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Quantifying SARS-like coronavirus (SL-CoV) evolution is critical to understanding 
the origins of SARS-CoV-2 and the molecular processes that could underlie future 
epidemic viruses. While genomic analyses suggest recombination was a factor in 
the emergence of SARS-CoV-2, few studies have quantified recombination rates 
among SL-CoVs. Here, we infer recombination rates of SL-CoVs from correlated 
substitutions in sequencing data using a coalescent model with recombination. Our 
computationally-efficient, non-phylogenetic method infers recombination parameters 
of both sampled sequences and the unsampled gene pools with which they recombine. 
We apply this approach to infer recombination parameters for a range of positive-sense 
RNA viruses. We then analyze a set of 191 SL-CoV sequences (including SARS-
CoV-2) and find that ORF1ab and S genes frequently undergo recombination. We 
identify which SL-CoV sequence clusters have recombined with shared gene pools, 
and show that these pools have distinct structures and high recombination rates, 
with multiple recombination events occurring per synonymous substitution. We find 
that individual genes have recombined with different viral reservoirs. By decoupling 
contributions from mutation and recombination, we recover the phylogeny of non-
recombined portions for many of these SL-CoVs, including the position of SARS-
CoV-2 in this clonal phylogeny. Lastly, by analyzing >400,000 SARS-CoV-2 whole 
genome sequences, we show current diversity levels are insufficient to infer the within-
population recombination rate of the virus since the pandemic began. Our work offers 
new methods for inferring recombination rates in RNA viruses with implications for 
understanding recombination in SARS-CoV-2 evolution and the structure of clonal 
relationships and gene pools shaping its origins.

SARS-CoV-2 | recombination | coronavirus | phylogeny | RNA viruses

Recombination can enable viruses to rapidly adapt to selective pressures (1–4) and to 
avoid accumulation of deleterious mutations that can lead to viral decline and extinction 
(5–7). Positive-sense single-stranded RNA ((+)ssRNA) viruses display highly variable levels 
of recombination (8, 9), with some species such as West Nile and Yellow fever viruses 
showing scant evidence of recombination (10) and others such as those of the Coronaviridae 
family showing evidence of frequent recombination (11). During the ongoing COVID-19 
pandemic, population genomics has played an invaluable role in tracking the spread of 
SARS-CoV-2 and its variants (12–14), as well as understanding correlations between 
genomic substitutions and transmission patterns (15–19). However, a quantitative, pop-
ulation genomics-based understanding of the relative contributions of recombination and 
mutation to the evolution of SARS-CoV-2 and other SARS-like coronaviruses (SL-CoVs) 
is still being developed (20–27). Such knowledge will be important to understand the 
emergence of past and future viruses at the source of major epidemics.

The majority of tools for studying recombination in RNA viruses are phylogeny-based, 
where recombination breakpoints are assessed by examining phylogenetic incongruence 
and Bayesian and Markov chain Monte Carlo techniques are used to infer recombination 
parameters (20–25, 28). These approaches have been successful at identifying instances 
of recombination, yet their application to large-scale population genomics data remains 
challenging due to the computational demands of these methods. Importantly, the inferred 
recombination parameters rely only on the observed (i.e., sampled) sequences, while 
recombination within the much larger, unobserved gene pools with which these branches 
interact is not captured by these models. Here, to infer the recombination parameters of 
(+)ssRNA viruses, we adapt our non-phylogenetic, computationally-efficient mcorr 
method, which we originally developed to measure homologous recombination rates in 
bacteria (29–31). In contrast to previous approaches which focus on recombination within 
sampled sequences, we infer recombination parameters for both sampled sequences and 
the larger gene pools they recombine with, revealing that SL-CoVs recombine with a 
diverse set of gene pools which have high levels of recombination.

Significance

Quantifying the population 
genetics of SARS-like coronavirus 
(SL-CoV) evolution is vital to 
deciphering the origins of 
SARS-CoV-2 and pinpointing 
viruses with epidemic potential. 
While Bayesian approaches can 
quantify recombination for these 
pathogens, the required 
simulations of recombination 
networks do not scale well with 
the massive amounts of 
sequences available in the 
genomics era. Our approach 
circumvents this by measuring 
correlated substitutions in 
sequences and fitting these data 
to a coalescent model with 
recombination. This allows us to 
analyze hundreds of thousands 
of sample sequences, and infer 
recombination rates for 
unsampled viral reservoirs. Our 
results provide insights into both 
the clonal relationships of 
sampled SL-CoV sequence 
clusters and the evolutionary 
dynamics of the gene pools with 
which they recombine.
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Results

Using Correlated Substitutions to Infer Recombination Rates 
in RNA Viruses. Our primary aim is to infer the mutation and 
recombination rate within a set of sampled viral sequences, as well 
as the diversity and recombination rate of the unsampled pool 
of viruses with which the sampled viruses recombine. We model 
a “sample” of viral lineages with mean coalescence time T sample, 
which replicate, mutate (at rate �), and recombine (at rate �) with 
a much larger “pool” of lineages that have a mean coalescence 
time T pool (Fig. 1A). We originally applied this model to infer 
recombination rates for bacteria (30), with the key difference here 
being introduced by the process of “copy-choice” recombination in 
RNA viruses (described in more detail below). The model predicts 
the conditional probability of a synonymous substitution at a 
genomic site i + l  given a substitution at site i, which we refer to 
as the “correlation profile,” P(l ), where l  is the distance between 

sites in nucleotides (nt). In a highly recombining viral population, 
this profile should decline rapidly as the distance between sites 
increases, while in a non-recombining population, this profile 
should be largely flat (see Fig. 1B for schematic) (29). To measure 
correlation profiles, we use sets of whole genome sequences (WGS) 
as our samples and use alignments of coding regions (CDS) to 
determine synonymous substitutions for all possible sequence 
pairs. For a sequence pair within the sample, we assign a binary 
variable �i a value of 1 for a substitution and a 0 for identity at 
position i (we refer to �i as the substitution profile). We exclusively 
consider third-position codon sites which are fourfold degenerate. 
The correlation profile is obtained by P(l ) ≡ P(�i+l |�i = 1), 
where the conditional probability is computed over all possible 
sequences pairs and averaged over all positions i.

