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Abstract

Visual attention can dramatically improve behavioural performance by allowing observers to 

focus on the important information in a complex scene. Attention also typically increases the 

firing rates of cortical sensory neurons. Rate increases improve the signal-to-noise ratio of 

individual neurons, and this improvement has been assumed to underlie attention-related 

improvements in behaviour. We recorded dozens of neurons simultaneously in visual area V4 and 

found that changes in single neurons accounted for only a small fraction of the improvement in the 

sensitivity of the population. Instead, over 80% of the attentional improvement in the population 

signal was caused by decreases in the correlations between the trial-to-trial fluctuations in the 

responses of pairs of neurons. These results suggest that the representation of sensory information 

in populations of neurons and the way attention affects the sensitivity of the population may only 

be understood by considering the interactions between neurons.

Introduction

The responses of sensory neurons are variable, and laboratory studies typically deal with this 

variability by averaging responses to many stimulus presentations. In the real world, 

however, people and animals must respond to individual stimulus events, and the brain is 

thought to compensate for neuronal variability by encoding sensory information in the 

responses of large populations of neurons. To understand the way sensory information 

guides behavior in everyday life, we need to understand the way information is encoded in 

populations of neurons.

One way to identify the important aspects of a population code is to look at the differences 

between the neuronal representation of a sensory stimulus when it is used to guide behavior 

and when it is behaviourally irrelevant. Tasks that control attention provide a powerful way 

to manipulate behavioural relevance. Attention allows observers to select the most important 

stimuli and greatly improves perception of the attended location or feature. Attention 
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modulates the firing rates of sensory neurons, typically increasing responses to attended 

stimuli 1–4. This increased rate of firing acts to improve the signal-to-noise ratio of 

individual neurons 5, 6, and a recent study found that attention can cause a small additional 

reduction in the mean-normalized variance (Fano factor) of the responses of some neurons 

in visual area V47. However, the net effect of attention on the signal-to-noise ratio of single 

neurons is modest, suggesting that attention causes large improvements in psychophysical 

performance by affecting population responses in ways that cannot be measured in single 

neurons.

Attention could also alter the reliability of neuronal representations by affecting the amount 

of noise that is shared across a population of neurons. Variability in a population depends in 

part on the variability of single neurons, but can depend greatly on the extent to which 

variability is shared across the population. The effect of correlated variability on population 

sensitivity depends on the way in which the population is read out 8, 9, but its effect can be 

far greater than the effect of independent variability of single neurons. If the noise in 

individual neurons is independent, averaging the responses of many neurons will lead to a 

very accurate estimate of the mean, no matter how noisy the individual neurons are. If, 

however, there are positive correlations in the trial-to-trial fluctuations of the responses of 

pairs of neurons, then the shared variability can never be averaged out, leading to a more 

variable (and less accurate) estimate of the mean activity in the population 10–12.

Results

We investigated the effect of attention on both single neuron responses and correlated 

variability by recording from populations of neurons in visual area V4 using chronically 

implanted microelectrode arrays in two rhesus monkeys (Macaca mulatta). Each animal had 

two arrays, allowing us to monitor populations of neurons in both hemispheres 

simultaneously. Figure 1A shows the centers of the multiunit receptive fields we recorded 

from one of our monkeys. The diameter of V4 receptive fields is approximately equal to 

eccentricity 13, 14, so the receptive fields the neurons recorded in a hemisphere typically 

overlapped at least partially. We recorded from 376 single units and 2746 multiunit clusters 

during 41 days of recording (including 66,578 simultaneously recorded pairs in the same 

hemisphere and 59,990 pairs in opposite hemispheres). We did not find any important 

differences between single and multiunits or between the two monkeys and our population 

analyses require large neural populations, so we combined single and multiunits here (see 

Supplementary information). However, the statistics in the text for single units are based on 

a subset of 187 single units that we are confident are unique (if there was a single unit on a 

given electrode on multiple days, it was only counted once).

