlated with genetic polymor-

phisms.1 However, due to the linkage disequilibrium (LD)

between genetic variants, the identified eQTLs often result in

associations of tens to hundreds of correlated variants with

gene expression levels and therefore fail to nominate the causal

regulatory variants.

Prioritization of the exact regulatory variants underlying

gene expression changes can be further inferred through QTL

mapping of chromatin activity using chromatin accessibility or

histone modifications (chromatin QTLs [chromQTLs]). In this

approach, variants that modulate activity levels of chromatin

marks can be physically overlapped with the chromQTL
This is an open access article und
features.2 The combination of eQTLs and chromQTLs provides

a powerful toolkit for linking non-coding variants to genes whose

expression is modulated, for prioritizing functional variants, and

for identifying mechanisms through which gene expression is

regulated. Finally, colocalization3 of disease GWAS signals

with such QTLs can point toward causal genes and mechanisms

underlying disease associations, therefore linking disease-asso-

ciated variants to dysregulated pathways and new drug targets.

GWAS variants associated with common immune-mediated

diseases, such as inflammatory bowel disease (IBD), type 1

diabetes (T1D), and rheumatoid arthritis (RA), are enriched in

active chromatin marks that tag enhancers and promoters in

the CD4+ T cells, especially in regulatory T cells (Treg cells).4–6

Treg cells are an infrequent yet functionally significant

subset of CD4+ T cells; they comprise 2%–10% of CD4+

T cells and play an essential homeostatic role in the immune

system by suppressing the proliferation and effector functions

of conventional T cells. Immunophenotyping studies have shown

that abnormal numbers of circulating Treg cells7,8 and defective

suppressive function of Treg cells result in a dysregulated
Cell Genomics 2, 100117, April 13, 2022 ª 2022 The Authors. 1
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Figure 1. Overview of mapped Treg cell QTLs

(A) A schematic of our study design.

(B) Number of features defined per genomic assay and number of significant QTLs in each category.

(C) Proportion of eQTL gene expression variance explained by genetic variation and chromatin marks. We considered cis-regulatory elements in a ±150-kb

window from the gene. Shown is the cumulative contribution of genes with increasing proportions of explained variance.

(D) Functional classification of tested genetic variants. Bars with purple outline indicate instanceswhen aQTL variant maps to any chromatin peak. Categories are

mutually exclusive.

(E) Classification of eQTL genes (top) and actQTL peaks (bottom). eQTL genes were classified based on the annotation of eQTL variants with chromQTLs and

overlap with chromatin peaks. eQTL + chromQTL + peak, number of eQTL genes for which eQTL variants also result in a chromQTL and one of the eQTL variants

mapped within a chromatin mark peak; eQTL + chromQTL, number of eQTL genes for which eQTL variants also result in a chromQTL but no variant mapped

within any chromatin mark peak; eQTL + peak, number of eQTL genes for which eQTL variants map within a chromatin mark peak but no chromQTL effects were

detected; eQTL, number of eQTL genes for which we were unable to map eQTL variants to chromatin mark peaks or to link them to chromQTLs. actQTL peaks

(legend continued on next page)
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immune response in patients with immune diseases,9–11 as

well as in organ and hematopoietic stem cell transplant

recipients.12,13 Taken together, the genetic anchor to dysregula-

tion of gene expression in Treg cells and immunophenotyping

studies pointing toward impaired function of this cell type

strongly suggest that identifying mechanisms through which

genetic variants modulate Treg cell function could have

important clinical implications. In addition, ex vivo approaches

to expand Treg cell numbers and to enhance Treg cell

suppressive capacity and reinforce them into patients have

been successful in clinical trials for T1D14–16 and Crohn’s

disease.17

Despite the key role of Treg cells in maintaining appropriate

immune responses, their low frequency in circulating blood

has resulted in a limited number of available genomic re-

sources.18–20 Consequently, immune disease variants are often

interpreted in light of gene expression data from peripheral

blood mononuclear cells (PBMCs), immune cell lines, or isolated

major immune cell populations.2,21–26 However, these datasets

can either dilute or omit gene regulatory effects only present in

rare cell types, therefore potentially missing biological effects

meaningful to the disease.

Here, to interpret immune disease variants in the context of

a cell type strongly relevant to disease biology, we generated

the first detailed map of gene expression regulation in Treg cells

isolated from 124 healthy individuals. We identified a total of

10,880 QTL effects (3,685 eQTLs and 7,195 chromQTLs). In

comparison to closely related naive CD4 T cells as well as

monocytes,24 we observed 21% of the eQTLs and 29% of the

active enhancer and promoter QTLs were detected only in Treg

cells. By colocalizing Treg QTLs with variants associated with

14 different immune diseases, we identified 133 GWAS loci with

functional relevance in Treg cells. The overlap of immune disease

GWAS signals with chromQTLs functionally refined associated

variants at 68 immune disease loci. We assigned Treg cell

eQTL genes to 81 immune disease loci. At 52 loci, we detected

colocalizations with chromQTLs that we were unable to link to

downstream gene targets, indicating that the gene regulatory

effects could manifest in a cell-state-specific context. Finally,

we used the prioritized genes to identify drugs for repurposing

and to define novel targets for validation. Our study provides a

translational pathway from immune-disease-associated variants,

through gene expression regulation in Treg cells, to new treatment

options.

RESULTS

Comprehensive catalog of gene expression regulation in
Treg cells
To identify genetic variants that control gene expression

regulation in Treg cells isolated from healthy blood donors

(Figure S1; Table S1), we profiled the transcriptome using RNA

sequencing (RNA-seq) (124 individuals), chromatin accessibility
were classified based on the annotation of actQTL variants with eQTLs and overla

also result in an eQTL and an additional chromQTL; actQTL + eQTL, number of ac

also result in an additional chromQTL; actQTL + peak, number of actQTLs that

actQTL, number of actQTLs that we were unable to map variants to chromatin m
using assay for transposase-accessible chromatin using

sequencing (ATAC-seq) (73 individuals), promoters using

H3K4me3 (88 individuals), and active enhancer and promoter

regions using H3K27ac (91 individuals; Figure 1A). We detected

the expression of 12,517 genes, while chromatin profiling

revealed 39,134 accessible regions, 39,409 H3K4me3

marked promoter regions, and 33,910 H3K27ac marked active

chromatin regions (Figures 1B and S2). The majority of the

mapped regulatory chromatin features overlapped with each

other (Figure S2A). Concordant with previous studies,24,27,28

we observed that H3K4me3 and chromatin accessible regions

were concentrated near the transcription start sites (TSSs),

while H3K27ac marked more distal gene-regulatory elements

(Figure S2B). Concordantly with previously described DNA

acetylation patterns, the H3K27ac peaks were wider than

H3K4me3 and ATAC peaks (Figure S2C). Moreover, the fraction

of reads in peaks and the correlation between replicates

confirmed the quality of the defined features (Figures S2D

and S2E).

Using the 62 samples for which we had complete information,

including genetic variation, chromatin profiles, and whole

transcriptome, we estimated the percentage of gene expression

variability explained by the genetic component and by the

chromatin regulatory features. We observed that the major

component driving transcriptional variability was the common

genetic variation; for 75% of the eQTL genes, we were able to

explain 5% or more of the expression variance (Figure 1C).

With the addition of the combination of chromatin marks

(H3K27ac, H3K4me3, and ATAC) and the common genetic

variation, we were able to explain 5% or more of the gene

expression variance for all the eQTL genes. This additional

gene expression variability was mainly accounted for by the

combination of H3K27ac and H3K4me3. These results were in

line with previous reports for other primary immune cells.24

Together, the gene expression variance decomposition analysis

implicated that genetic variation contributed the most toward

gene expression regulation and the genetic regulation was

present at both the transcriptome and the chromatin mark levels.

Therefore, by connecting genetic variation to gene expression

and chromatin regulatory features, we expected our Treg cell

dataset to provide translational insight into immune disease

GWAS loci.

Next, we performed QTL mapping to define genes and

chromatin features that were under genetic control in Treg cells

(STAR Methods). We detected at least one independent

association for 3,685 genes (29%) and a total of 125,650 eQTL

variants (eQTLs) (Figures 1B–1D; Table S2). We mapped a total

of 7,195 chromQTLs, using chromatin accessibility (caQTLs,

1,450; 4%), H3K4me3 (promQTLs, 1,455; 4%), and H3K27ac

(actQTLs, 4,290; 13%) histone marks, which corresponded to

9,292 non-overlapping peak regions, associated with 152,648

chromQTL variants. The majority of chromQTLs were detected

in H3K27ac features (4,290 actQTLs; Figure 1B). Of all analyzed
p with chromatin peaks. actQTL + eQTL + chromQTL, number of actQTLs that

tQTLs that also result in an eQTL; actQTL + chromQTL, number of actQTLs that

map within a chromatin mark peak without an additional chromQTL or eQTL;

ark peaks or to link them to an additional chromQTL or eQTL.