The model has two free parameters which are determined by 
fitting the predicted P(l ) to its measured values from viral genome 
sequences. From the fit, we then calculate several useful quantities, 

Sample

Pool

RNA 
exchange

A B

P(
l)

l (nt)

Increasing 

recombination

C Poliovirus

l (nt) l (nt) l (nt)

D E F

G H I

Poliovirus (n = 539) Dengue virus (n = 2216) West Nile virus (n = 1678)

FMD virus (n = 702) Yellow fever virus (n = 227) Enterovirus B (n = 459)

Fig. 1. Correlated substitutions in RNA viruses. (A) Schematic depicting the exchange of homologous RNA between a set of lineages (i.e., the “sample”) and a 
larger “pool” of lineages via a copy-choice mechanism. (B) Schematic depicting different correlation profiles of synonymous substitutions with various levels 
of recombination. (C) A heatmap of Pearson’s correlation coefficient (�(X , Y )) of synonymous substitutions across the coding region of the Poliovirus genome 
calculated using 539 Poliovirus genomes (see Materials and Methods for more details). Each position (X , Y ) displays the corresponding value of �(X , Y ) as a color 
for a pair of codons located at genomic positions X  and Y  (given in codons). Color bar indicates the value of �(X , Y ). Monomorphic sites are assigned �(X , Y ) = 0. 
(D–I) Correlation profiles of synonymous substitutions for a range of (+)ssRNA viruses. Markers correspond to the correlation profile P
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distance l (given in nucleotides, nt). The fit is shown as a solid line and is performed under the assumption that only complete RNA strands are exchanged during 
template-switching events (i.e., we used the “template-switching model” described in Materials and Methods and the main text). Model selection was performed 
with the Akaike Information Criterion (AIC) to determine if a coalescent model with or without recombination best fit the data (see Materials and Methods for 
details). Parameters of homologous recombination are given in Table 1. n is the number of WGS analyzed. “FMD” virus stands for “Foot-and-mouth disease virus.”
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including the pool’s mutational and recombinational divergence 
(given by �pool ≡ 2�T pool and �pool ≡ 2�T pool), which, respec-
tively, correspond to the expected number of synonymous substi-
tution and recombination events per site since coalescence of the 
pool; the sample’s recombination coverage (csample), which is the 
fraction of sites that recombined since coalescence of the sample; 
the sample’s mutational divergence (�sample ≡ 2�T sample), which 
is proportional to the average age of the clonal (i.e., non-recom-
bined) genomic portions of the sample; and the relative recombi-
nation rate of the pool (�pool∕�pool = �∕�), which we denote as 
(�∕�)pool. Unlike the synonymous substitutions, which we assume 
to be largely neutral, recombination events may be due to selective 
pressure or neutral drift.

Recombination in RNA viruses is thought to occur via a “copy-
choice” mechanism, in which RNA-dependent RNA polymerase 
(RdRP) switches from one RNA template to another during RNA 
synthesis while remaining bound to the nascent RNA strand, cre-
ating RNA with hybrid ancestry (8, 9, 32). Here, we focus on 
copy-choice recombination resulting in homologous recombina-
tion; non-homologous or “illegitimate” recombination (i.e., inser-
tion/deletion events) has previously been studied in SL-CoVs (23, 
33) and RNA viruses (8) and is thought to be comparatively rare. 
This template-switching process occurs in the model at rate � per 
site per viral replication (i.e., generation) and yields a hybrid viral 
genome consisting of a left arm from one genome and a right arm 
from another genome, joined at the recombination breakpoint 
(see SI Appendix, Fig. S1A). Experiments performed with murine 
hepatitis virus (a betacoronavirus) indicate that recombination can 
occur during negative or positive strand synthesis, and that 
template-switching events do not exclusively occur when two live 
viruses co-infect a cell but can also occur with transfected RNA 
fragments as small as 450 nt when RdRP switches from template 
to fragment (or vice versa) during synthesis (34). This latter sce-
nario is similar to homologous recombination in bacteria, where 
DNA fragments of average size f  are taken up by the cell at rate 
� per site per generation and incorporated within a genome, replac-
ing the homologous sites (see SI Appendix, Fig. S1B). In both the 
fragment incorporation model and the template-switching model, 
the predicted form of P(l ) depends on the total recombination 
rate (r) at a given locus, with r = � f  in the fragment-incorporation 
model and r = �L in the template-switching model, where L is 

the size of the genome (see SI Appendix for functional forms). We 
note that the fragment-incorporation model has an extra fitting 
parameter ( f ).