The monkeys performed an orientation change detection task in which spatial attention was 

manipulated (Fig 1B). Two Gabor stimuli flashed on and off and the monkey’s task was to 

detect a change in the orientation of either stimulus. We manipulated attention in blocks by 

cueing the monkey as to which stimulus was more likely to change (see Methods). Each day, 

the location, size, orientation, and spatial frequency of the Gabors were optimized for a 

selected single unit in each hemisphere. The two stimuli were therefore different, so 

directing attention to one of the two stimuli likely modulated feature-based as well as spatial 
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attention. Because we recorded from neurons with a wide range of receptive field locations 

and tuning, most neurons were not well driven by the stimulus (mean driven rate was 8.2 

spikes/s for single units and 21.5 spikes/s for multiunits compared to mean spontaneous rate 

5.8 spikes/s for single units and 14.1 spikes/s for multiunits).

Attention greatly improved behavioural performance in this task. To motivate the monkeys 

to attend to the cued location, the stimulus at the attended location was the one that changed 

on 80% of trials (trials in which the attentional cue was valid). On the remaining 20% of 

trials (invalid trials), we tested performance at the unattended location using only a single 

orientation change (11°), which allowed us obtain reliable estimates of behavior and neural 

responses even given the relatively few invalid trials. Figure 1C shows psychometric data 

from a typical recording session, in which the proportion of trials on which the monkey 

successfully detected an 11° orientation change was substantially greater on trials when the 

attended (black) rather than the unattended (grey) stimulus changed orientation.

To compute the effects of attention on neural responses during the period in which the 

monkey’s attentional state was most likely to affect its behavioural performance, we focused 

most analyses on the stimulus presentation directly preceding the orientation change (black 

outlined box in Fig 1B). On a given day, the stimuli immediately before the orientation 

change were identical, regardless of the attentional condition, validity of the attentional cue, 

or size of the orientation change. Invalid trials were randomly interleaved with valid trials, 

so the neuronal effects of attention were indistinguishable on valid and invalid trials. We 

observed some adaptation of V4 responses between the first and the second stimulus 

presentation on each trial, but the average responses to the second through tenth stimuli were 

statistically indistinguishable (t-tests, p>0.5). Because the orientation change occurred no 

sooner than the third stimulus presentation, the responses to the stimulus directly before the 

change was unaffected by the length of the trial.

Consistent with previous studies 3, 15–18, we found that attention increased V4 firing rates 

(Figure 2A). To quantify the increase, we calculated a standard modulation index (MIrates), 

which was the difference between the average firing rates on trials when the attended 

stimulus was inside or outside the neuron’s receptive field trials divided by the sum (see 

Supplementary Material). The mean MIrates was 0.049 for single units and 0.042 for 

multiunits, both of which were significantly greater than zero (t-tests, p<10−6 for single 

units, p<10−20 for multiunits).

We also found that attention reduces the trial-to-trial variability of individual neurons over a 

similar time course to its effects on firing rate. As is common to stimulus responses in many 

cortical areas19, we observed a drop in the Fano factor (the ratio of the variance of the firing 

rates to the mean) following stimulus onset (Fig. 2B). Following the drop associated with 

the response transient, the Fano factor remains at a significantly lower level in the attended 

than in the unattended condition (mean MIFF during the sustained response was −0.011 for 

single units and −0.017 for multiunits, p<0.05 and p<10−3, respectively). Because the Fano 

factor plotted in Figure 2B was calculated using subdistributions of neurons such that the 

mean firing rates were the same for each time point and attentional condition19, 20, the time 
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course and attentional-dependence of Fano factor are independent of changes in firing rate 

(see Supplementary Material).

The data in Figures 2A and 2B show that attention improves the signal-to-noise ratio of 

individual V4 neurons, but we found that the effect of attention on the correlated variability 

in pairs of neurons was even more important. For each pair of simultaneously recorded 

neurons and each attentional condition, we calculated the correlation coefficient between 

spike count responses to the stimulus preceding the orientation change.

