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SUMMARY

In light of the increasing vulnerability to drought occurrences and the heightened impact of drought-
related disasters on numerous communities, it is imperative for drought-sensitive sectors to adopt proac-
tivemeasures. This involves the implementation of early warning systems to effectivelymitigate potential
risks. Guided by Toulmin’s model of argumentation, this research proposes a framework of eight intercon-
nected modules introducing Fourth Industrial Revolution technologies to enhance drought early warning
capabilities. The framework emphasizes the Internet of Things, drones, big data analytics, and deep
learning for real-time monitoring and accurate drought forecasts. Another key component is the role of
natural language processing in analyzing data from unstructured sources, such as social media, and re-
views, essential for improving alerts, dissemination, and interoperability. While the framework optimizes
resource use in agriculture, water, and the environment, overcoming impending limitations is crucial;
hence, practical implementation and amendment of policies are necessary.

INTRODUCTION

Drought early warning systems (DEWS) are an essential part of drought risk management as they connect risk-related information to a

communication system to provide advance notifications for effective drought preparation and responses.1 The emergence of DEWS can

be traced back to the 1980s, a period marked by severe famines in Sudan and Ethiopia that highlighted the need to anticipate and prevent

future disasters.2 Before 1995, DEWS tended to be reactive, focusing on monitoring and response only after a drought event had already

begun.3 Common to these systems was the inclusion of drought indices that use ground-based meteorological variables and field reports;

yet, this approach was later proven to be ineffective, primarily because it was subjective and not immediately available, prompting the need

for improved forecasting.4

Over time, DEWS have evolved to incorporate a wider range of information and services, making them more accessible to end-users.5

Since their conception, remote sensing has been an integral part of these systems, enabling the monitoring and detection of drought con-

ditions across many regions.6 Subsequently, advancements in computer modeling and data analysis have enabled DEWS to incorporate a

wider range of factors, such as climate variability, socio-economic conditions, and land use patterns, into their forecasts.7,8

During the 2000s, emerging knowledge and technical tools for the assessment of risks, predictions, andwarnings improved.9 The improve-

ments were largely the result of a greater understanding of natural hazards,10 together with the use of the modern information and commu-

nication technologies of the Digital Age.11 This allowed for the development of web-basedDEWS12 that could utilize internet-based commu-

nication and remote devices such as cell phones and laptop computers. Subsequently, an enormous amount of data were generated and

consumed regularly across all industries, creating a foundation for the Fourth Industrial Revolution (4IR), also called Industry 4.0.11

Technologies of the 4IR, which were introduced around 2010, are currently making a significant impact in all areas of study, with industrial

applications being redefined and technology advancing in every sector.13 Hence, there is an increasing effort to explore the application of

these technologies and how they can be utilized to bring about positive change.14 For instance, David et al.15 established that 4IR technol-

ogies have had an impact on the nexus of water, energy, and food, leading to the adoption of cleaner production methods and resource

management strategies. In the water and sanitation sector, the use of 4IR technologies has been shown to be effective in providing stake-

holders with timely, relevant information, while also reducing costs by eliminating the need to build or use physical versions of modeled

resources.16

Recently, disaster management has been identified as an area with potential for the application of 4IR technologies.14,17,18 This integration

has garnered significant interest within the field, particularly the use of the Internet of Things (IoT) during acute disasters such as cyclones,
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Figure 1. Framework applied to analyze and construct the argument for an integrated 4IR-based DEWS, according to Toulmin’s model of

argumentation20
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earthquakes, and floods that require rapid emergency responses.19 However, concerning drought, which tends to have a gradual onset, there

is a lack of research connecting the application of these technologies to DEWS. To bridge this gap, the study explored the potential role of

fourth industrial revolution-based drought early warning systems (DEWS 4.0). Through logical assessments of the technological landscape

and DEWS, the study elucidated the research that will be needed for the practical implementation of this framework to enhance the overall

effectiveness of DEWS in addressing related risks and vulnerabilities. Together, the findings provide a perspective of the prospects, implica-

tions, and challenges for the incorporation of 4IR-based DEWS for drought risk management.
METHODOLOGICAL APPROACH

The research followeda conceptual approach to generate theoretical perceptions by employingToulmin’smodel of argumentation (Figure 1).