We first analyzed correlated substitutions in Poliovirus, as this 
virus is known to have undergone substantial recombination dur-
ing its evolution (9, 35–38). A genome-wide plot of the Pearson’s 
correlation coefficient for all pairwise synonymous substitutions 
(which is the square root of the classic linkage disequilibrium 
metric ‘r2’ but uses paired differences instead of allelic values (39)) 
across the CDS region of all major serotypes of Poliovirus (539 
WGS used) shows that while substitutions tend to be more 
strongly correlated in the first ~800 codons, statistically signifi-
cant correlations are found across the entire genome (Fig. 1C). 
Fitting the correlation profile for Poliovirus, we inferred the 
parameters of homologous recombination (Fig. 1D and Table 1). 
To estimate the range of these parameters, we calculated 95% 
bootstrap confidence intervals by sampling the 539 genomes with 
replacement to create bootstrap replicates (Table 1). Consistent 
with the literature, we found that Poliovirus has recombined sub-
stantially. We then proceeded to compute correlation profiles and 
infer recombination parameters for 12 other (+)ssRNA viruses 
(Fig. 1 E–I, Table 1, and SI Appendix, Fig. S2 and Table S1). We 
found results consistent with the literature, with viruses known 
to recombine showing evidence of recombination, e.g., Dengue 
virus, Foot-and-mouth disease virus, and Enterovirus B (9, 10, 
40–49), while others where little or no recombination has been 
reported such as West Nile and Yellow fever virus (10, 50, 51) did 
not show signatures of recombination. We fit the correlation pro-
files in Fig. 1 using the template-switching model (Table 1) or 
the fragment-incorporation model (SI Appendix, Table S2) and 
found similar results; in particular, the predicted mean fragment 
size is generally on the order of the genome size and model selec-
tion does not strongly favor one model over the other. We there-
fore use the two-parameter template-switching model in all our 
analyses below.

Correlated Substitutions Show Evidence of Recombination 
Across Specific Genes in SARS-Like Betacoronaviruses. We 
used the 191 WGS used in the current Nextstrain build for 
SL-CoVs  (52–54) and aligned these to the NCBI reference 
genome for SARS-CoV-2 (see Materials and Methods for details). 

Table 1. Parameters of homologous recombination for viruses shown in main text

Virus Gene # of seqs d
sample

�
pool

�
pool

(�∕�)
pool L(nt)

Evidence
ratio (w

t
∕w

z
)

Poliovirus Full genome 539 0.369 [0.359, 0.376] 1.29 [1.25, 1.29] 2.68 [2.42, 2.99] 2.11 [1.93, 2.32] 7.50E+03 9.96E+14

Dengue virus Full genome 2216 0.256 [0.252, 0.260] 0.559 [0.543, 0.575] 2.93 [2.82, 3.04] 5.24 [4.97, 5.57] 1.10E+04 2.78E+04

West Nile virus Full genome 1678 0.109 n/a n/a n/a n/a 1.14E-06

Foot-and-
mouth 
disease virus

Full genome 702 0.290 [0.284, 0.295] 0.560 [0.548, 0.572] 3.21 [3.02, 3.41] 5.73 [5.37, 6.14] 8.30E+03 1.68E+08

Yellow fever 
virus

Full genome 227 0.224 n/a n/a n/a n/a 7.54E-03

Enterovirus B Full genome 459 0.509 [0.506, 0.509] 1.63 [1.61, 1.64] 10.2 [9.37, 11.1] 6.25 [5.76, 6.79] 7.40E+03 3.89E+06

SL-CoV orf1a 191 0.102 [0.0768, 0.126] 0.460 [0.400, 0.516] 2.04 [1.74, 2.34] 4.45 [4.03, 4.84] 3.00E+04 2.98E+07

SL-CoV orf1b 191 0.0976 n/a n/a n/a n/a 6.61E+00

SL-CoV S protein 191 0.132 [0.101, 0.161] 0.561 [0.512, 0.605] 1.13 [0.915, 1.37] 2.02 [1.73, 2.35] 3.00E+04 3.91E+07

If the entire genome was fit, the gene is listed as “full genome.” “SL-CoV” refers to the SARS-like betacoronaviruses. “orf1a” refers to the orf1ab CDS region before the -1 ribosomal 
frameshift and “orf1b” refers to the region after this frameshift. Parameters are given as the values inferred from the data, followed by the 95% bootstrap CI in square brackets (see 
Materials and Methods for calculation). We used model selection with AIC to determine if the profile was better fit with a coalescent model with or without recombination (see Materials and 
Methods). For those profiles which were better fit with the coalescent model with recombination, we assumed that only template-switching occurs (i.e., we used the “template-switching 
model” described in Materials and Methods). For those profiles better fit by the model without recombination, coverage was set to c = 0 and no bootstrapping was performed. L is the 
length of the genome in the template-switching model, w

t
∕w

z
 is the Akaike weight of the template switching model (w

t
) over the weight of the model without recombination (w

z
; see 

Materials and Methods). All other parameters are described in main text.

https://www.pnas.org/lookup/doi/10.1073/pnas.2206945119#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2206945119#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2206945119#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2206945119#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2206945119#supplementary-materials
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This included SL-CoVs from bats (BtCoVs), SARS-associated 
coronavirus or SARS-CoV-1 (SARS-CoV-1), and SARS-CoV-2 
(SARS-CoV-2). We first examined whether there were hotspots of 
correlated substitutions along the length of the SL-CoV genome 
(Fig.  2 A  and  B) in light of various reports of recombination 
hotspots in the SL-CoV and SARS-CoV-2 genomes, some of which 
suggest a correlation between adaptation and recombination in 
these regions (20, 22–25). We found correlated substitutions across 
the genome, with what visually appeared to be an accumulation 
of correlated substitutions in the coding sequence (CDS) region 
of orf1ab preceding the -1 ribosomal frameshift and the spike 
protein (throughout the paper, we will refer to the CDS region of 
orf1ab before the frameshift as “orf1a” and that after as “orf1b”).