This metric, termed noise correlation, measures the correlation in trial-to-trial fluctuations in 

responses, and therefore has a very different timescale than the millisecond timescale 

synchrony that has been shown to increase with attention 21. We did not focus on synchrony 

here because no more pairs than expected by chance exhibited significant synchrony (3609 

significant pairs out of 66,578 pairs = 5.4% in the attended condition and 3634 significant 

pairs in the unattended condition, 5.5% p<0.05, bootstrap test described in Methods) and 

synchrony in the attended and unattended conditions were not different (paired t-test, 

p=0.46). Many spikes are needed to detect statistically significant synchrony, and even more 

to detect modulation of synchrony by processes such as attention. Synchrony has therefore 

been observed in some studies of visual cortex (see for example 21, 22) but not others 10, 23, 
24 (see 21 for a discussion of the statistical power needed to detect synchrony). The absence 

of synchrony in our study is likely due to a combination of the low firing rates of many of 

our cells caused by stimuli that were suboptimal for most cells, the fact that we calculated 

synchrony using pairs of spiking neurons rather than correlating spike times with local field 

potentials (see 21), and the fact that most neuron pairs were separated by millimeters in the 

cortex. The correlations we observed were fluctuations on a longer timescale than 

millisecond-level synchrony. One possibility is that the same mechanisms that cause low 

frequency oscillations in EEGs and local field potentials (which have been shown to 

desynchronize with attention 25–28) cause the correlations we measured.

To obtain accurate estimates of noise correlation, we did not calculate a time course of 

correlation as we did for rate and Fano factor, because over short periods, the distributions 

of spike counts become non-Gaussian (because spike counts can never be negative) and 

discrete. Skewed, discrete distributions pose a problem for second-order statistics like 

correlation, causing noise correlations to approach zero as the mean number of spikes 

decreases 22, 29, 30. We therefore calculated noise correlation over the entire 200 ms interval 

(Figure 2C).

Because the stimuli produced a wide range of responses across the population of neurons, 

we binned the neuron pairs by their mean evoked response across both attentional conditions 

(driven rate – baseline) in Figure 2C. Noise correlations were highest for pairs of neurons in 

the same hemisphere (solid lines) that both responded strongly to the stimulus. This result 

can be explained by the fact that correlations tend to increase with firing rate30 and the 

observation that noise correlations are highest for neurons with similar tuning 10, 22, 24, 29. 

Our data set included neurons with a broad range of preferences for orientation and other 

stimulus properties and different receptive field locations, so two neurons that were both 

strongly modulated by the stimulus likely had similar tuning.
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To test the effect of tuning similarity on noise correlation more directly, we calculated noise 

correlation as a function of signal correlation (Figure 2D). In a separate set of trials, we 

presented Gabor stimuli at a variety of locations and orientations while the monkey 

performed a change detection task far outside the neurons’ receptive fields (see Methods). 

We calculated signal correlation by computing a correlation between the mean responses of 

each neuron to each stimulus. Consistent with previous results 10, 22–24, we found that noise 

correlation is highest for neurons with similar tuning (large, positive signal correlation) and 

lowest for neurons with opposite tuning (negative signal correlation). Unlike a recent study 

of noise correlations in V1 using the same electrode arrays as we used here29, we found that 

noise correlation did not depend on cortical distance. We suspect that the greater retinotopic 

and tuning organization of V1 compared to V4 accounts for the differences in our results.

We found that even for the least responsive neurons (Figure 2C) and pairs of neurons with 

dissimilar stimulus preferences (Figure 2D), correlations within a hemisphere were on 

average positive, indicating that there is shared variability throughout the population. In 

contrast, we found that noise correlations for pairs of neurons in opposite hemispheres were 

close to zero, meaning that within an attentional condition, trial-to-trial fluctuations in the 

two hemispheres are independent.

The biggest physiological effect of attention in our data set was a large decrease in the 

correlations between pairs of neurons in the same hemisphere (compare the black and grey 

solid lines in Figures 2C and 2D). On average, attention reduced noise correlations by about 

half (mean MIcor=−0.35 for single units and −0.29 for multiunits, p<10−5 for single units 

and p<10−9 for multiunits). Attentional modulation of correlation depended strongly on how 

much the neurons were driven by the stimulus: for the most responsive pairs of neurons, 

noise correlation in the attended condition was roughly one-third the correlation in the 

unattended condition (Figure 2C). In contrast, the effect of attention on correlations did not 

depend on the degree of tuning similarity between the two cells (the black and grey lines in 

Figure 2D are parallel). This observed decrease in correlation due to attention is the opposite 

result predicted by the mathematical relationship between firing rate and correlation30. 

Attention tends to increase firing rates (Figure 2A) which makes the distributions of spike 

counts more Gaussian and less discretized, leading to a predicted increase in correlation. 