This model offers a systematic approach to examining and constructing logical arguments based on threemain components: claim, grounds,

and warrant.20 Extensive research has been conducted utilizing this model in various fields, including education,21 policy science,22 environ-

ment,23 and disaster management.18 The model suggests that a claim, which is the main proposition being presented, is warranted when it is

supported by the appropriate grounds.24 Here, the claim was that ‘‘4IR technologies should be integrated with DEWS.’’ The grounds were

established to demonstrate that these technologies have innovative capabilities relevant to improving DEWS. The warrant provided the

logical reasoning and explanation for the connection between the grounds and the claim. The remaining components of the model are addi-

tional evidence that supports thewarrant (backing), the degree of certainty of the claim (qualifier), and the opposing viewpoints that challenge

the claim (rebuttal).20

To establish the grounds, a bibliometric analysis was conducted by reviewing studies that discuss existing theories and concepts related to

4IR technologies and DEWS. A rigorous process of retrieving literature through a Boolean search was applied to published journal articles,

conference proceedings, books, and book chapters held in the Web of Science database in April 2024. The search used the following query:

‘‘fourth industrial revolution OR digitization OR cybersecurity OR blockchain OR virtual reality OR UAV [unmanned aerial vehicle] OR un-

manned aircraft systems OR remotely piloted aircraft system OR 3D printing OR smart cities OR drones OR Industry 4.0 OR quantum

computing OR robotics OR deep learning OR artificial intelligence OR IoT [Internet of Things] OR Big data OR cloud computing ORmachine

learningORdisruptive technologiesOR 4IRORUnmanned aerial vehiclesORmicro air vehiclesOR small unmanned aircraft systemsORweb 3

OR cyber physical systems OR 5G (Keywords) AND drought (Title)’’.

The search produced 297 documents that were extracted and imported into VOSviewer v. 1.6.19 software (https://www.vosviewer.com/),

which is designed for analyzing and visualizing bibliometric data.25 The extracted data were analyzed to identify the most prominent research

focusing on the co-occurrence of keywords within the scientific literature pertaining to 4IR and DEWS. For an inclusive analysis, the next step

was to search for keywords leading to the identification of all relevant technologies. Both logic and inductive reasoning techniques were uti-

lized to form the warrant, and thus elements of a DEWS 4.0 were identified on the basis of existing DEWS components, 4IR technologies, and

innovative requirements. Finally, the benefits and challenges were collated to illustrate the degree of certainty and limitation of the claim.
MAPPING THE TECHNOLOGICAL REQUIREMENTS FOR DEWS 4.0

Adensitymap of keywordswithin the drought research literature related to the application of 4IR technologies was constructed to facilitate an

enhanced understanding of the patterns of research focus in the field (Figure 2). Keywords with a high density included machine learning,

drought, prediction, remote sensing, deep learning, and artificial intelligence, whereas keywords with a low density included cloud

computing, IoT, fog computing, UAV, grain yield, drought stress, and climate change. These findings highlight prominent themes as well

as areas that are currently less extensively addressed in the context of 4IR technologies applied to drought research, prompting further

investigation.

The selection of technologies was informed by a systematic literature review, content analysis, and comprehensive understanding of the

essential requirements of a DEWS, as outlined in the literature. The identified technologies, including IoT, big data analytics (BDA), cloud
2 iScience 27, 110066, July 19, 2024
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Figure 2. Density map of keywords within the drought research literature related to the application of 4IR components

Red indicates the highest density and blue the lowest.
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computing, artificial intelligence (AI), robotics, nanotechnology, extended reality (XR), and blockchain, were considered integral components

based on their relevance to meeting the specified requirements (Table 1).
INTERCONNECTED FRAMEWORK MODULES