We next calculated correlation profiles and inferred recombina-
tion parameters across each gene (Fig. 2 C–E, Table 1, and 
SI Appendix, Fig. S3 and Table S3) and found strong evidence for 
recombination in orf1a (Fig. 2C) and the spike protein (Fig. 2E). 
The CDS regions of the orf3a and N proteins also displayed evi-
dence of recombination (SI Appendix, Fig. S3), yet the shape of the 
decay in correlations was not nearly as apparent as those shown in 
Fig. 2. We observed orf1b had a similar synonymous diversity 
(dsample) to the ORF regions adjacent to it (SI Appendix, Table S3), 
yet its correlation profile was flat (Fig. 2D); we hypothesize that 
the template-switching events occurring in the adjacent ORFs 
swapped out the entire orf1b CDS region, which would confer 
high diversity and a lack of recombination breakpoints. One CDS 
region which showed distinct patterns of correlated substitutions 
that cannot be adequately described by our model is that of orf8 
(see Discussion). Overall, the inferred parameters suggest that the 
genes which show evidence of recombination are recombining fre-
quently (Table 1 and SI Appendix, Table S3); when considering 
(�∕�)pool inferred for the orf1a and S genes, the pools these samples 
have exchanged RNA with are rapidly recombining at rates ranging 
from ~2–5 recombination events per synonymous substitution.

Using every complete genome assembly for SARS-CoV-2 in 
the NCBI database (444,145 sequences at the time of this analy-
sis), we measured correlated substitutions across the SARS-CoV-2 
genome (Fig. 2F). In contrast to what we had observed in the 
SL-CoVs (Fig. 2B), we only detected very weak correlated substi-
tutions across the SARS-CoV-2 genome. Correlation profiles 
across individual genes appeared to be largely flat (Fig. 2 G–I and 
SI Appendix, Fig. S4; inferred parameters in SI Appendix, Table S4); 
this included the CDS regions for orf1a and the spike protein 
(Fig. 2 G–I), which showed signatures of recombination in the 
SL-CoV dataset (Fig. 2 C–E). The pronounced difference in over-
all scale of P(l ) between Fig. 2 C–E and G–I reflects the differences 
in sample diversity between the SL-CoVs and SARS-CoV-2 (for 
these genes, dsample = 9.8 × 10−2 − 1.3 × 10−1 for the SL-CoVs 
and dsample = 6.0 × 10−4 − 1.2 × 10−3 for SARS-CoV-2). As new 
subvariants of SARS-CoV-2 arose during the peer review of this 
manuscript, we performed an updated analysis in July 2022 using 
Nextstrain’s subsampling of SARS-CoV-2 sequences from across 
the globe from the last 6 mo (SI Appendix, Fig. S5). The correla-
tion profile measured across the genome of these sequences was 
still flat, with dsample = 1.2 × 10−3.

Recent work has suggested that SARS-CoV-2 experiences rate 
heterogeneity across the genome (27, 55), with specific genomic 
positions across the phylogeny exhibiting elevated mutation rates 
for G → U  and C → U  transitions, possibly related to APOBEC 
and ROS activity (55). This could cause individual sites to become 
“saturated” (i.e., many identical mutations occurring at the same 
site across the tree) and specific genomic regions to exhibit anom-
alously high diversity, giving the appearance of recombination 
from a highly diverged source. If this effect were substantial, we 

would expect that the SARS-CoV-2 analysis presented in Fig. 2 
and SI Appendix, Figs. S4 and S5 would show signatures of recom-
bination, which they do not. To determine whether such effects 
impact our inference of recombination rates in other datasets, such 
as the SL-CoV dataset, we ran simulations using phastSim (56), 
which includes hypermutability models developed to simulate 
observed rate heterogeneity in SARS-CoV-2 (SI Appendix, Fig. S6; 
details in SI Appendix). In the simulations, we allowed a propor-
tion of sites to be “hypermutable” and have highly elevated tran-
sition rates, with both the proportion of sites and the rates set to 
be equal to or exceed what has been estimated for SARS-CoV-2 
(see SI Appendix for details). We found that while sliding window 
averages of synonymous diversity increased in both magnitude 
and variability as expected (SI Appendix, Fig. S6 A and B), the 
correlation profiles we measured were consistently flat, correctly 
indicating that no recombination had occurred (SI Appendix, 
Fig. S6 C and D). These simulations suggest that heterogenous 
mutation rates, at least over a range which is biologically relevant 
to SARS-CoV-2, do not confound our ability to infer recombi-
nation rates using correlated synonymous substitutions.

Clonal Structure of the SARS-Like Betacoronaviruses. We sought 
to understand if a sufficient clonal signal remained in the SL-CoV 
samples which could be used to elucidate clonal relationships. We 
began by measuring genome-wide pairwise synonymous diversity 
(dsample) across the 191 SL-CoVs and clustering these sequences 
using the average linkage algorithm (57) to create a dendrogram 
(Fig. 3A; see SI Appendix for details). We then split this tree into 
11 flat clusters, where SARS-CoV-1 and SARS-CoV-2 each 
consisted of distinct clusters and the BtCoVs were broken into 
several clusters. The non-singleton BtCoV clusters were generally 
composed of sequences collected during the same time period and 
from the same geographic area; as examples, cluster 5 was almost 
entirely composed of samples from bats collected near Hong Kong 
and Gaungdong between 2005 and 2011 (58, 59), and cluster 6 
was primarily samples collected near Yunnan Province from 2011 
to 2014 (60, 61). As previously suggested (21, 25), it appears that 
on average across the genome SARS-CoV-2 is most closely related 
to a sequence cluster of BtCoVs (labeled “BtCoV (cluster 1)” in 
the legend shown in Fig. 3A). These two SL-CoVs were collected 
from bats in Zhejiang Province between 2015 and 2017 (62). 
Additional information pertaining to individual clusters is given 
with the sequence metadata (provided as a supplemental file).