Cell Genomics 2, 100117, April 13, 2022 3
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genetic variants (5,761,739), 439,582 (7%) fall within a peak;

however, only a small fraction mapped in a chromatin feature

and were also linked to chromQTLs (38,507 SNPs; 0.7%), eQTLs

(22,217 SNPs; 0.4%), or both (17,815 SNPs; 0.3%; Figure 1D).

For 28% (1,035) of all eQTL genes, we observed that at least

one eQTL variant was a chromQTL and was also physically

located in a chromatin peak (Figure 1E), and for an additional

2,020 eQTL genes, we were able to link an eQTL variant to a

chromatin peak, though without detecting a QTL effect on a

chromatin feature. A proportion of this overlap may not be

functional, as chromatin regulatory features are abundant

throughout the genome and therefore likely to overlap common

genetic variants by chance. Interestingly, we were unable to

link the majority of actQTL variants to an eQTL (Figure 1E),

implicating that these regulatory regions may modulate gene

expression under a specific cellular context or through the

interplay of multiple regulatory elements.

Defining gene expression regulation in Treg cells
We sought to identify QTL effects at the levels of gene

expression and chromatin regulation specific to our Treg cell

dataset and absent from other immune cells assayed in publicly

available data. However, we recognize that such a comparison

can suffer from confounders introduced by technical biases,

such as differences in sample processing. Therefore, we used

transcriptomics data from 91 individuals sampled by the

Database of Immune Cell eQTLs Expression Epigenomics

(DICE) consortium,18 where different immune cell types were

assayed from the same donors (STAR Methods). We retrieved

data for naive T cells and memory Treg cells to directly estimate

the proportion of replicable eQTL effects with our data. As a

comparison, we included classical monocytes, as we expected

the degree of sharing to be lower compared with Treg cells.

We used pairwise pi1 score,29 which estimates the proportion

of true positive associations replicating between discovery

and replication cohorts. Indeed, we observed that the eQTLs

detected in our Treg cell cohort replicated highly in memory

Treg cells (pi1 = 0.85) and naive T cells (pi = 0.84) in the DICE

data, while the sharing was lower in monocytes (pi1 = 0.71;

Figures S3A and S3B). The eQTLs detected in the DICE

Treg cell cohort replicated more highly in our Treg cell

dataset and also replicated more highly compared with DICE

naive T cells, meaning that we replicated the majority of DICE

eQTLs, which is likely due to differences in sample size and

the average sequencing depth being greater in our dataset

(Figure S3B).

Having confirmed that our dataset was capturing effects

relevant to Treg cell biology, we next used the CD4 naive

T cells from BLUEPRINT project,24 as it profiled both the

transcriptome and H3K27ac assayed across a similar cohort

to ours (197 British healthy individuals). Again, we included

monocytes, as we expected lower sharing compared with

naive CD4+ T cells. We observed that the majority of eQTLs

(69%; Figure 2A; Table S2) were shared with naive CD4 T cells,

with similar effect sizes and the same direction of effects

(Figures S4A and S4B). A higher correlation between eQTL

effects was observed between Treg cells and naive T cells

(Spearman R2 = 0.93) than between Treg cells and monocytes
4 Cell Genomics 2, 100117, April 13, 2022
(Spearman R2 = 0.76), also confirmed by the pi1 estimates

(Figures 2B and 2C). Despite the substantial eQTL sharing

between Treg cells and the other two cell types, we classified

775 genes (21% of all eQTL genes) as specific to our Treg cell

dataset, including 92 genes that were only expressed in Treg

cells (intersection between 187 genes only expressed in naive

T cells and 384 genes only expressed in monocytes; STAR

Methods; Figures 2A and S4B). Of these 775 genes, 695 were

also only detected in Treg cells compared with the naive

T cells and monocytes from the DICE consortium, while of the

92 genes expressed only in Treg cells, 82 were also only

expressed in Treg cells compared with the DICE consortium

(Figure S4C). eQTL genes specifically expressed in Treg cells,

but not in the other two cell types, showed lower expression

levels compared with genes expressed in all cell types (Fig-

ure S4D). Therefore, some of the eQTL effects could be shared

with the other cell types and the higher sequencing depth of

our study enabled capturing the transcripts of these genes

while they were not detected in the BLUEPRINT datasets.

Among the Treg-cell-specific eQTLs, there were many genes

essential to immune function regulation, including TNFRSF14

(false discovery rate [FDR] = 2.86 3 10�4), a chemokine that

attracts lymphocytes toward epithelial cells (Figure 2D). A

TNFRSF14 eQTL is also found in monocytes, but the variants

are in low LD, while in naive T cells, the gene is expressed at

very low levels.

To compare the genetic effects across the same peak regions

in all three cell types, we performed peak calling on reads

merged from all cell types (see STAR Methods). When we

compared the actQTLs across the three cell types, we observed

that 1,307 (29%) actQTLs were Treg-cell-specific (Figures 2A

and S4B). Although the concordance of the effect sizes across

all peaks was small (Spearman R2 % 0.28), peaks with shared

QTLs expressed similar effect sizes (R2 R 0.84; Figure 2B). As

expected, there was a higher correlation of effect sizes between

Treg cells and naive T cells (Spearman R2 = 0.94) than between

Treg cells and monocytes (Spearman R2 = 0.79; Figure S4A).

Results from the pi1 analysis also reflected our observations

from the RNA that the replication of Treg cell QTLs was higher

in the naive dataset compared with the monocyte (Figure 2C).

Among the Treg-cell-specific actQTL effects, we observed a

peak in the promoter of FCRL3 gene (chr1:157,693,404–

157,705,914; FDR = 3.47 3 10�8) that is a potential negative

regulator of Treg cell suppressive function (Figure 2E).30

Treg cell QTLs colocalize with immune-disease loci
To fine-map disease-associated loci to causal genes and

variants, we next integrated the Treg cell QTL results with

GWAS signals from common immune diseases. We applied a

Bayesian framework to test for statistical colocalization of the

disease-associated variants and the Treg cell QTL signals.31

Collectively, we tested 1,290 unique GWAS loci associated

with 14 immune-mediated diseases: allergic diseases (ALL),

ankylosing spondylitis (AS), asthma (AST), celiac disease

(CEL), Crohn’s disease (CD), inflammatory bowel disease (IBD),

multiple sclerosis (MS), primary biliary cirrhosis (PBC), psoriasis

(PS), rheumatoid arthritis (RA), systemic lupus erythematosus

(SLE), type 1 diabetes (T1D), ulcerative colitis (UC), and vitiligo
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Figure 2. Comparison of eQTLs and actQTLs identified in regulatory T cells, CD4+ naive cells, and monocytes

(A) Proportion of eQTLs and actQTLs specific to Treg cells in comparison to naive T cells and monocytes.

(B) Pairwise pi1 score between the three cell types for eQTLs and actQTLs.

(C) Spearman correlation between the regression slopes for the same gene or peak and variant pairs of all eQTLs and actQTLs (colored) and only for the shared

pairs (gray).

(D and E) Examples of Treg-cell-specific (D) eQTLs and (E) actQTLs. FPM, fragments per million; TPM, transcripts per million. FDR, false discovery rate.
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(VIT) (see STAR Methods and Table S3). Diseases with the high-

est number of colocalizations (more than 20 colocalizing signals)

included IBD, UC, CD, ALL, T1D, VIT, and PBC (Figures 3A and

S5A). The high number of observed colocalizations is consistent

with previous work that implicated the role of Treg cells in the

pathobiology of all of these diseases5,6,32–34 and to some extent

also reflects the greater number of significant GWAS loci for

these traits. Overall, immune-mediated diseases showed more

colocalizations with Treg cell QTLs than non-immune-mediated

diseases, such as type 2 diabetes or depression.

Four of the colocalizing eQTLs were shared between three

or more diseases and included BACH2 (T1D, AS, and MS),

SUOX (ALL, VIT, and T1D), TYK2 (PBC, RA, SLE, and T1D),

and ZFP90 (PS, ALL, and UC). The BACH2 locus also

contained an actQTL (chr6:90,264,695–90,268,560), which
colocalized with ALL, AST, MS, CEL, VIT, CD, and IBD. Similarly,

SUOX colocalized with an actQTL (chr12:55,989,136–

56,011,728), a promQTL (chr12:55,996,308–55,998,877), and a

caQTL (chr12:56,041,233–56,042,198) for T1D, ALL, and VIT.