Therefore, decreases in correlation cannot be a simple mathematical consequence of 

increases in firing rate.

Previous studies have shown that attention modulates firing rate more for neurons with the 

biggest response to the stimulus (whose responses may be more informative for the task) 15–
18. Furthermore, a recent study found that fast spiking neurons with high firing rates 

(putative interneurons, separated from putative excitatory neurons on the basis of waveform 

width) showed larger differences in Fano factor than regular spiking neurons7. Our hardware 

filters prevented us from distinguishing these neuron types on the basis of waveform, but 

consistent with this study and studies of attentional modulation of firing rate, we found that 

attention has a bigger effect on the rates, Fano factors and noise correlations of neurons that 

responded strongly to the stimulus. Figures 3A–C plot the difference in firing rate, Fano 

factor, and correlation between the two attentional conditions (attended – unattended). 

Neurons (or pairs of neurons) that were most strongly driven by the stimulus (biggest 
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difference between evoked and baseline firing rate) likely have receptive field locations and 

tuning properties that make them well suited for this task, and these neurons show the 

largest effects of attention by all three measures.

Recording from both hemispheres simultaneously allows us to be sure that the correlation 

changes we observed are spatially-specific effects of attention. The same block of trials that 

yielded low correlations in one hemisphere gave high correlations in the other, so non-

specific factors such as arousal or motivation cannot account for the changes in correlation 

we observed. The fact that trial-to-trial variability in the two hemispheres was virtually 

independent is further evidence that the correlation changes we observed within a 

hemisphere are spatially specific.

Consistent with many previous studies (for examples, see 21, 31–34), we found that attention 

primarily affects the sustained part of the response rather than the onset transient (see 

timecourses in Figures 2A and 2B). In our data, attentional modulation of firing rate 

becomes statistically significant 122 ms following stimulus onset (first time point at which 

the 95% confidence intervals for the means of the two attentional conditions do not overlap). 

In addition to examining the effect of attention on rates, Fano factor, and correlations during 

the entire stimulus period, we calculated attentional effects for all three measures during the 

sustained response of the response (122 ms to 260 ms following stimulus onset). As 

expected, attentional effects were larger during the sustained period by what appeared to be 

a fairly constant factor (the dashed and solid lines in Figure 3 are approximately scaled 

versions of each other).

The data in Figures 2 and 3 show that attention changes the responses of both single neurons 

and correlated variability in ways that could allow each to contribute to improvements in 

population sensitivity. A primary goal of this study was to determine the relative importance 

of changes in firing rates, Fano factor, and noise correlations. Because Fano factor measures 

the variability of single neurons without regard to the source of that variability, the decrease 

in Fano factor that we observed (Figures 2B and 3B) could arise from a decrease in the 

independent variability of individual neurons, a decrease in shared variability across the 

population, or a combination of both. Noise correlation measures the degree of shared 

variability. We therefore focused on the other aspect of variability captured by the Fano 

factor, asking how much a decrease in independent variability that was large enough to 

account for the full decrease in Fano factor would improve population sensitivity.

Using the procedure described in Figure 4, we compared the effects of attentional 

modulation of firing rates, independent variability, and noise correlation, and we found that 

the modulation of correlation has by far the greatest influence on the attentional 

improvement in population sensitivity. We first quantified the degree to which attention 

improved the sensitivity of the groups of neurons we recorded (Figures 4A and 4C), then 

determined the amount of that improvement that was caused by attentional modulation of 

that affected only rate, only independent variability, or only correlation (Figures 4D and 4E).

We quantified how much attention improved neuronal signals in our recorded populations 

using an approach that is schematized for a hypothetical two-neuron data set in Figure 4A 
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and shown for a real 38-neuron data set in Figure 4C. The monkey’s task was to detect a 

change in the orientation of the stimulus, so we defined population sensitivity as the 

discriminability between the distributions of responses to the original orientation and the 

changed orientation. For each of the single and multiunits we recorded from a given 

hemisphere on a given day (mean 39.5 neurons, range 14 to 74), we calculated responses to 

the stimulus preceding the change from 60 ms to 260 ms following stimulus onset and the 

changed stimulus starting 60 ms after onset and continuing for either 200 ms or until 60 ms 

before the animal’s response, whichever came first. The mean time from the onset of the 

changed stimulus to the onset of the animal’s response was 251 ms, and 260 ms fell at least 

60 ms before the saccade on 39% of trials. We experimented with other intervals for 

computing spike counts (including identical periods for the original and changed stimuli 

(200 ms each) and also cutting off the response to the changed stimulus 100 ms or 0 ms 

before the saccade), and these did not qualitatively affect the proportion of the improvement 

in population sensitivity accounted for by each of the three factors we considered. Using this 

time period, attentional modulation during the changed stimulus was indistinguishable from 

modulation during the previous stimulus (see Supplementary Figure 1).