We then determined whether a statistically significant clonal 
signal remains in the sampled genomes by comparing the pool’s 
diversity (dpool), inferred from the correlation profile, to the sam-
ple’s diversity (dsample), which is measured from the sequencing 
data. In this case, we can use the mutational divergence (�sample), 
which is proportional to the age of clonal portions, as a measure 
of clonal divergence. We computed the difference between dpool 
and dsample with respect to the variability in our measurement of 
dsample, a quantity which we refer to as the residual clonality (RC) 
effect size (see SI Appendix, Eq. S3 and description in SI Appendix). 
For the 11 SL-CoV clusters, we first inferred recombination 
parameters for pairs of clusters (i.e., samples composed of sequence 
pairs in which neither sequence is from the same cluster). Fifty-one 
out of fifty-five cluster pairs showed evidence of recombination as 
determined by model selection (see SI Appendix). We then plotted 
the recombination coverage and �sample for these cluster pairs 
against the RC effect size (SI Appendix, Fig. S7) and determined 
that, when �sample was greater than ∼ 10−3, the RC effect size was 
generally < 1. Therefore, for this dataset, we are able to infer 
values of 𝜃sample < 10−3, while for cluster pairs having RC <1 we 
can confidently conclude only that 𝜃sample > 10−3.

https://www.pnas.org/lookup/doi/10.1073/pnas.2206945119#supplementary-materials
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Fig.  2. Correlated substitutions in SARS-like betacoronaviruses and SARS-CoV-2. (A) A schematic of the SARS-CoV-2 genome. (B) A heatmap of Pearson’s 
correlation coefficient (�(X , Y )) of synonymous substitutions across the coding regions of the SARS-like coronavirus genome constructed using 191 SARS-like 
betacoronavirus sequences (see Materials and Methods for more details). Each position (X , Y ) displays the corresponding value of �(X , Y ) as a color for a pair of 
codons located at genomic positions X  and Y  (given in codons). Coding regions are ordered genomically. Color bar indicates the value of �(X , Y ). Ticks on the upper 
x-axis of the heatmap indicate where each CDS region begins and end, corresponding to the schematic of the SARS-CoV-2 genome above. “Orf1a” refers to the 
CDS region of orf1ab before the -1 ribosomal frameshift and “orf1b” refers to the CDS region after the frameshift. (C–E) Correlation profiles for the CDS regions 
of the orf1ab (C and D) and spike proteins (E) for SARS-like betacoronaviruses. Parameters of homologous recombination are given in Table 1. (F) A heatmap 
of �(X , Y ) (analogous to B) but for 444,145 SARS-CoV-2 whole genome assemblies from NCBI (all available assemblies when the analysis was conducted). (G–I) 
Correlation profiles for the CDS regions of orf1ab (G and H) and spike proteins (I) for SARS-CoV-2. Inferred parameters are given in SI Appendix, Table S4. In both 
heatmaps, monomorphic sites are assigned �(X , Y ) = 0.
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Fig. 3. Pairwise analysis of recombination among SARS-like betacoronaviruses. (A) Dendrogram of the 191 SARS-like betacoronavirus sequences analyzed in 
both Figs. 2 and 3. The tree was created using the average linkage algorithm with whole-genome pairwise synonymous diversity (d

sample
) as the distance metric 

(see SI Appendix). The magenta, vertical dashed line depicts the distance at which the tree was cut to make the flat clusters shown in B and C (d
sample

= 0.09). The 
branch colors correspond to these clusters, as does the legend. The blue, vertical dashed line depicts the cut at d

sample
= 0.01 made for the 27 flat clusters in D 

and E. Cluster numbers are shown along the vertical axis for the 11 flat clusters resulting from the cut made at d
sample

= 0.09. Horizontal axis is log-scale. Clusters 
composed of SARS-like coronaviruses from bats are labeled “BtCoV.” (B) Dendrogram of the 11 flat clusters from A created using the average linkage algorithm 
with �

sample
 as the distance metric. The red dashed line at �

sample
= 10

−3 indicates the maximum value beyond which the inference of �
sample

 is obscured due to 
recombination from the pool (as described in the Main text and SI Appendix). (C) Heatmap depicting the percentage of total sequence pairs for a given pair of 
clusters which have recombined with a shared pool corresponding to the recombination network graph shown in SI Appendix, Fig. S9. Sequence pairs were 
determined to have recombined with a shared pool by computing correlation profiles across the whole genome and fitting these profiles to the model. Diagonal 
depicts recombination between sequence pairs within the cluster. Clusters with single sequences have crosses through their diagonal cells. (D) Recombination 
networks for individual genes computed using correlation profiles calculated across each gene for pairs of clusters. Nodes are the 11 clusters from A and B, edges 
connect cluster pairs which have recombined with a shared pool. Black halos around nodes indicate sequence pairs within the cluster have recombined. (E and 
F) Pool parameter distributions inferred from correlation profiles computed across the whole genome for pairs of sequence clusters. Clusters were made by 
cutting the dendrogram in A at d

sample
= 0.01 (depicted as vertical, blue dashed line), resulting in 27 flat clusters. Distributions are separated by virus type; those 

distributions in which both clusters are within the same virus type are denoted as “w/n,” those which are between two virus types are denoted as “btwn.” In 
panel E, the main plot shows the pool recombinational divergence (�

pool
) plotted against the pool mutational divergence (�

pool
). Marginal plots show ECDFs of each 

pair’s divergence values. Panel F shows ECDFs of the relative recombination rate of the pool ((�∕�)
pool