As outlined by the United Nations, all four fundamental components of DEWS—knowledge of risk, monitoring and warning, dissemination,

and response—must be fully embraced to ensure the system’s effectiveness.33 By considering these components and drawing from the ca-

pabilities of the applicable 4IR technologies, a conceptual framework comprising eight DEWS 4.0 modules was constructed (Figure 3). In this

context, a module refers to a distinct element within a system that serves a specific function or performs a particular task. The following sec-

tions describe each of themodules to demonstrate their ability to address drought challenges and show the various technologies, processes,

and intended effects to fulfill the objectives of the overall system.
Module 1: Advanced analytics

The advanced analyticsmodule is essential for analyzing historical and real-time data to gain an understanding of drought severity,34 patterns,

trends, and potential impacts for risk and vulnerability assessments.35 This module emphasizes the application of innovative algorithms to

combine data into integrated sets and remove errors and outliers to facilitate analysis. The BDA techniques can identify patterns, correlations,

and anomalies that may not be apparent through traditional data-processing methods,36 playing a significant role within the advanced an-

alytics module by handling the substantial computational requirements of data analysis and processing,19 and thus enabling effective data

integration, pattern recognition, and anomaly detection.

The use of AI techniques, such as machine learning and deep learning,37 can be directly integrated into the advanced analytics module to

model droughts and identify trends and anomalies. Natural language processing, a subset of AI, can process human language to extract in-

sights from unstructured data sources such as social media feeds, news articles, and user reviews.38 Traditionally, high-performance

computing required specialized on-premises infrastructure with powerful hardware and dedicated resources.39 Now, cloud computing

can provide the high-performance computing and storage capabilities needed for processing such big data,40 benefiting DEWS 4.0 by

enabling efficient and timely data analysis.
Module 2: Digital archive

Given the vast amount of data that will be generated in the system, the digital archive module provides a comprehensive repository of his-

torical data, including drought occurrences, impacts, and responses, facilitating a profound understanding of drought dynamics, and

enabling effective mitigation strategies. The capacities of 4IR technologies, especially via the functions of AI, BDA, cloud computing, and

blockchain, can benefit the gathering, compiling, and retrieval of diverse datasets related to drought. By employing AI algorithms, this mod-

ule ensures that DEWS 4.0 can automatically identify and categorize data to generate comprehensive metadata on important details such as

location, date, and drought severity levels. This would allow users to efficiently navigate, retrieve, and explore historical drought records, not

only relying on traditional search parameters but also benefiting from the system’s ability to adapt and learn over time. The adaptive learning

function ensures that the archiving process remains dynamic, incorporating evolving patterns and trends in drought data, propelled by the
iScience 27, 110066, July 19, 2024 3



Table 1. Relevance of 4IR technologies necessary for developing DEWS 4.0

Technology Relevance
i. Internet of Things Automated exchange of data among objects through sensor networks without human intervention.26

ii. Big data analytics Management of large volumes of data.19

iii. Cloud computing Access to and use of resources hosted on remote servers managed by a cloud service provider.27

iv. Artificial intelligence Enables intelligent systems capable of learning, reasoning, and making decisions on the basis of data and experiences.28

v. Robotics Performs tasks autonomously or in collaboration with humans through intelligent mechanisms and algorithms.29

vi. Nanotechnology Enables the development of innovative materials and applications at the nanoscale.30

vii. Extended reality Provides users with the ability to interact with computer-generated content within a real-world context.31

viii. Blockchain Ensures secure and transparent record-keeping across various applications.32
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advanced analytics module. Moreover, the automated process eliminates the need for manual input, significantly reducing the potential for

errors and ensuring a consistent and standardized dataset.