We plotted one point for each stimulus in each trial in an n-dimensional space in which each 

dimension corresponds to the response of one of the n neurons we recorded in a given 

hemisphere (Figure 4A). We then calculated the mean response for each stimulus and 

projected all responses onto an “axis of discrimination” drawn through the two means. This 

was done separately for the two attention conditions, producing pairs of one-dimensional 

distributions of projections for each attention condition (see the left column of Figure 4C for 

these distributions from an example data set).

We measured population sensitivity by calculating d′ (the difference in the means divided by 

their RMS standard deviation), which is monotonically related to theoretical performance on 

classifying stimuli, so attention should increase d′ to improve behavioural performance. We 

quantified the attentional improvement in population sensitivity as the difference in d′ 

between the attended and unattended conditions. The placements of the distributions on the 

y-axis in Figure 4C correspond to the measured d′ (left axis), so the higher d′ in the attended 

condition places these distributions above the lower d′ in the unattended condition. We then 

normalized the d′ values to reflect the measured improvement (right axis).

The amount of attentional improvement in our d′ measure correlates strongly with the 

monkey’s behavioural improvement due to attention. For each hemisphere-day, we 

quantified behavioural improvement as the lateral shift between measured performance in 

the unattended condition and the fitted psychometric curve in the attended condition (Figure 

1C and Methods). In the example in Figure 1C, attention shifted the psychometric curve by 

7.7°, which was typical for our data sets (mean = 7.6°, 0.5° SEM). Figure 4B shows that 

attentional improvement in neuronal d′ (attended-unattended) for each hemisphere-day is 

highly correlated with behavioural improvement (R=0.69, p<10−12). This strong correlation 

suggests that our d′ metric captures the important aspects of the improvements in population 

sensitivity that lead to improvements in behaviour.
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Each of the physiological changes we observed in rate, Fano factor, and correlation could 

have contributed to the improvement in population sensitivity. We next compared how much 

attentional modulation of each factor alone and the three factors together contributed to the 

actual improvements in d′ that we calculated. To isolate the contribution of each factor, we 

simulated the responses of populations of neurons using the same mean rates, noise 

correlations, Fano factors, and number of neurons as the groups of neurons we recorded (for 

simulation methods, see Supplementary information) and compared the calculated d′ for 

each simulation to the real data in the unattended condition. In this example data set, 

attentional modulation of all three factors together (top right of Figure 4C) accounts for 95% 

of the attentional improvement we observed in the real data. We then calculated the 

contribution of each factor separately by simulating attentional modulation of the factor of 

interest and using the values observed in the unattended condition for the other two factors 

(second through fourth rows of the right column Figure 4C). Correlation alone accounted for 

79% of the attentional improvement, rate accounted for 9%, and modulation of independent 

variability accounted for 4%.

The example in Figure 4C is typical of the 82 data sets. On average, attentional modulation 

of the three factors together accounted for 92% of the attentional improvement we observed 

in the actual populations (black bar in Figure 4D). Importantly, this result means that 

population sensitivity is well modeled by accounting only for rate, independent variability, 

and pairwise noise correlation, and that any other factors (including any higher order 

correlations) account for no more than 8% of the observed improvement in population 

sensitivity. Consistent with this, population responses in the retina are well described by the 

responses of individual neurons and pairwise correlations 35, 36. Overall, modulation of 

noise correlation was by far the most important factor in explaining the improvement in 

population sensitivity. Attentional modulation of noise correlation accounted for 81% of the 

observed improvement, rate accounted for 10%, and independent variability accounted for 

only 0.3% (which was not significantly different than 0.0; t-test, p=0.82).