). All panels used the same fitting procedure as Figs. 1 and 2 
(see Materials and Methods). For the recombination networks in D, if model selection suggested the profile was better fit with the null-recombination model, no 
edge was assigned for the cluster pair.
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We constructed an average linkage tree based on �sample for the 
11 SL-CoV clusters and demarcated the value above which �sample 
is not well-determined (Fig. 3B). We found that there is sufficient 
RC in the data to infer the clonal structure for most of the SL-CoV 
lineages (Fig. 3B), revealing key differences with respect to the 
dendrogram based on genome-wide pairwise distances (Fig. 3A). 
While the tree in Fig. 3A suggests that SARS-CoV-2 shares its 
most recent common ancestor (MRCA) with the BtCoVs of clus-
ter 1, the clonal tree in Fig. 3B indicates that SARS-CoV-2 actually 
shares a MRCA with clusters 1, 3, 4, and 5, and moves clusters 
3-5 farther from SARS-CoV-1 than SARS-CoV-2. Further, the 
timescales for these MRCAs are dramatically different, with the 
clonal tree based on �sample indicating a much more recent split.

To determine whether standard phylogenetic methods which 
assume no homologous recombination recover this clonal struc-
ture, we used IQ-Tree (63), which relies on maximum likelihood 
estimation for phylogenetic inference, to reconstruct the phylog-
eny for the sequences depicted in Fig. 3A using a generalized time 
reversible (GTR) model (SI Appendix and Fig. S8). We found that 
the structure of the tree matched Fig. 3A, but not that of Fig. 3B. 
This may suggest that, for the SL-CoVs, standard phylogenetic 
inference yields phylogenies which are likely obscured by recom-
bination; the resultant phylogenies reflect both recombination 
from the pool and mutations within the sample.

Correlated Substitutions Reveal the Gene Pool Structure of 
SARS-Like Betacoronaviruses. To determine which members 
of the SL-CoVs have recombined with shared gene pools, we 
calculated correlation profiles across the whole genome for all 
possible sequence pairs and fit each profile to the model. We then 
visualized recombination between sequence pairs as a network 
graph (SI Appendix, Fig. S9), where each strain is a node, and 
edges connect strains which have recombined with a shared 
pool. Visually, the network appears to be highly connected, 
suggesting that many pairs have recombined with shared gene 
pools. To quantify network connectivity, we created a matrix of the 
percentage of sequence pairs which have recombined with a shared 
pool for a given cluster pair (Fig. 3C). This analysis reveals that the 
clusters are less interconnected than they appear, as not all clusters 
share pools equally; and in some cases, we find clusters that may 
not share the same gene pool at all. This indicates that distinct, 
structured gene pools exist despite a high degree of recombination 
and gene pool sharing across the SL-CoV lineages.

Because our analysis of the SL-CoVs revealed that individual 
genes have different recombination parameters, we tested whether 
the four genes which showed recombination signatures in 
SI Appendix, Fig. S3 each had distinct networks of recombination 
events. For each of the four genes, we measured correlation profiles 
for pairs of sequence clusters and used these profiles to determine 
if the cluster pair showed evidence of recombination with a shared 
pool (Fig. 3D). As profiles measured over single genes account for 
fewer genomic sites compared to profiles measured over whole 
genomes, the recombination signal for individual genes needs to 
be stronger relative to random correlations to allow for detection; 
this accounts for the slight discrepancies between Fig. 3 C and D. 
Each of the genes had a unique recombination network, with the 
most recombination occurring in orf1a. Furthermore, the analysis 
suggested SARS-CoV-1 and SARS-CoV-2 both underwent recom-
bination events with the same pool in the orf3a CDS region.

To further examine the structure of the SL-CoV gene pools, we 
cut the tree in Fig. 3A at ds = 0.01 (yielding 27 clusters) and com-
puted correlation profiles for each cluster and cluster pair across 
the entire genome and inferred their recombination parameters. 
We first investigated the degree of clonality of each sample 