Another key aspect of this module is the use of cloud computing, which provides the necessary infrastructure for data processing and stor-

age.41 The flexibility of cloud technology allows fluxes in data volume, enhances accessibility of historical records, and further promotes

collaborative efforts among stakeholders, by securely interacting with the data from diverse locations and devices. In such situations, a block-

chain enables the security and transparency of historical records, by verifying and tracing changes in the data.42 For instance, if multiple users,

each contributing valuably to the system, need to collaborate, the cloud infrastructure would facilitate seamless sharing and retrieval of

archived data, while the blockchain technology ensures that data are cryptographically secured within a decentralized registry, preventing

unauthorized modifications.
Module 3: Smart data networks

The smart data networks module provides a network of interconnected sensors and devices to facilitate activities such as collecting, storing,

and retrieval of drought-relevant data. These activities are accomplished by various technologies, including the IoT, robotics, nanotech-

nology, and cloud computing, to enhance data collection and storage. Through strategically positioned IoT sensor nodes, real-time data

describing soil moisture, weather, streamflow, and groundwater level can be collected.17 In addition, connected wearable devices equipped

with environmental sensors can be used by various stakeholders to collect localized data to centralized systems such as IoT platforms, cloud

computing services, or dedicated monitoring centers.43 Moreover, nanosatellites equipped with nanosensors can capture high-resolution

images to collect valuable data on vegetation health, land cover, and water resources.30 These sensors, either used individually or integrated

with IoT sensor nodes, offer sensing capabilities with improved sensitivity, selectivity, and miniaturization.44

To maximize data collection capabilities, UAVs, a subfield of robotics, will play a significant role. Equipped with remote sensing technol-

ogies, UAVs offer high spatial resolution and real-time data collection, enabling efficient data gathering from remote or inaccessible areas.45

Moreover, through deep learning and cognitive computing algorithms of AI,37 DEWS 4.0 can automatically identify specific objects within

images or videos to assist decision-makers in monitoring and assessing the impact of drought events. This expansion of coverage and

data type will increase the overall amount of data to be processed and transmitted for DEWS 4.0. Thus, the collected data will need to be

wirelessly transmitted to a cloud-based platform for further processing and analysis. Cloud computing offers scalable and cost-effective stor-

age and computing resources, ensuring efficient handling of the large volumes of data.46 After the collection and processing, the use of BDA

becomes crucial, allowing the system to continuously store and analyze incoming data streams from various sources.41 This ability allows the

system to provide real-time updates on drought conditions by detecting significant changes in the indicators of drought onset, severity, and

end, as well as potential risks during a drought.
Module 4: Predictive modeling

The predictive modeling module uses predictive analytics techniques to develop accurate drought predictions. Predictive models are devel-

oped by using AI techniques, including machine learning and deep learning, which identify complex patterns for accurate forecasts.47 The

model development process involves using algorithms such as regressionmodels,48 support vectormachines,49 random forests,50 and neural

networks51 to predict or estimate drought conditions on the basis of available data. For instance, with AI, DEWS 4.0 can analyze historical

rainfall, temperature, and river flow data to predict water availability and anticipate water shortages swiftly by continuously learning from

real-time data.

By processing large datasets using BDA and cloud computing, the predictive modeling module can create predictive models and fore-

casting algorithms that consider diverse datasets. Cloud computing provides the necessary computational power and storage capacity to

handle the extensive data-processing and model-training requirements of predictive modeling. This integration of real-time model analysis

and cloud computing capabilities ensures that DEWS 4.0 can respond swiftly to changing environmental conditions and provide accurate and

dependable predictions.
4 iScience 27, 110066, July 19, 2024



Figure 3. Conceptual framework of DEWS 4.0 outlining relationships amongmodules and their contributing technologies with respect to the four main

components of DEWS
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Module 5: Data-driven alerts

The data-driven alerts module allows for the generation of customized drought warning alerts. Although the module is founded on the func-

tionalities of drought forecasting and monitoring, at its core, it uses the capabilities of 4IR to enhance the accuracy, speed, and personaliza-

tion of these alerts. Integrating innovative technologies such as AI, BDA, and cloud computing, ensures that stakeholders receive real-time,

tailored alerts that can be used for effective drought response and mitigation efforts. The application of AI techniques such as machine

learning allows the system to continuously process real-time data from various sources and identify early indicators of drought onset, severity,

and end, as well as potential risks during a drought, which can then be used to generate alerts.