Unsurprisingly, we found that both the observed raw population d′ and the improvement in d

′ due to attention depended on the number of neurons we recorded. Because there is no a 

priori way of knowing how many neurons are involved in the task, we examined the 

dependence of these measures on population size by sampling, with replacement, the firing 

rates, Fano factors, and correlations of all of the neurons we recorded over all recording 

sessions (see Supplementary information and 11, 24 for methods). Figure 4E shows 

population d′ for simulations in which attention modulated either all three factors, one factor 

individually, or none of the factors. In all cases, d′ increases with population size. Because 

noise correlations are on average positive for both attentional conditions, d′ asymptotes for 

large populations 9–11. Modulation of noise correlation accounts for most of the attentional 

improvement in sensitivity across nearly all population sizes (difference between the colored 

lines and the grey “unattended” line in Figure 4E). For very small populations, however, this 

is necessarily not true (inset, Figure 4E). If performance depends on a single neuron, there 

can be no correlation, and the small attentional improvement depends almost entirely on 

modulation of firing rate. In our simulations, noise correlations become dominant for 

populations of more than five neurons. If anything, this estimate may be high because we 

recorded from many neurons with stimulus preferences that were not well matched to the 
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stimuli we presented, resulting in low firing rate responses and low noise correlations 

(Figure 2C). If we had recorded from neurons better matched to the stimuli, correlations 

would likely have been higher (right side of Figure 2C), shifting the point at which 

correlation becomes most important to population sizes even lower than five neurons. Many 

more than five neurons are thought to be involved in virtually every task, so changes in 

correlation likely dominate attentional improvement in nearly all situations.

Discussion

Why do changes in shared variability have a bigger impact on population sensitivity than 

changes in the signal-to-noise of single neurons? One answer is that the changes in 

correlated variability we observed were larger than the changes in firing rate or Fano factor. 

However, we re-ran the simulations in Figure 4E assuming that the three factors all had the 

same modulation index as the changes in rate (see Supplementary information), and 

correlation still dominated for population sizes greater than 30 neurons. Instead, the 

explanation lies in the fact that no matter how noisy individual neurons are, independent 

variability can be averaged out if the population of neurons is large enough. Correlated 

variability, however, can never be averaged out by simply adding neurons to the population.

Noise correlation can either improve or reduce population sensitivity, depending on the 

algorithm by which neural responses are read out8, 9, and our simulations could in principle 

have revealed that the observed correlation decreases acted to reduce population sensitivity. 

However, theoretical studies show that decreased correlation improves discrimination if the 

difference between the responses to the stimuli to be discriminated (the original and changed 

stimuli in our task) are of the same sign for most neurons8, 9, which turned out to be the case 

in our data set.

Most of the neurons we recorded (92%) responded more strongly to the changed than the 

previous stimulus, presumably reflecting adaptation to the series of identical stimuli 

preceding the change. Therefore, the optimal quantity to be read out is similar to a 

(positively) weighted mean of the responses of the population, and indeed, the axis of 

discrimination we determined using the procedure depicted in Figure 4A was close to the 

weighted population mean. The attention-related decrease in correlation therefore improved 

the sensitivity of the population by reducing the amount of shared variability that could not 

be removed by averaging. In contrast, a recent study showed no effect of attention on noise 

correlations in a situation in which correlations were shown to have no effect on the 

sensitivity of the population 37. There are further situations (such as those in which the 

optimal readout algorithm is more similar to a subtraction of two populations of cells) in 

which an increase in correlation would improve the sensitivity of the population 8, 9. 

Whether attention would increase correlations in such tasks remains to be determined.

It is likely, of course, that the brain uses a different algorithm for extracting stimulus 

information from the responses of many neurons than the very simple decoding scheme we 

used in the simulations in Figure 4. However, the observation that attentional modulation of 

noise correlation explains most of the attentional improvement in population sensitivity is 

likely true for any sensible decoding algorithm. First, the difference in the amount of 
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attentional improvement explained by pairwise correlations is very large compared to the 

amount explained by the changes in the responses of single neurons, suggesting that noise 

correlations will dominate using any decoding algorithm. Furthermore, correlation was by 

far the most important factor using any of several linear discriminators we tried, including 

the single axis projection described here, Fisher discriminants, and support vector machines 

(data not shown). Higher order decoders that explicitly read out interneuronal correlations 
38–41 will be even more affected by attentional modulation of correlation than linear 

discriminators. Finally, any sort of decoding algorithm that incorporates a mean (or 

weighted mean) of the responses of many neurons will be greatly affected by noise 

correlations 10–12.