We observed the largest number of colocalizations with Treg

cell actQTLs. There were also chromQTLs that colocalized with

multiple diseases but did not have a corresponding colocalizing

eQTL. Among them, we identified (1) a region upstream of

CXCR5, which colocalized with an actQTL (chr11:118,866,698–

118,871,517), a caQTL (chr11:118,869,935–118,870,610), and

a promQTL (chr11:118,869,586–118,871,234; CEL, RA, and

PBC); (2) an actQTL (chr11:76,586,431–76,600,121) upstream

of LRRC32 (ALL, AST, T1D, UC,CD IBD, and T1D); (3) a promQTL

in an intron of ZMIZ1 (chr10:79,240,389–79,246,577; AS, MS,

and IBD); and (4) an actQTL (chr17:39,751,832–39,807,281;
Cell Genomics 2, 100117, April 13, 2022 5



Figure 3. Colocalization of immune disease GWAS loci and Treg cell QTLs

(A) Distribution of Treg cell eQTLs and chromatin QTLs colocalizing with different immune disease GWAS loci. Number in parentheses is state-independent loci

associated with the trait. The numbers on the right side of the bars correspond to the total number of features (genes or peaks) tested for colocalization. ALL,

allergic disease (asthma, hay fever, and eczema); AST, asthma; CD, Crohn’s disease; CEL, celiac disease; DEP, broad depression; IBD, inflammatory bowel

disease; MS, multiple sclerosis; PBC, primary biliary cirrhosis; PS, psoriasis; RA, rheumatoid arthritis; SLE, systemic lupus erythematosus; T1D, type 1 diabetes;

T2D, type 2 diabetes; UC, ulcerative colitis; VIT, vitiligo.

(B) Distribution of the GWAS loci colocalizing with different types of Treg cell QTLs.

(C) Number of immune GWAS loci colocalizing with monocyte, naive T cell, and Treg cell eQTLs and actQTLs.
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SLE, ALL, and PBC) and a promQTL (chr17:39,912,458–

39,929,022; PBC, AST, T1D, SLE, and ALL) in the same region

but covering IKZF3 and ORMDL3, respectively (Table S3).

We observed 360 significant colocalizations between the

disease loci and at least one Treg cell QTL, corresponding to 133

uniqueGWAS loci (Figure 3B; Table S3). Of the 133 uniqueGWAS

loci, 50 loci colocalized with eQTLs only, 52with chromQTLs only,

and 31 colocalized with both eQTL and at least one chromQTL.

The colocalizations with both transcriptomic and chromatin

evidence affected the expression of 37 eQTL genes, acetylation

of 31 actQTL peaks, methylation of 10 promQTL peaks, and

accessibility of 11 caQTL sites. Of the immune disease GWAS

loci that colocalized with both Treg cell eQTLs and chromQTLs,

27outof31comprisedactQTLs (87%).Finally, for the vastmajority

(79%) of the loci where we observed disease signals colocalizing

with two or more types of QTLs, the effects of the risk alleles

propagated in the same direction. For example, the CCL20 eQTL

colocalized with UC variants, tagged by chr2:228,670,575, and

the risk allele resulted in both reduced gene expression and
6 Cell Genomics 2, 100117, April 13, 2022
decreased H3K27 acetylation (chr2:227,804,673–227,819,6),

H3K4 tri-methylation (chr2:227,805,541–227,808,260), and chro-

matin accessibility (chr2:227,805,505–227,805,928; Table S3).

However, at 10 loci, we observed that the disease alleles

resulted in opposite effects between the different types of QTLs,

suggesting complex mechanisms of gene expression regulation

(Table S3).

We systematically investigated all immune disease signals

colocalizing with Treg cell QTLs to refine the disease-associated

signals to sets of functional variants and to nominate causal

genes. We classified colocalizing loci into three categories.

Tier 1 loci comprised 31 signals for which the GWAS association

colocalized with both eQTL and chromatin QTL (Figure 3B;

Table S4). Of these, at 25 loci, the associated variants were

also located within the chromQTL peaks. Loci in this category

were the most informative to functionally refine disease

associations, as we were able to link the GWAS signals to genes

and to functional chromatin elements that regulated gene

expression. Tier 2 loci contained 50 signals for which we



(legend on next page)
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observed colocalization only with eQTLs. In this case, we were

unable to refine the association signals to sets of functional

variants, but we were able to connect the GWAS signals to

candidate causal genes. Finally, the 52 loci in tier 3 included

GWAS signals colocalizing with chromatin QTLs, but not eQTLs.

Of these, at 40 loci, the GWAS variants overlapped a chromatin

QTL peak, providing further clues to prioritize functional variants

at GWAS loci (Table S4). Finally, tier 3 loci represented the

majority of colocalizations. We hypothesized that gene

expression effects could be manifested in a cell-state-specific

context. To further nominate candidate genes regulated by the

variants colocalizing with actQTLs, we used resting and

activated Treg cell transcriptome data (see STAR Methods)

and defined genes proximal to the QTL peaks that were differen-

tially expressed upon cell activation (Table S5). This analysis

prioritized 124 genes linked to 44 disease-colocalizing actQTLs.

We went on to carry out allele-specific expression analysis for

these loci and validated 36 of these genes as displaying

imbalanced expression with regards to the lead GWAS variant

(STAR Methods). In parallel, we used cap analysis of gene

expression (CAGE) data from FANTOM535 and linked the

enhancer usage of 50 of the disease-colocalizing actQTLs to

the TSS expression of 374 genes (STAR Methods). Overlapping

these approaches, we found 34 actQTLs connected to 56 genes

differentially expressed upon Treg cell stimulation, 23 of which

displayed allele-specific expression, including CD247,

LRRC32, and PRDM1. For a subset of loci, we have therefore

compiled candidate gene target lists based on allelic and gene

expression evidence across platforms.

Next, we assessed which of the identified eQTLs that colocal-

ized with immune disease variants regulated gene expression

specifically in Treg cells and not in naive T cells or monocytes.

Out of the 81 GWAS loci that showed colocalization with Treg

cell eQTLs, 31 were Treg cell exclusive and not present in naive

T cells or monocytes (Figures 3C, S5C, and S5D). Similarly, 21 of

78 of actQTLs loci were Treg cell exclusive. Three of the Treg-

cell-specific colocalizing eQTLs also had specific colocalization

with a Treg cell actQTL: MAP3K8, which colocalized with

UC and IBD; IFITM1 colocalizing with PBC; and TLR1 colocaliz-

ing with ALL. Treg-cell-colocalizing actQTLs were enriched for

JUN, GATA3, and STAT6 transcription factors (Table S6).

Colocalizing Treg cell QTLs prioritize immune disease
causal variants and genes
Using the tier 1 and tier 3 loci that overlapped with chromatin

QTL peaks, we refined the signals at 68 GWAS loci from a

median of 48 associated variants to six functional variants per
Figure 4. Functional refinement of immune disease associations coloc

(A) The number of SNPs in LD blocks (lead GWAS signals and their proxies R2R

the y axis.

(B) The number of SNPs in LD blocks that map inside chromQTL peaks on the x a

ATAC peak on the y axis.

(C and D) From top to bottom, the figure displays gene annotation tracks; chro

association plots for disease; eQTL and actQTL association p values, focused

stratified eQTL and actQTL violin plots. (C) Locus associated with IBD, tagged

chr10:30,432,917–30,439,043 actQTL is shown. (D) Locus associated with allerg

eQTL and chr17:42,219,755–42,299,818 actQTL is shown. CQN, conditional qua
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locus (Figure 4A; Tables S4 and S7). Of the 68 loci, in 45

instances, we observed that the genetic variants additionally

overlapped open chromatin peaks, allowing us to further

prioritize the functional variants from an average of 13 functional

variants to an average of two variants per locus, including

BACH2, CD28 (Figure S6), CENPW, HERC2, JAZF1, MAP3K8,

PIM3, RERE, STAT5A, and THBS3 loci, which colocalized with

eQTLs and were refined to a single functional variant (Figure 4B;

Table S4). In the case of previously statistically fine-mapped loci,

in which associations have been refined to rare variants or

haplotypes, such as CD28, BACH2, CTSH, and TYK2,36,37 the

information from Treg cell QTL colocalizations prioritized

additional functional variants.

Treg-cell-exclusive colocalizations along with the Treg cell

actQTL-specific colocalizations indicated regulation of path-

ways that were characteristic of Treg cell biology. We there-

fore investigated in more detail the Treg-cell-exclusive

colocalization with an IBD GWAS signal, tagged by the

chr10:30,401,447 (rs10826797) variant, which colocalized with

an actQTL, regulating a 6-kb-large (chr10:30,432,917–

30,439,043) H3K27ac peak (p = 9.5 3 10�9) at the TSS of

MAP3K8 and an eQTL (p = 9.8 3 10�6) for the MAP3K8 gene

(Figure 4C; Table S3). The IBD risk allele decreased the acetyla-

tion at H3K27 and downregulated the expression of MAP3K8.