(a cluster or cluster pair) by computing its RC effect size 
(see  Methods and previous section). As we have a larger sample 
distribution (i.e., more cluster pairs) than in the previous section, 
we can adopt an even stricter criterion for the RC effect size here; 
if we specify that the RC effect size must be greater than 2 to infer 
�sample, by plotting �sample versus the RC effect size we determined 
that 82% of samples had a sufficient RC effect size (SI Appendix, 
Fig. S10). For these samples, �sample ranged from 1.8e-5 to 3.8e-3 
(we note the upper bound is similar to that used in the previous 
section), with a median of 1.6e-4, while csample ranged from 27 to 
97% with a median of 87% (SI Appendix, Fig. S10). For the 
remaining 18% of samples where RC effect size ≤ 2, recombina-
tion coverage was comparatively higher, with csample ranging from 
92% to 100%, and a median of 98%, and for these samples, we 
estimate a lower bound of �sample ~ 3.6e-4. Across all SL-CoV 
samples, we find the median �sample = 1.9e-4 and median 
csample = 92%. To test that the inferred parameters provide reason-
able estimates for �sample and csample, we took several sequence pairs 
with varying levels of csample and looked at sliding window averages 
of diversity (�X ) across the genome (SI Appendix, Fig. S11). Our 
estimates of �sample suggest that clonal regions should exhibit diver-
sity levels in the range ∼ 1e-5 to 1e-3, and we found that the 
genomic fraction with �X  in this range roughly matched the 
inferred clonal fraction, 1 − csample. The remainder of the genome 
has been recombined from the pool, and we find that the average 
diversity of these regions is close to our estimate of the pool diver-
sity. Moreover, we can use the distribution of zero-SNP block 
lengths in these sequence pairs to provide an alternative estimate 
of csample, and find that this roughly matches the values inferred 
from the coalescent model (SI Appendix, Fig. S12; see SI Appendix or 
details). We conclude that despite the extensive recombination 
across the SL-CoV lineages, a substantial clonal signal remains in 
the data and a wide distribution of clonal divergence times, span-
ning at least two orders of magnitude, can be detected.

We then sorted each of the samples according to its virus type 
(e.g., a cluster pair in which one cluster is comprised of BtCoV 
sequences and the other is SARS-CoV-1 sequences is labeled 
“SARS-CoV-1/BtCoV”) and examined the distributions of �pool 
and �pool across samples. We found that each pair of virus types 
had a distinct parameter distribution (Fig. 3E). Moreover, the 
divergence distributions are multi-modal (particularly the BtCoV/
BtCoV distribution), suggesting that subsets of these samples 
interact with gene pools with distinct evolutionary dynamics. To 
remove the dependence on coalescence time, we plotted the dis-
tributions of (�∕�)pool for each cluster pair as empirical cumulative 
distribution functions to assess the relative recombination rates of 
these pools (Fig. 3F). This revealed that within the BtCoV lineages’ 
pools, there is a wide and relatively uniform distribution of recom-
bination rates, while each of the SARS-CoV-1 and SARS-CoV-2 
recombine with shared BtCoV pools with similar characteristic 
rates, and exhibit narrower, unimodal distributions. Nearly all 
cluster pairs have (𝛾∕𝜇)pool > 1, meaning that in SL-CoV gene 
pools there are multiple recombination events occurring per syn-
onymous substitution, indicating that recombination plays a 
major role in the evolution of SL-CoVs.

Discussion

We adapted the non-phylogenetic, computationally-efficient 
mcorr method [originally developed for analysis of bacterial 
genomes (29, 30)] to infer the parameters of homologous recom-
bination for SL-CoVs and other RNA viruses. The methodological 
advances reported here include the use of a two-parameter tem-
plate-switching model, the introduction of the RC effect size as a 

https://www.pnas.org/lookup/doi/10.1073/pnas.2206945119#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2206945119#supplementary-materials
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https://www.pnas.org/lookup/doi/10.1073/pnas.2206945119#supplementary-materials
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tool for clonal inference, the ability to analyze single genes, the 
measurement of correlation profiles across whole genomes 
(vs. gene-averaged profiles), and the improved efficiency of the 
method such that >400,000 sequences can be analyzed. We first 
demonstrated that this method is generally applicable to (+)ssRNA 
viruses by inferring recombination parameters for viruses which 
have known histories of recombination using datasets consisting 
of hundreds to thousands of WGS. We then applied this to under-
stand recombination in SL-CoVs. We found strong signatures of 
recombination in the CDS regions of orf1a and the spike protein. 
While previous studies of SL-CoVs have yielded estimates of 
recombination rates among analyzed sample sequences (20) and 
others have suggested that SL-CoVs have recombined with unsam-
pled pools (21, 24), here we infer recombination rates and param-
eters for both the sample sequences and the unsampled gene pools 
with which they recombine.

Our gene-by-gene analysis of recombination for the SL-CoVs 
revealed that orf1ab and the S protein show strong signatures of 
recombination and suggested that these parts of the genome 
recombine at high rates, ranging from ~2–5 recombination events 
per synonymous substitution (Table 1). Interestingly, when we fit 
the correlation profile for orf1a with the fragment-incorporation 
model, we found that the 95% bootstrap confidence interval for 
the mean fragment size ranges from ~11,000 to 30,000 nt, sug-
gesting that the SL-CoVs may take up fragments via recombina-
tion, consistent with previous experimental observations with 
betacoronaviruses (34) (for additional discussion, see section on 
zero-SNP blocks in SI Appendix). We note that orf8 showed dis-
tinct patterns of correlated substitutions that cannot be adequately 
described by our model (SI Appendix, Fig. S3). This region is 
thought to be highly variable, to contain several stem-loops which 
could lead to correlations between distant sites, and to have under-
gone recombination (64–66). Furthermore, the RNA secondary 
structure in this region could lead to selection on synonymous 
sites resulting in codon bias (67). Therefore, we speculate that this 
combination of RNA secondary structure and recombination has 
left the orf8 gene with an uncharacteristic decay in correlated 
substitutions; additionally, the decay we observe could be impacted 
by the many deletions and nonsense substitutions in this region 
(65, 66). Because we cannot reliably infer parameters using our 
recombination model for this CDS region, we also cannot assume 
that evolution has proceeded clonally in this region, for orf8 we 
simply list dsample for this gene (given in SI Appendix, Table S3).