Mathematically, correlation is invariant to the mean response (the correlation coefficient is 

the ratio of the covariance to the square root of the product of the individual variances, so 

both the numerator and denominator are proportional to the product of the means), so 

underlying noise correlations cannot be changed by a simple scaling of neural responses (i.e. 

a gain change). Instead, noise correlations in cortex are thought to arise primarily from 

common, noisy inputs 10, 22, 23, 29. The fact that attention primarily decreases correlations 

provides clues about the mechanisms by which attention affects populations of sensory 

neurons. A decrease in correlation combined with an increase in firing rates is consistent 

with a decrease in the strength of an effectively inhibitory input that is common across the 

population. One possibility is that attention results in a decrease in the weights or activity of 

inputs that cause divisive normalization, a mechanism that normalizes responses to many 

stimuli within a receptive field and has recently been proposed to underlie attention 34, 42, 
43. In fact, we found a correlation between the mean attentional modulation of the firing 

rates of a pair of neurons and modulation of their noise correlation (R=−0.32, p<10−4) and 

also between the average rate and correlation changes within a hemisphere-day (R=−0.61, 

p<10−9; see Supplementary Figure 2), which is consistent with the idea that the two 

attentional changes may be mediated by the same mechanism.

Attention improves perception of the attended location or feature, so studying the effects of 

attention on populations of sensory neurons reveals the aspects of the population code that 

are most important for accurately encoding information about a behaviourally relevant 

stimulus. We have shown here that attention improves population sensitivity primarily by 

changing noise correlations, and even the small pairwise correlations we observed have a 

dramatic effect on the sensitivity of the population. Therefore, understanding the interactions 

between pairs of neurons is critically important for understanding population coding (see 

also 8–11, 38–41, 44).

Rather than examining mean responses over many trials, the brain makes decisions based on 

the responses of many neurons over a short period. Our results show that studies of average 

responses of single neurons miss interactions between neurons that have critical effects on 

behaviour. Together, these results suggest that the future of studying population coding will 

rely on multi-electrode or imaging technologies that allow glimpses of population coding on 

the timescale of a single behavioural decision.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Methods and behaviour. A. Center of visual receptive fields for the multiunit signals from 

one monkey. B. Orientation change detection task. Two Gabor stimuli synchronously 

flashed on for 200 ms and off for a randomized 200–400 ms period. At an unsignaled and 

randomized time, the orientation of one of the stimuli changed, and the monkey was 

rewarded for making a saccade to the stimulus that changed. Attention was cued in blocks, 

and the cue was valid on 80% of trials, meaning that on an “attend-left” block of trials 

(depicted here), 80% of orientation changes were to the left stimulus. The monkey was 

rewarded for correctly detecting any change, even on the unattended side. Unless otherwise 
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stated, all analyses were performed on responses to the stimulus before the orientation 

change (black outlined panel). C. Psychometric performance from a typical example 

experiment. Proportion correct as a function of orientation change in degrees for trials in 

which the change occurred at the attended (black points) or unattended (grey point) location. 

Unattended changes occurred only at the middle difficulty level (11°). Attentional 

improvement in behaviour was quantified as the lateral shift between the percent correct on 

unattended trials and the fitted psychometric curve for attended trials.
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Figure 2. 
Attentional modulation of firing rate, Fano factor, and noise correlation. A. Attention 

increases firing rates. Peri-stimulus time histogram of firing rates for all 3,498 single 

neurons and multiunit clusters on trials when the stimulus in the same hemifield as the 

neuron’s receptive field was attended (black line) or unattended (grey line). Line width 

represents the SEM. B. Attention decreases mean-matched Fano factor. Plotting conventions 

are as in A. C. Attention decreases noise correlation. Spike count noise correlation (for 

responses over the period from 60 to 260 ms following stimulus onset) is plotted as a 

function of the mean stimulus modulation for the pair of neurons (firing rate during the 

stimulus – firing rate during the interstimulus blank period). For pairs of neurons in the same 

hemisphere, correlation was lower when the stimulus in the neurons’ receptive field was 

attended (black line) than when it was unattended (grey line). Pairs of neurons in opposite 

hemispheres (dashed lines) had correlations that were close to zero. Error bars represent 
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SEM. D. Raw noise correlation, but not attentional modulation, signal correlation depends 

on signal correlation. Mean noise correlation is plotted as a function of signal correlation, 

which can be thought of as the similarity in spatial and feature tuning of the two neurons 