Five of the colocalizing variants overlapped this actQTL peak,

of which only one SNP, chr10:30,434,664 (rs306588), overlap-

ped a 1.5 kb ATAC peak (chr10:30,433,210–30,434,733;

Tables S3 and S7). This approach refined the IBD-associated

signal from 30 GWAS variants to a single functional candidate

variant regulating the expression of MAP3K8, a kinase modu-

lating the DNA-binding activity of FoxP3, the Treg cell hallmark

transcription factor.38

In another example, we observed that a locus associated

with allergies39 (tagged by the index SNP chr17:42,262,844

[rs7207591]) colocalized with a STAT5A eQTL (p = 3.9 3 10�6),

as well as with an 80-kb actQTL (chr17:42,219,755–

42,299,818; p = 4.2 3 10�9; Figure 4D). This peak overlapped

the STAT5A TSS. Nearly half of the LD block of allergy variants

(55 out of 93 SNPs) overlapped with the regulated actQTL

peak and one of the variants, chr17:42,266,938 (rs34129849),

also mapped to a 629-bp open chromatin region (chr17:

42,266,595–42,267,224) located in intron one of the STAT5B

gene (Figure 4D; Table S3). Modulation of STAT5-mediated

pathways could implicate broad effects on Treg cell function

as STAT5A regulates the expression of genes downstream of

the interleukin-2 (IL-2) receptor, which is critical for Treg cell

development and function.40
alizing with Treg cell QTLs

0.8) on the x axis and the number of SNPs that map inside chromQTL peaks on

xis and the number of SNPs that map inside both chromQTL and an additional

matin landscape for ATAC-seq, H3K27ac, and H3K4me3 ChM-seqs; region

on H3K27ac landscape stratified by homozygous genotypes; and genotype-

by chr10:30,401,447 (rs10826797) SNP colocalizing with MAP3K8 eQTL and

ies, tagged by chr17:42,262,844 (rs7207591) SNP colocalizing with STAT5A

ntile normalized reads; SPMR, signal per million reads.



A

B

Antigen presenting 
cell

Conventional 
T cell

Regulatory 
T cell Costimulation 

by the CD28 family
TNF signaling

IL10 signaling

Gene in pathway:

Cell cycle inhibition

Apoptosis

Activation
Proliferation

Survival
Cytokine Production

Maintenance

Clinical Precedence
Discovery Precedence OR
Highly Tractable
Predicted  Tractable

Tractability
chromQTL presence

Decrease
Increase

gene expression

Small molecule
Antibody

chromQTL
IBD
CD
UC

ALL
AST
CEL
MS

PBC
PS
RA

SLE
T1D
VIT
AS

Figure 5. Immune disease colocalizations with Treg cell QTLs inform drug targets

(A) Tier 1 and Tier 2 loci colocalizing with immune disease GWAS variants with drug tractability evidence (green). In bold are Treg-cell-specific eQTLs. Clinical

precedence, gene targeted by small molecules or antibodies approved for patient treatment or undergoing clinical trials; discovery precedence, gene product

shown to bind small molecules; predicted tractable, gene predicted to be small molecule tractable; tractable high confidence, gene product with high predicted

tractability as an antibody drug target; tractable medium–low confidence, gene product with predicted tractability as an antibody drug target. NDUFS1 is not

directly targeted but is part of a targeted complex.

(B) Tier 1 and tier 2 genes with tractability potential in CD28 co-stimulation (orange), TNF (blue), and anti-inflammatory IL-10 (green) pathways.
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Treg cell QTLs emphasize CD28 co-stimulation, tumor
necrosis factor, and IL-10 signaling pathways for drug
targeting
Despite the success of GWAS in mapping disease risk variants,

the efforts to translate these findings into drug targets have been

challenging. Therefore, we used the Open Targets Platform41 to

systematically assess whether eQTLs that colocalized with

immune disease signals identify known and potential new drug

targets (see STAR Methods). Of the 91 eQTL genes that

colocalized with immune diseases and could be tested in the

Open Targets Platform, we found nine (tier 1: BLK, CD28,

PIM3, PTGIR, and TNFRSF9 and tier 2: ERAP2, NDUFS1,

TNFRSF1A, and TYK2; Figure 5A) that were already targeted

by known drugs and were either used in clinical practice or

undergoing clinical trials. Seven of these eQTL genes could be

considered for drug repurposing: ERAP2, NDUFS1, PIM3,

PTGIR, TNFRSF1A, TNFRSF9, and TYK2, three of which are
Treg-cell-specific eQTLs. However, most of the drugs targeting

these genes are used for cancer therapies, where the desired

effects include dampening the suppressive capacity of Treg

cells, in contrast to immune diseases where the enhancement

of Treg cell function is sought after. Nevertheless, this analysis

highlighted some potential drug candidates, for example, a

colocalization between a NDUFS1 eQTL and CD, in which the

disease risk allele increased gene expression, suggested

repurposingmetformin, which targets the NADH dehydrogenase

complex (not directly NDUSF1). Metformin is currently used for

treating type 2 diabetes; in a clinical trial for MS patients, it

increased the number of Treg cells,42 and in in vitro studies, it

promoted Treg cell proliferation.43

In addition, we observed 63 genes that were not yet a part of a

clinical treatment but had drug tractability evidence, of which 47

were classified as highly tractable (eight of whichwere specific to

Treg cells; Figure 5A; Tables S8 and S9). We used Open Target’s
Cell Genomics 2, 100117, April 13, 2022 9
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definition of tractability (druggability), which is based on

availability of a binding site in the protein that can be used for

small-molecule binding, presence of an accessible epitope for

antibody-based therapy, or reports of a compound in clinical

trials with a modality other than small molecule or antibody. An

example of a highly tractable gene was ERAP2, for which we

observed the IBD and CD risk allele colocalizing with the

ERAP2 eQTL increased gene expression, implicating ERAP2

as a target for validation. Collectively, we observed that

genes with high tractability evidence fell into three

pathways: co-stimulation by the CD28 family (p = 0.012), tumor

necrosis factor (TNF) signaling (p = 0.0034), and IL-10 signaling

(p = 0.01; Figure 5B). These pathways play an important role in

Treg cell activation, proliferation, and survival, as well as in

suppression of effector T cells.

Finally, of the 91 genes that were tested, 44 had been knocked

down or knocked out in mice, of which 26 had a reported

immune system phenotype (Table S10). Among those, six gene

knockouts resulted in an immune disease, including Cd28,

Ndfip1, Skap2, Tmem258, Tnfrsf1a, and Tnfrsf9. For example,

Tnfrsf1a�/� decreased susceptibility to experimental autoim-

mune encephalomyelitis, consistent with our observation that

the risk allele for multiple sclerosis in Treg cells leads to

increased TNFRSF1A gene expression levels. In addition, Icosl,

Ikzf1, Map3k8, Pofut1, Ptgirgir, and Stat5a had specific organ

inflammatory phenotypes, such as reduced small intestine

inflammation in Map3k8-deficient mice.44 It is important to

note that we did not observe the same direction of effects for

all mouse knockouts, which could be partly due to the fact that

gene perturbations are not Treg cell specific.
DISCUSSION

Pinpointing genes that are regulated by disease-associated

non-coding variants can uncover important cell pathways for

drug targeting. However, leveraging information captured by

GWAS variants to provide insight into disease biology and

improve treatment has been challenging. Increasing availability

of functional genomic resources from different cell types

helps to bridge this gap. Naive and regulatory CD4+ T cells are

closely related, yet they play distinct functions in the immune

system. Although naive CD4+ T cells have been extensively

characterized, Treg cells are an infrequent cell population

difficult to isolate in large numbers for QTL analysis and elusive

to deconvolute from bulk blood QTL data.45 Therefore, mapping

gene expression regulation directly in Treg cells is essential to

better understand Treg cell biology.

Here, we sought to describe the role of immune-disease-asso-

ciated variants on modulation of gene expression in Treg cells.

We linked 133 unique immune disease loci from associated

variants to functional effects in Treg cells; 50 loci were linked

to gene expression, 52 loci were linked to an effect on chromatin,

and 31 loci to both. Loci for which we observed colocalization

with both gene expression and chromatin QTLs provide an

important translational insight into mechanisms through which

immune disease variants regulate Treg cell function. For

example, we observed signals overlapping with Treg-cell-spe-
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cific eQTLs, indicating regulation of essential Treg cell pathways,

such as IL-2 signaling via STAT5A.