To enhance the alert generation process, cognitive computing techniques can be used to process unstructured data sources. By incorpo-

rating this technology, DEWS 4.0 can automatically analyze real-time data and extract information relevant to drought management. To

further personalize recommendations, the module integrates machine learning algorithms to categorize users into different segments based

on their characteristics and historical interactions with the system. This deep understanding of the social and environmental impacts of

drought enriches the customized alerts with valuable human context and sentiment analysis.52 However, the large volumes of real-time

data generated will require robust BDA techniques to efficiently process, analyze, and obtain significant information. Here, cloud computing

will play a key role in providing the necessary computational power and storage capacity53 to ensure the timely delivery of real-time alerts and

eliminate delays in responses to evolving drought conditions.
Module 6: Interactive communication

The interactive communication module is another critical component within DEWS 4.0, utilizing the capabilities of the 4IR to modernize the

presentation and understanding of drought information. Through innovative technologies, it extends beyond visuals, as it can employ a com-

bination of audio, and tactile visual elements to create multi-sensory representations such as interactive maps and voice-activated query sys-

tems to enhance the user experience by maximizing the impact of wide-ranging representations. By utilizing BDA, this module can effectively

transform complex data into informative visuals such as dynamic maps, charts, and graphs that display real-time and predictive drought in-

formation.54 Going beyond visuals, AI offers the module advanced image recognition and natural language processing capabilities, allowing

the system to categorize and interpret images, extract information from textual data, and structure it in a way that can be conveyed through

speech.

The use of cognitive computing also provides language-translation capabilities, ensuring that DEWS 4.0 can automatically translate text or

speech from one language to another.55 This facilitates the processing of multilingual data, providing real-time translations that allow users to

make informed decisions regardless of language barriers. The module’s use of an application programming interface, in conjunction with

cloud-based systems and other technologies, acts as a link for data sharing and collaboration between stakeholders, enabling them to ac-

quire and incorporate drought information into their own platforms or software systems. Thus, a blockchain can serve as a trusted platform for

data sharing, making collaboration more efficient by verifying the authenticity of the shared data.42 Furthermore, blockchain-based smart

contracts can be used to govern data-sharing agreements.
iScience 27, 110066, July 19, 2024 5



Figure 4. DEWS 4.0 framework guidelines for application
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Module 7: Scenario planning

The scenario planningmodule visualizes drought-related data to allow stakeholders to simulate drought scenarios, interact with the data, and

assess the impact of different measures on responses and preparedness. It connects a range of innovative technologies, including XR, BDA,

AI, and cloud computing. XR, comprising virtual reality and augmented reality, is a key 4IR technology that offers interactive visualizations in

3D and contextual environments.56 By examining different scenarios, decision-makers can identify themost vulnerable areas, assess resource

allocation needs, and implement timely interventions to mitigate the effects of drought on their regions.

The module further benefits from the use of BDA and AI techniques to process complex datasets and identify patterns within data,

enhancing the accuracy and relevance of the generated scenarios.41 The system’s cloud-based infrastructure ensures continuous collabora-

tion, while an application programming interface facilitates data exchange between systems, enhancing the interoperability of the scenario

planning module with the other modules and systems. Through cognitive computing, the system can efficiently process large volumes of un-

structured data, saving time for decision makers who need up-to-date information.
Module 8: Adaptive learning

The adaptive learning module uses advanced algorithms to enable DEWS 4.0 to continually enhance its performance and accuracy through

self-adjustment and self-optimization. This innovative approach allows the system to adapt its strategies and responses dynamically,

increasing its efficiency in mitigating the impacts of drought. It further ensures that stakeholders receive training that suits their specific re-

quirements. Key 4IR technologies that directly contribute to the success of the adaptive learning module include AI, BDA, and cloud

computing. The integration of AI and BDA techniques allows the module to learn from historical data for continuous improvement. For

example, after every drought, the module gathers data on user responses, and the algorithms identify the most successful and efficient stra-

tegies for each region, creating a knowledge base of best practices.