(see Methods). As has been previously reported, noise correlation increases with signal 

correlation. However, the difference in correlation between the attended (black line) and 

unattended (grey line) conditions did not depend on signal correlation. Error bars represent 

SEM.
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Figure 3. 
Attention has the biggest effects on the most responsive neurons. A. Difference in mean 

firing rate between trials when the stimulus in the neuron’s receptive field was attended and 

unattended as a function of stimulus modulation (rate during stimulus period – interstimulus 

period). Error bars represent SEM. B. Same, for Fano factor. C. Same, for noise correlation 

for pairs of neurons in the same hemisphere.
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Figure 4. 
Modulation of noise correlation accounts for the majority of the attentional improvement in 

population sensitivity. A. Procedure for calculating the sensitivity of the population. For 

each trial and attentional condition, the firing rate response of the n neurons recorded 

simultaneously in a given hemisphere to the stimulus immediately before the orientation 

change (open circles) and the changed stimulus (filled circles) is plotted as a point in an n-

dimensional space (a fictional two-neuron example is plotted here). The axis of 

discrimination (black line) is the line connecting center of mass of the n-dimensional cloud 

of points for each time period (X’s). Each point is projected onto the axis, leaving a one-

dimensional distribution of projected values for each time period (dashed and solid curves). 

The sensitivity of the population to the change in the stimulus is quantified as the 

discriminability of the two distributions in units of d′ (the difference between changed mean 

and original mean divided by the standard deviation). B. Population d′ and behavioral 

improvement are highly correlated. For each hemisphere-day, population d′ is plotted as a 

function of the behavioral improvement (quantified as the lateral shift between performance 

at the unattended location and the fitted psychometric curve for the attended condition). C. 
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Procedure for calculating the amount of the observed attentional improvement explained by 

each factor for a representative example data set. Histograms of projections onto the axis 

defined in A are plotted for the real data (left column, for attended and unattended trials), 

and for simulations (right column). We defined the observed attentional improvement as the 

difference between the d’s for the two attentional conditions (d′=2.40 for the attended 

condition and 1.15 for the unattended condition, giving an improvement of 1.25 in this 

example). The left axis represents d′ and the right axis represents normalized proportion of 

attentional improvement (by definition 1.0 for the attended condition and 0.0 for the 

unattended condition). To isolate the contribution of each factor (or group of factors), we 

simulated responses of an identically sized population of neurons with the same mean firing 

rate, Fano factor, and noise correlation as each of the neurons in our data set in which the 

statistics of the labeled factor/s matched the data for the attended condition and the other 

factors matched the data for the unattended condition (right column of distributions). We 

calculated the fraction of the observed attentional improvement explained by each factor/s 

by comparing the simulated d′ to the d′ for the real unattended data. In this data set, 

modulation of independent variability (at the level predicted if changes in Fano factor were 

due solely to changes in independent variability) accounted for 4% of the observed 

attentional improvement, rate accounted for 9%, correlation accounted for 79%, and the 

three together accounted for 95%. D. Average proportion of actual attentional improvement 

for all 82 data sets. Each day of data contributed two data sets (one for each hemisphere). 

Error bars represent SEM. All proportions are statistically different from zero (t-test, 

p<0.01) except the independent variability-only simulation (p=0.82). E. Population 

sensitivity as a function of the number of neurons involved in the task. Population d′ was 

calculated using the method described in A and B except that data in both the attended and 

the unattended conditions were simulated. For each population size, we sampled, with 

replacement, from the entire population of neurons from all data sets combined. Each 

simulation was run 100 times for 10,000 trials on each run. The inset plots the relative 

contribution of each factor (which is the ratio of the improvement in d′ for that factor alone 

to the improvement in d′ for all three factors) as a function of population size. Correlation is 

the most important factor for population sizes greater than 5 (crossing of the green and blue 

lines).
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