The 52 loci for which we only detected colocalization with

chromQTLs, but not eQTLs, indicate that the altered gene

expression may be manifested in a specific cell state, which

will require tailored functional follow-up studies. In a separate

study, we demonstrated that the disease colocalization with

actQTL near LRRC32 (encoding GARP) resulted in reduced

GARP expression in activated Treg cells and subsequently led

to reduced Treg cell suppression, which promoted development

of colitis.46 In addition, previous studies showed that context-

specific eQTLs can be already detected in a resting state at

the chromQTL level.2,22,24

On the other hand, the 50 loci colocalizing only with eQTL

variants, but not chromQTLs, may be correlated with

chromatin-independent gene expression regulation, such as

splicing QTLs (sQTLs)47 or RNA stability.48 For example, we

observed that ERAP2, an IBD- and CD-associated locus,

showed an eQTL colocalization but no chromQTL effect. The

lead GWAS variant chr5:96,912,106 (rs6873866) and the

colocalizing lead eQTL variant chr5:96,916,728 (rs2927608) are

proxies for chr5:96,900,192 (rs2248374), a sQTL present in

monocyte-derived dendritic cells after influenza infection and

type 1 interferon stimulation.49

By linking immune disease GWAS variants to Treg cell eQTLs,

our study contributes toward building genetic evidence for the

causal role of Treg cells in disease biology and supports the

discovery and repurposing of drugs that modulate Treg cell

function in treating immune disease patients. Validation of

targets with genetic support can significantly increase the

chance of clinical success.50,51 Our results support the focus

on modulating co-stimulatory and cytokine pathways, for

example, at a CEL locus, the disease risk alleles led to decreased

levels of expression of TNFRSF9 (encodes for CD137/4-1BB).

Signaling via CD137 induces cell division and proliferation;52,53

however, TNFRSF9 gene expression and protein levels increase

specifically in activated Treg cells, but not in conventional

T cells.54,55 Furthermore, the increased expression of CD137

enhances the Treg cell capacity to suppress proliferation of

effector T cells.56 Therefore, the disease risk allele could

result in decreased Treg cell suppressive function and promote

immune disbalance. The colocalization of several TNF receptor

superfamily members (TNFRSF1A, TNFRSF9, and TNFRSF14)

further supports the development of drugs modulating TNF

pathway, one of the main therapy lines for treating immune

diseases.

Understanding the genetic underpinnings of immune system

regulation has broad implications not only in the treatment of

immune-mediated conditions but also in infections, transplanta-

tion, and cancers. For instance, in organ transplantation,

numbers of Treg cells, as well as Treg cells with increased

suppressive capacity, can provide a favorable environment of

successful transplant tolerance.12,57,58 Furthermore, in hemato-

poietic stem cell transplantation, high Treg cell:CD4 T cell ratios

are associated with reduced acute graft-versus-host disease

and reduced overall mortality.58 Importantly, in vitro expanded

Treg cells with enhanced suppressive capacity have already

entered clinical trials.59 Therefore, identifying genetic variants
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that regulate gene expression in a specific cellular context can

inform development of more effective cell therapies. Our study

provides an important advancement in mapping regulation of

gene expression in Treg cells, and consequently, our results

can benefit a range of clinical conditions.

Limitations of the study
There are the following limitations to our study that should be

considered. For example, a subset of loci where we were

unable to link chromQTLs with eQTLs could also result from

long-distance gene expression regulation, the eQTL being

outside of our testing window, or from combinatorial subtle

effects between multiple enhancers regulating the expression

of individual genes. We also recognize instances of complex

regulation of gene expression that will require targeted follow-up

studies to fully uncover the functional role of disease variants.

For example, we observed a complex pattern of colocalization

between CD28 eQTL, nearby actQTLs, and immune disease

GWAS variants. The eQTL for CD28, the co-stimulatory receptor

found on the surface of the majority of T cells, was specific to

Treg cells and absent from naive T cells. The risk alleles for

CEL and MS showed reversed effects on CD28 expression

and the acetylation of the peaks, implicating complex

enhancer-mediated control of CD28 expression under cell type

and cell-state-specific mechanisms. Therefore, the results we

describe here form the basis for hypothesis-driven functional

follow-up studies into Treg-cell-mediated development of

autoimmune and inflammatory diseases.

Finally, determining cell-type-specificQTLeffects is challenging

due to technical confounding factors between studies,

including sequencing depth, different sample sizes across

studies, different protocols of sample processing, etc. Although

we performed numerous analyses to demonstrate our dataset

captured true Treg-cell-specific effects, we recognize that some

of the Treg-cell-specific effects that we identified here could be

shared with other cell types. The dropping costs of single-cell

transcriptomic technologies, higher gene capture efficiency,

and increasing applicability to profile transcriptome of

immune cells both in circulation and in tissues will map the cell-

type- and context-specific gene expression regulation with high

precision.
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Antibodies

anti-CD4-APC, clone OKT4 BioLegend, San Diego, U.S. Cat. no. 317416; RRID:AB_571945

anti-CD127-FITC, clone eBioRDR5 Thermo Fisher Scientific,

Waltham, U. S.

Cat. no. 11-1278-42; RRID:AB_1907342

anti-CD25-PE, clone M-A251 BioLegend, San Diego, U.S. Cat. no. 356104; RRID:AB_2561861

anti-FOXP3-BV421, clone 206D BioLegend, San Diego, U.S. Cat. no. 320123; RRID:AB_2561338

H3K4me3 Active Motif, Carlsbad, U.S. Cat. no. 39915; RRID:AB_2687512

H3K27ac Diagenode Cat. no. C15410196; RRID:AB_2637079

Biological samples

Lymphocyte cones were obtained

with informed consent from healthy

adults of Caucasian origin.

NHS Blood and Transplant,

Cambridge and from the NHS

Blood and Transplant, Oxford

REC 15/NW/0282, REC 15/NS/0060

Chemicals, peptides, and recombinant proteins

TRIzol Thermo Fisher Scientific 15596026

NEBNext� High-Fidelity 2X

PCR Master Mix

New England Biolabs,

Ipswich, U.S.

M0541L

Tn5 enzyme Nextera TDE1

EvaGreen dye Biotium, Fremont, U.S. #31000

Critical commercial assays

EasySep� Human CD4+ T Cell

Enrichment Kit

StemCell Technologies,

Vancouver, Canada

Cat. no. 19052

iDeal ChIP-seq Kit for Histones Diagenode, Liege, Belgium C01010059

RNeasy Mini Kit QIAgen, Hilden, Germany 74106

KAPA RNA HyperPrep Kit Roche, Basel, Switzerland KK8541

Nextera DNA Library Prep Kit Illumina, U.S. FC-131-1096

MinElute PCR Purification Kit QIAgen, Hilden, Germany 28006

Nextera Index Kit Illumina, U.S. TG-131-2001

Deposited data

Raw data generated in this study EGA https://wwwdev.ebi.ac.uk/ega/

studies/EGAS00001003516

BLUEPRINT consortium CD4+

T cell and monocyte RNA-seq

and ChIP-seq datasets

EGA EGAD00001002671, EGAD00001002674,

EGAD00001002673, EGAD00001002674

DICE project data DICE project: Linking immune

disease GWAS variants to genes

and cell types, Date of approval:

2019-08-23

https://dice-database.org/

FANTOM5 Predefined enhancer-TSS bed sets http://enhancer.binf.ku.dk/presets/enhancer_

tss_associations.bed

Custom scripts and

pipelines repository:

Treg_Multiomic https://github.com/trynkaLab/

Software and algorithms

GitHub (original codes

supporting this work)

https://doi.org/10.5281/zenodo.6335757 https://github.com/TrynkaLab/Treg_

Multiomics/tree/v1.0.1

BEAGLE 4.1 Browning et al.60 http://faculty.washington.edu/browning/

beagle/beagle.html

VerifyBamID v1.0.0 Jun et al.61 https://github.com/statgen/verifyBamID/releases
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STAR Dobin et al.62 https://github.com/alexdobin/STAR/releases

subread package v1.5.1 Liao et al.63 http://subread.sourceforge.net/

skewer Jiang et al.64 https://github.com/relipmoc/skewer

bwa Li and Durbin.65 http://bio-bwa.sourceforge.net/

samtools Li et al.66 http://samtools.sourceforge.net/

MACS2 Zhang et al.67 https://github.com/macs3-project/MACS

BEDTOOLS Quinlan and Hall68 https://bedtools.readthedocs.io/en/latest/

QTLtools Delaneau et al.69 https://qtltools.github.io/qtltools/

coloc v2.3–1 Giambartolomei et al.31 https://github.com/chr1swallace/coloc

TFmotifView Leporcq et al.70 http://bardet.u-strasbg.fr/tfmotifview/

g:Profiler Raudvere et al.66 https://biit.cs.ut.ee/gprofiler/gost

DESeq2_.1.14 Love et al.71 https://bioconductor.org/packages/

release/bioc/html/DESeq2.html

ASEReadCounter (4.0.1.1) Castel et al.72 https://gatk.broadinstitute.org/hc/

en-us/articles/360037054312-ASEReadCounter

Other

Lympholyte-H density

gradient centrifugation.