Although adaptive learning is common in the field of education,57 it has significant potential applications in DEWS 4.0 for enhancing the

learning and response capabilities of stakeholders. AI plays a crucial role in this process, as it allows the module to personalize training

programs for end-users, decision makers, and other stakeholders involved in drought responses. Furthermore, cloud capabilities ensure

that stakeholders can receive training regardless of their location.58 The application of cognitive computing allows for the analysis of qual-

itative data, such as surveys or impact feedback forms, to identify recurring themes related to specific drought response measures, which

may also be crowdsourced. This technology enhances the module’s ability to understand and learn from stakeholders’ interactions.
APPLYING THE DEWS 4.0 FRAMEWORK AND FUTURE DIRECTIONS

The DEWS 4.0 framework is aimed at significantly improving how drought is managed within drought-sensitive sectors in any region, thus

revolutionizing the field of DEWS during the 4IR era. When compared to previous industrial revolutions, the 4IR provides important techno-

logical improvements such as speed, accuracy, and automation.15 The framework guidelines offer practical applications for implementing

DEWS 4.0 in the real-world context of drought prediction, monitoring, and response (Figure 4). However, the actual outcomes of DEWS

4.0 will vary depending on the implementation and integration of the system within existing governance structures, policies, and socio-eco-

nomic contexts.

The study assessed the proposed framework’s potential applications across diverse sectors by considering various cases (Figure 5). For

instance, by using machine learning techniques, such as gradient boosting and outlier detection techniques to predict soil water require-

ments, Campos et al.59 identified significant savings (56.4%–90%) in irrigation water requirements, displaying the technologies’ impact on
6 iScience 27, 110066, July 19, 2024



Figure 5. Applications of DEWS 4.0 in various sectors
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accurately optimizing water usage for agricultural practices. In Florida, Gong et al.60 demonstrated the use of real-time data and advanced

modeling techniques to predict groundwater levels one, two, or threemonths in advance, while a smart flood early warning system inMalaysia

forecasted flood conditions within 9 h of the flood’s occurrence to facilitate proactive management strategies.14 This demonstrates the po-

tential to enhance disaster management interventions and further protect ecosystems by applying the efficient processing methods pro-

posed in this framework. For climate change resilience,61 demonstrated the transformative potential of AI in revolutionizing weather fore-

casting, climate monitoring, and prediction.

During the shift from traditional DEWS to DEWS 4.0, there will likely be challenges to overcome such as potential pressures on compu-

tational resources and the need for faster data processing and reducing operational costs (Table 2). Another possible limitation lies in the

inconsistencies of internet connectivity due to unequal infrastructure development and socioeconomic factors. Even in regions where the

network is considered reliable, receiving alerts through multiple channels can overwhelm users with a lot of messages. Thus, ensuring equi-

table scalability during droughts remains a critical challenge that DEWS 4.0 must address. Furthermore, cybersecurity measuresmust form an

integral component of policies to protect sensitive information.11 Policy frameworks should advocate for a balanced approach, wherein tech-

nological advancements blend with human-driven responses. Such a holistic approach would lay the foundation for a more resilient, respon-

sive, and sustainable system.
Table 2. Potential benefits and challenges of implementing DEWS 4.0

Module Benefits Challenges

Advanced analytics Advanced analysis with reduced human error. Need for skilled data scientists.

Digital archive Dynamic techniques for collecting, storing and

accessing historical data.

Complexities in ensuring the integrity and preservation of

long-term data.

Smart data networks Enhanced sensor integration and automation

for early drought detection.

Equipment maintenance and network discrepancies.

Predictive modeling Improved forecasting accuracy. Increased operational costs.

Data-driven alerts Consistent and tailored alerts. Complexities in processing and understanding crucial information.

Interactive

communication

Interoperability and practical access to information. Inconsistencies in internet connectivity, digital literacy, and

technology fatigue.

Scenario planning Accurate and timely interventions to mitigate

drought effects.

High initial costs and limited technical expertise, potentially

delaying module use.

Adaptive learning Targeted response allocation and enhanced

capacity building.

May overlook emerging strategies owing to the use of

historical information.
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