(Cedarlane Labs,

Burlington, Canada)

CL5020

Infinium� CoreExome-24

v1.1 BeadChip

Illumina WG-331-1101
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Gosia

Trynka (gosia@sanger.ac.uk).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d All raw data produced here and existing data from multiple sources have the accession numbers listed in the key resources

table. Access to DICE project data was authorized via dbGaP to Dr. Gosia Trynka (Project: Linking immune disease GWAS var-

iants to genes and cell types, Date of approval: 2019-08-23). We used FANTOM5 predefined enhancer-TSS bed sets. The gene

expression dataset is integrated into the eQTL catalogue (https://www.ebi.ac.uk/eqtl/). All colocalization results can be

browsed via this website: https://www.sanger.ac.uk/science/tools/treg-colocalisation/treg-colocalisation/

d All original code has been deposited at Zenodo and is publicly available as of the date of publication. DOIs are listed in the key

resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
METHOD DETAILS

Sample collection and Treg isolation
Lymphocyte cones were obtained with informed consent from donors at the NHS Blood and Transplant, Cambridge (REC 15/NW/

0282) and from the NHS Blood and Transplant, Oxford (REC 15/NS/0060).

Leukodepletion cones were obtained from healthy adults of Caucasian origin. PBMCs were isolated using Lympholyte-H

(Cedarlane Labs, Burlington, Canada) density gradient centrifugation. CD4+ T cells fraction of the PBMCs was obtained by negative

selection using EasySep� Human CD4+ T Cell Enrichment Kit (Cat. no. 19052, StemCell Technologies, Vancouver, Canada),

following the manufacturer’s instructions. Next, the CD4+ T cells were resuspended in the FACS staining buffer (2 mM EDTA and

0.5% FCS in PBS) at 108 cells per mL. The cells were stained with the following antibody cocktail: anti-CD4-APC (30 mL/mL final

volume, clone OKT4, Cat. no. 317416, BioLegend, San Diego, U.S.), anti-CD127-FITC and (30 mL/mL, clone eBioRDR5, Cat.
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no.11-1278-42, Thermo Fisher Scientific, Waltham, U. S.) and anti-CD25-PE (80 mL/mL, clone M-A251, Cat. no. 356104, BioLegend)

for at least 30min at RT in the darkness. The cells were washed copiously with FACS buffer and resuspended at 108 cells permL in full

medium (IMDM, 10% FCS) and kept overnight at 4�C. Immediately before sorting, the cells were stained with DAPI, to discriminate

between live and dead cells (Figure S1G). The CD4+, CD25high, CD127neg population corresponding to Treg lymphocytes was sorted

out for the downstream assays (Figures S1A and S1B). We sorted up to 3 million cells in order to carry out all of the downstream

assays. In instances where this number was not reached we prioritised RNA-seq, followed by H3K27ac and H3K4me3 ChIP-seq,

and finally ATAC-seq.

Sample summary
For all donors we were able to extract their sex based on their genotype and for 113 of the 124 donors we had access to their age

(Figure S1D). The majority of the donors (78%) were genetically assigned males and were aged over 57 years of age (±11).

FACS staining
To verify the FOXP3 expression in the sorted Treg populations after sorting, the cells were stained for expression of CD4, CD25 and

CD127 surface markers, and then stained with anti-FOXP3-BV421 antibody (5 mL/106 cells, clone 206D, BioLegend) using the

eBioscienceTM Foxp3/Transcription Factor Staining Buffer Set (Thermo Fisher Scientific), according to the manufacturer’s instruc-

tions. We observed that the sorted cells were on average 80% FOXP3 positive (Figures S1B and S1E).

To define the proportions of memory and naive cells in the CD4+ population, an aliquot of 106 cells after the CD4-enrichment were

resuspended in 100 mL FACS buffer and stained with a cocktail of anti-CD4-APC and anti-CD127-FITC antibodies (3 mL each),

anti-CD25-PE (8 mL) and anti-CD45RA-BV785 (4 mL, clone HI100, Cat. no. 304140, BioLegend), incubated at RT in the dark for at

least 30 min, washed copiously with FACS buffer and analysed on BD Fortessa. The majority of the isolated Tregs were memory

Tregs (median = 79%) (Figure S1F).

Culture and stimulation of isolated Tregs
Whole blood samples were obtained from ten healthy adults, aged from 22 to 39 years. Live regulatory T cells (CD4+ CD25high

CD127low) were isolated as described in Sample collection and Treg isolation. Cells were grown in Iscove’s Modified Dulbecco’s

Media (IMDM) (Life Technologies, Paisley, UK), supplemented with 10% human serum (HS), 50 U/mL penicillin and streptomycin

(Life Technologies) and 100 U/mL recombinant human IL-2 and incubated at 37�C in a humidified atmosphere of 5% CO2. Cells

were activated using PMA (5-10 ng/mL) with ionomycin (200 ng/mL) (Sigma-Aldrich) overnight (18 hours).

SNP genotyping and imputation
A total of 551,839 genetic markers were genotyped using the Infinium� CoreExome-24 v1.1 BeadChip by Illumina. After SNP QC

(MAF >10%, SNP call rate >95%, Hardy-Weinberg equilibrium (HWE) p value < 0.001) we retained 243,820 variants in our dataset.

Samples with call rate <95% were removed from the analysis. After quality control per individual, the total genotyping call rate

reached >99%. We performed imputation using BEAGLE 4.1 with a reference panel comprising the 1000 Genomes Phase 360

and the UK10K73 samples (modelscale parameter = 2). Following imputation we required allelic R-squared (AR2) R 0.8, HWE p

value < 0.001, and MAF >5% in both the analysed cohort and in the reference panel. We excluded 1,934 multiallelic polymorphisms

from further analysis which resulted in 5,761,739 variants in our final dataset. Of those, 617,318 were insertion-deletions (INDELs). All

genetic variant coordinates were lifted over to GRCh38.

Our samples clustered with the European populations included in the 1000 Genomes project (Figure S2F). We removed 1 sample

due to high relatedness (identity by state, pi_hat >0.2). We used VerifyBamID v1.0.061 with the genotype information along with all the

functional genomics sequencing assays (see below) to verify no sample swaps were present in the final dataset.

RNA-seq
For RNA-seq experiments, 0.5 3 106 sorted Treg cells were washed with ice-cold PBS and resuspended in TRIzol (Thermo Fisher

Scientific). After a standard phenol/chloroform isolation step, the total RNA contained in the upper, aqueous phase was further

purified with RNeasy Mini Kit (QIAgen, Hilden, Germany), according to the manufacturer’s instructions. The RNA libraries were

constructed using KAPA RNA Hyper-Prep Kit (Roche, Basel, Switzerland), following a standard automated protocol. The libraries

were multiplexed and sequenced at 75 bp PE on an Illumina HiSeq V4 to yield on average 57 million reads per sample.

ATAC-seq
ATAC-seq was performed according to protocol,74 with the following modifications. After sorting, the T cells were washed with ice-

cold PBS and resuspended in sucrose buffer (10 mM Tris pH 8, 3 mM CaCl2, 2 mM MgOAc, 1 mM DTT, 0.32 M sucrose, 0.5 mM

EDTA, 0.25% TritonX-100), followed by 5 min incubation on ice to isolate the nuclei. Isolated nuclei were washed once with 1x TD

buffer (Tagment DNA Buffer, Nextera DNA Library Prep Kit, Illumina, U.S) and resuspended in 50 mL 1x TD buffer containing

2.5 mL of Tn5 enzyme (TDE1, Nextera). The reaction was carried out at 37�C, mixing and then stopped by addition of 250 mL of

buffer PB (MinElute PCR Purification Kit, QIAgen, Hilden, Germany). The DNA was then purified on MinElute columns according

to the manufacturer’s instructions and eluted in 10 mL sterile ddH2O. The libraries were amplified using the NPM mix (Nextera
Cell Genomics 2, 100117, April 13, 2022 e3
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PCR Master Mix from Nextera DNA Library Prep Kit) and Index adapters i7 and i5 (Nextera Index Kit, Illumina, U.S), according to the

manufacturer’s instructions. The number of amplification PCR cycles for each sample was determined individually by performing a

qPRC reaction of 7.5 mL aliquote of themix with an addition of the EvaGreen dye (Biotium, Fremont, U.S.). The amplified libraries were

SPRI purified (upper cut 0.5x, lower cut 1.8 x) on a Zephyr G3 SPE Workstation (PerkinElmer, Waltham, U.S.), multiplexed and

sequenced at 75 bp PE on an Illumina HiSeq V4 to yield on average 112 million reads per sample.

H3K4me3 and H3K27ac ChIPmentation-seq
The ChIPmentation-seq (ChM-seq) protocol was performed on 100,000 sonicated cells according to the protocol presented in

Schmidl et al.75 and adapted to work with the iDeal ChIP-seq Kit for Histones (Diagenode, Liege, Belgium).

After sorting, the cells were resuspended in pre-warmed full medium (IMDM, 10% FCS) at 1-2 million cells per mL and allowed to

recover in the incubator (37�C, 5%CO2) for at least 30min. The cells were then fixed by addition of formaldehyde tomedium to a final

concentration of 1% and 5 min incubation at 37�C, followed by quenching with glycine for 5 min at a final concentration of 125 mM

min at RT with mixing. The cross-linked cells were subsequently washed twice with ice-cold PBS and snap-frozen by immersion in

liquid nitrogen.

0.5 3 106 frozen cells were resuspended in 250 mL buffer iL1 with proteinase inhibitors cocktail (iDeal ChIP-seq Kit for Histones,

Diagenode) and incubated for 10 min at 4�C on the Bohemian wheel. The samples were then spun down, and resuspended first in

buffer iL2 with proteinase inhibitors, then in iS1 with proteinase inhibitors, in both cases also for 10 min at 4�C. The cells were then

sonicated in buffer iS1 using the Bioruptor� Pico sonication device (Diagenode) to achieve fragment sizes distribution below 3 kb.

Sonicated chromatin from 100,000 cells was used for an overnight immunoprecipitation reaction with 1 mg of antibody, either

against H3K4me3 (Catalog No: 39915, Active Motif, Carlsbad, U.S.) or H3K27ac (Cat. no. C15410196, Diagenode).

The samples in deep-well plates were then washed twice for two minutes with 150 mL of each of the buffers: iW1, iW2, iW3 (iDeal

ChIP-seq Kit for Histones, Diagenode) and then with 10mMTris pH 8. All the washes in this protocol were performed using an Agilent

Bravo Automated Liquid Handling Platform (Agilent, Santa Clara, U.S.). After the second Tris wash, a ChIPmentation reaction on the

beads was conducted following the protocol outlined in Schmidl et al. Briefly, a mix containing 1 mL Tn5 from the Nextera kit was

added to the beads and incubated for 10 minutes with vigorous mixing at 37�C. Next, the reaction mix was removed using Bravo,

and additional washes were performed, two with buffer iW3, followed by two washes with buffer iW4. The enriched DNA was eluted

from the beads by incubation with 67 mL buffer iE1 (1 h, RT, vigorous shaking). 3 mL of iE2 buffer were then added to each sample and

the cross-linking was reversed by an overnight incubation at 65�C in a thermocycler.

The DNA was then purified twice using SPRI beads at 1.6x ratio using a Zephyr G3 SPE Workstation. The libraries were amplified

following the ATAC-seq library amplification protocol, but using NEBNext� High-Fidelity 2X PCRMaster Mix (New England Biolabs,

Ipswich, U.S.). Finally, the ChIPmentation libraries were sequenced to a depth of at least 13 million reads per sample and an average

of 75 million reads per sample.

QUANTIFICATION AND STATISTICAL ANALYSIS

RNA-seq data processing
Reads were aligned to the GRCh38 human reference genome using STAR62 and the Ensembl reference transcriptome (version 87).

Gene counts were performed using featureCounts tools from the subread package v1.5.163 and only assigned reads were used for

further processing (59.26% of reads were assigned; Figure S2D). We excluded short RNAs and pseudogenes from the analysis. We

quantile normalised the gene expression values and corrected for GC-content using the CQNmethod.76 We kept 12,059 genes with

average count per gene across all donors greater than 25.

Chromatin marks data processing
Readswere trimmed using skewer64 and aligned to theGrCh38 assembly of the human genome using bwa65 and employing themem

algorithm. Multi-mapping and duplicated reads were removed using samtools.66 For ATAC-seq data, reads aligning to themitochon-

drial chromosomewere also removed. Only readsmapping to autosomesweremaintained. Amedian of 30, 27 and 40million reads in

the ATAC-seq, H3K4me3 and H3K27ac passed this QC, respectively.

Peak calling was performed using MACS267 independently on each donor for quality control purposes. For ATAC-seq peaks were

called using the standard MACS2 model and specifying –nomodel –shift�25 –extsize 50 on fragment BED files (this is, both reads of

a pair were merged into a single fragment). We generated a combined treatment set per histone mark bymerging an equal number of

reads per donor to reach the combined merged input size of 223 million reads. H3K4me3 peaks were called using the standard

narrow peak MACS2 model, specifying -f BAMPE –keep-dup all, then we selected only the peaks with q-value < 0.01 and fold-

change greater than 2. H3K27ac broad peaks were called using the standard broad peaks macs2 model, specifying -f BAMPE

–broad –nomodel –extsize 146 –keep-dup all, then we selected only the peaks with q-value < 0.001 and fold-change greater than 2.

Samples with less than 10,000 peaks (median: ATAC 36,331, H3K4me3 22,815, H3K27ac 68,626), fraction of reads in peaks (FRiP)

lower than 10% (median: ATAC 23%, H3K4me3 52.64%, H3K27ac 63.9%) (Figure S2D), or, for ATAC-seq, an abnormal insert profile

(defined as a ratio of short inserts (<150 bp) over long inserts (>150) smaller than 1.5; average 2.03) were discarded. Additionally, the

samples that did not cluster with the corresponding group in principal component analysis (considering log2 transformed number of
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reads in genomic bins of 10,000 bp, after normalization by library length) were discarded from further analysis. Finally, a total of 73

(62%), 88 (79%) and 91 (78%) individuals passed these filters for ATAC, H3K4me3 and H3K27ac samples, respectively. Sixty-two

donors passed QC steps for all the tested genomic assays (RNA, ATAC, H3K4me3 and H3K27ac).

In order to define a consensus set of peaks per chromatin assay, we performed amerged peak calling combining reads from all the

donors. We downsampled each donor sample using samtools to 2 million fragments per ATAC-seq assay, 1.87 million read pairs per

H3K4me3 and 1.86 million read pairs per H3K27ac assay in order to reach similar read counts to the sequenced inputs. We used the

MACS2 parameters described above and specified –keep-dup all. Then, to ensure a sufficient number of reads per peak, only

ATAC-seq peaks with at least 10 reads in 80% of the samples, and ChM-seq peaks with fold enrichment R 2 and adjusted p

value < 0.001, were maintained in the final set. The consensus sets were 39,642 ATAC-seq narrow peaks, 40,285 H3K4me3

ChM-seq narrow peaks and 34,457 H3K27ac broad peaks. The peak overlap between the assays as calculated using bedtools

intersect, the distance to the closest transcription start site (TSS) is shown in Figures S2A and S2B). The median length was

523 bp, 794 bp and 4501.5 bp for the ATAC-seq peaks, H3K4me3 peaks and H3K27ac peaks, respectively. The median number

of read pairs in each peak (calculated using featureCounts -p -C -D 5000 -d 50) per sample amounted 37.95 in ATAC-seq, 16.34

in H3K4me3 ChM-seq and 123.38 in H3K27ac ChM-seq (Figure S2C).

We assayed 17, 8, 15 and 15 samples twice (same donorswere recruited at two different time points) for RNA, ATAC-seq, H3K27ac

ChM-seq and H3K4me3 ChM-seq, respectively. We observed high correlation between both technical (same donors different times)

and biological replicates (different donors) (R2 > 0.8) in all assays. We observed greater correlation between technical than between

biological replicates, as expected (Figure 2E).

In order to compare QTL effects between the Tregs and the naive CD4 T cells and monocytes in the BLUEPRINT dataset, we

combined the H3K27ac broad peaks called independently in each cell type into a consensus set of peaks. Overlapping peaks

were merged using the merge option implemented in bedtools.68

Genome browser data was constructed using the MACS2 -B flag and reads were normalised to signal per million. The fold-enrich-

ment was calculated using the input background and finally bigwigs were constructed using bedGraphToBigWig command from the

UCSC suite of tools.77 Coverage plots were generated using an adapted version of the wiggleplotr R Bioconductor package.78

Quantitative trait locus mapping (QTLs)
Prior to the QTL analysis we removed genes and peaks mapping to the MHC region (chr6: 20,000,000-40,000,000) and only kept the

autosomal chromosomes. We used linear regression implemented in the QTLtools69 software to map cis QTLs. For the gene

expressionwe used a 500 kbp cis-window around the gene, while for the three chromatinmark assayswe used a 100 kbp cis-window

around the defined peak. In chromQTL mapping we were directly assaying the chromatin features and we were focusing specifically

on those loci with chromQTL SNPs located in the controlled peaks, therefore we reasoned that a smaller window was more

appropriate.79 As covariates we used the top 13, 30, 22 and 33 principal components that each explained up to 1% of the observed

variance in the RNA, ATAC, H3K27ac and H3K4me3, respectively. We used the ‘‘–permute 10000’’ to obtain permutation p-values for

the top most significantly associated variant for each gene or peak. We then used eigenMT80 to correct for the number of genes or

peaks tested and used a cut-off of 5% FDR, as determined by power analysis (Figure S7).

To perform comparative analysis between Treg andmonocytes and naive T cell eQTLs and actQTLs we downloaded the RNA-seq

and ChIP-seq datasets generated by the BLUEPRINT consortium24 from EGA (EGA: EGAD00001002671, EGAD00001002674,

EGAD00001002673, EGAD00001002674) and processed the data using the same workflow as described above. We included the

top 16 and 14 PCs for these datasets in the monocytes and naive T cells eQTL analyses respectively. We included the top 13 and

17 PCs for these datasets in the monocytes and naive T cells actQTL analyses, respectively. We chose this dataset because Tregs

and naive T cells are closely related cells of adaptive immunity, while monocytes fall into amore distant cell type of the innate immune

arm. Furthermore, the datasets are of similar size (197 and 169 individuals) to the Treg dataset and all the individuals were of British

origin.

We used the following three criteria to define an eQTL and actQTL as cell type specific when comparing monocytes, naive and

regulatory T cells: (i) the gene was expressed in one cell type only or the peak was only present in one cell type, (ii) the gene or

peak was a significant QTL in one cell type (FDR %0.05) and not in the other (FDR >0.2) and (iii) if the same gene or peak was a

QTL in both cell types and the LD between the top QTL variant in regulatory T cells and any of the significant associated signals

in naive T cells was lower than R2 < 0.2.

Allele-specific expression analysis
We used ASEReadCounter72 from the Genome Analysis ToolKit (GATK) to count the number of allele-specific fragments overlapping

each variant in the RNA-seq data. We used ‘-U ALLOW_N_CIGAR_READS -dt NONE –minMappingQuality 10 -rf MateSameStrand’.

We filtered out variants covered by less than 8 reads, as well as variants that fell within regions with lowmappability or that displayed

mapping bias using simulated data, as outlined in Castel et al.72 annotated each variant to its overlapping gene. Significant allele-

specific events were calculated using a binomial test, where the null was defined by taking the average reference ratio across all

heterozygous sites for each sample.
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Colocalization of QTL signals with immune disease GWAS
We used coloc v2.3–131 with the default priors to test for colocalization betweenmolecular QTLs and GWAS SNPs listed in Tables S2

and S3. We included in our analysis the summary stats for the genome-wide association studies of 14 immune related diseases:

allergic diseases (ALL),39 ankylosing spondylitis (AS),81 asthma (AST),82 celiac disease (CEL),83 multiple sclerosis (MS),84 primary

biliary cirrhosis (PBC),85 psoriasis (PS),86 rheumatoid arthritis (RA),87 systemic lupus erythematosus (SLE),88 type 1 diabetes

(T1D),89 vitiligo (VIT),90 inflammatory bowel disease (IBD), Crohn’s disease (CD) and ulcerative colitis (UC).91 We selected these

diseases because they had more than 40 GWAS associated independent loci at p-value < 10�5. As controls we tested two non-

immunological traits with a similar number of loci, type-2 diabetes (T2D)92 and depression (DEP).93 CD, UC and IBD were counted

as a single disease when counting for number of colocalizing diseases per gene or peak. Similarly for ALL and AST. Coloc tests five

hypotheses for colocalization. Hypothesis zero (PP.H0) tests whether there is any association at all, PP.H1 and PP.H2 test whether

there is an association with just one or the other study, PP.H3 tests whether the signal fromGWAS andQTL is due to two independent

SNPs, and PP.H4, test if the association between GWAS and QTL is due to a shared causal variant.

Prior to colocalization, we repeated the QTL mapping in chromatin features using a 500 kbp window, to run coloc at a larger

window. We ran coloc on a 400-kb region centered on each lead eQTL and chromQTL variant that was less than 100 kb away

from a GWAS variant (nominal p value < 10�5). We only kept the colocalizations between QTLs and non-HLA GWAS loci if there

were more than 50 SNPs tested. To claim a true colocalizing signal we required PP.H4 to be equal or greater than 0.83. In order

to decrease the number of false positive findings in our Treg dataset, we focused on the colocalization results with common immune

disease variants (MAF >10%). Colocalizations between Treg QTLs and disease GWAS signals were the lead QTL variants and the

lead GWAS variant had R2 LD < 0.5 were discarded. For GWAS loci with 10�5 > p value > 5 3 10�8, and colocalizing with Treg

QTLs we verified in the original publications that there was a replication cohort and the final GWAS p value was lower than genome

wide significance.

Gene expression variance deconvolution
To estimate the contribution of the genetic component and chromatin marks to the transcriptome variance we fitted a multivariate

linear model to the expression of each gene. Therefore, the dependent variable in the model was the gene expression, while the

independent variables were the genetic variants and/or chromatin mark. We regressed out the PCs included in the analysis of

each chromatin mark previous to model calculation. As described in de Bakker et al.,94 we performed an initial variable selection

step by identifying the genetic variants or chromatin features in a +/�150 kb window that significantly correlated with gene expres-

sion (Spearman p value < 0.05). In order to keep only independent variables in the set of predictors, in the instances where pairs of

genetic variants or chromatin features were correlated (Spearman correlation >0.4), we removed the variable with a lower correlation

with gene expression. To determine the total variance explained we used the adjusted R2 of the model where we included all the

independent variables from genetic variants and chromatin features. The individual contribution of genetic variants or each chromatin

mark, or combination of the genetic variants and chromatin marks, was obtained by subtracting the R2 estimates of the models that

excluded genetic variants or individual chromatin marks, or their combinations, from the R2 of the model with the total variance

explained by the combination of genetic variants and all chromatin marks.

SNP functional annotation
All the lead variants (and their proxies, R2 > 0.8) of every significant caQTLs, actQTLs, and promQTLs were annotated if a variant was

overlapping an ATAC, H3K27ac or H3K4me3 peak (Figure 1D shows the number of polymorphisms included in the different

categories, categories are mutually exclusive and a variants is assigned to the category with most functional support).

LD loci definition and classification
A LD locus comprises a ±150 kb window around the region defined by the lead and proxy variants (R2 > 0.8) for each GWAS signal

that colocalizes with a TregQTL. Loci with significant colocalization signals were classified as: i) Tier 1, at least one colocalization with

an eQTL and at least one colocalization with a chromQTL; ii) Tier 2, at least one colocalization with an eQTL, no colocalization with

chromQTL; and iii) Tier 3, at least one colocalization with a chromQTL (Figure 3; Tables S2 and S3). Loci in Tier 1 and Tier 3 in which

variants overlapped with the regulated (i.e. colocalizing) chromatin QTL peak were prioritized as functional.

Known drug tractability evidence analysis
We used the Open Targets Platform to extract information on drugs that support target-disease associations provided by

ChEMBL.41 We retrieved the ‘known_drug’ evidence for all genes via the Open Targets API using the python client (Open Targets

data release February 2020). When gathering data fromOpenTargets we summarized the extracted data based on the website’s rec-

ommendations (https://platform-docs.opentargets.org/target/tractability).

Differential gene expression analysis
RNA-seq reads were obtained and processed as described in RNA-seq and in RNA-seq data processing. Genes with at least 25

copies in at least three samples were kept, for a final table of 16,645 genes. Differential expression analysis was performed using
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DESeq2_.1.1471 Wald test, setting alpha at 0.05 and lfc at 1. Differentially expressed genes that mapped within a +/� 150 kb window

from a chromQTL in Tier 3 loci were annotated as candidate stimulation specific eQTL genes.

FANTOM5 CAGE data integration
The CAGE data in FAMTOM535 provides predefined human enhancer-TSS pair sets (note that the use of one enhancer can be corre-

latedwith the TSS expression levels of several genes and vice-versa). Using ‘‘bedtools intersect’’ we defined the enhancers that over-

lapped Treg colocalizing chromQTL peaks. Then, we linked the Treg chromQTLs to the corresponding TSS.

Transcription factor binding site (TFBS) enrichment analysis
Weused TFmotifView,70 which enables the user to input a set of chromosomal regions and perform a TFBS enrichment analysis on all

TFs included in the JASPAR2020 database. This tool uses a custom set of regions as background. We used all Treg colocalizing

actQTLs and compared them to actQTLs shared with naive CD4+ T cells. We followed-up on the set of enriched TFs by using

g:Profiler,95 to identify enriched pathways.
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