By measuring correlated substitutions between SL-CoV sequence 
clusters and decoupling the contributions of mutation and recom-
bination to the sample diversity, we were able to recover much of 
the clonal structure for the analyzed SL-CoV clusters (Fig. 3B). We 
show that due to both high recombination coverage and variability 
in the measurement of dsample, the residual clonal signal in the data 
only allows sample ages up to �sample ∼ 0.001 to be determined. 
Nevertheless, this is sufficient to yield important insights into the 
clonal relationships between the sequence clusters. Our inference 
of clonal relationships indicates that SARS-CoV-2 shared an 
MRCA with BtCoVs from clusters 1, 3, 4, and 5 (Fig. 3B), whereas 
clustering based on dsample (Fig. 3A) and standard methods for phy-
logenetic inference such as maximum likelihood estimation 
(SI Appendix, Fig. S8) would suggest that SARS-CoV-2 shares its 
MRCA with cluster 1 only. Further, this split is relatively recent in 
our inferred clonal tree (θsample <0.001) while the split predicted 
based on genome-wide synonymous diversity is much more distant 
(dsample >0.1). Whereas phylogenetic methods attempt to identify 
ancestral relations by inferring or simulating individual recombi-
nation and mutation events that took place in different portions 
of the genome at different times in the past (see below), our 

approach determines the RC of a pair of clusters directly from its 
correlation profile. In this respect, our method of clonal inference 
is more direct; however, future analyses using broader sets of 
SL-CoV sequences, in combination with simulations and experi-
ments, will be needed to determine when each approach may be 
most advantageous. By measuring correlated substitutions between 
individual sequence pairs, we inferred a recombination network 
for the SL-CoVs and found that the majority of sequences have 
recombined with a pool during their evolutionary history 
(SI Appendix, Fig. S9). Counting the number of recombined pairs 
(Fig. 3C) shows that some clusters appear to have only recombined 
with subsets of sequences from other clusters (e.g., cluster 5), indi-
cating that while the SL-CoV recombination network is dense, it 
is also heterogeneous. We further found that each gene had a 
unique recombination network (Fig. 3D) suggesting each region 
has been shaped by different sets of recombination events along 
the evolutionary trajectories of the samples.

The observed heterogeneity in the connectivity of sequence clus-
ters in these recombination networks led us to hypothesize that the 
gene pools which SL-CoVs recombine with are partitioned or 
structured. We tested this hypothesis by inferring recombination 
parameters of the SL-CoV gene pools and found these to be diverse 
and characterized by high recombination rates (Fig. 3 E and F). 
Our inference of the corresponding �sample distribution (SI Appendix, 
Fig. S10B) shows that generally �pool is orders of magnitude higher, 
which suggests that the SL-CoV gene pools constitute a diverse and 
largely unsampled reservoir of viral sequences. Moreover, the csample 
distribution (SI Appendix, Fig. S10A) indicates that the set of 
SL-CoV genomes have been substantially impacted by recombina-
tion, with a median of csample ~ 87% (for RC effect size >2). The 
diversity and structure of the gene pools for a given microorganism 
can vary widely; we can imagine a scenario in which different sam-
ples from a microbial population interact with a discrete set of gene 
pools or, alternatively, these gene pools could overlap, leading to 
recombination events occurring between a sample and multiple 
pools (Fig. 4A). What sets the “softness” of gene pool boundaries 
in microorganisms is unclear, and will undoubtably be the focus of 
future investigations. In the case of SL-CoVs, it seems unlikely, 
based on the literature (24, 25, 68, 69), that the molecular mech-
anisms underlying recombination and mutation are so unique to 
each member of this group of viruses that it would result in the 
diverse distributions of pool parameters which we observe (Fig. 3 
E and F). However, SL-CoVs can exist in a broad range of hosts 
with different sets of selective pressures (11, 69), and these diverse 
environments with unique selective pressures may strongly influ-
ence the observed recombination rates.

A potential confounding factor in our analysis is heterogeneous 
mutation rates, as it has been demonstrated that SARS-CoV-2 
experiences rate heterogeneity across the genome (27, 55). By 
analyzing single genes (Fig. 2 C–E and SI Appendix, Fig. S3), we 
account for variability in mutation rates across large genomic 
regions. By running simulations with heterogenous mutation rates 
and hypermutable sites, we control for finer scale heterogeneity 
in mutation rate, and our simulations suggest that, at least over a 
biologically relevant range, these effects do not confound our anal-
ysis (SI Appendix, Fig. S6). Additionally, it has been shown that 
many human pathogenic RNA viruses exhibit heterogeneous coa-
lescence times as a consequence of variation in selection over time 
(71). We have controlled for this by separately inferring pool 
recombination rates for individual SL-CoV sequence clusters or 
cluster pairs (Fig. 3F), for which coalescent times are much more 
tightly distributed, or across the entire sample phylogeny for which 
coalescence times are heterogenous (tree in Fig. 3A, recombination 
rates in Table 1 for orf1a and the spike protein); the inferred pool 
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https://www.pnas.org/lookup/doi/10.1073/pnas.2206945119#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2206945119#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2206945119#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2206945119#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2206945119#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2206945119#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2206945119#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2206945119#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2206945119#supplementary-materials


PNAS  2023  Vol. 120  No. 5  e2206945119� https://doi.org/10.1073/pnas.2206945119   9 of 12

recombination rates are similar, indicating that variability in coa-
lescence time does not substantially impact our inference of 
recombination rates for gene pools. It is possible that selection on 
synonymous sites, e.g., relating to codon usage bias and prefer-
ences for CpG dinucleotide frequency and GC richness, could 
affect our analysis (55, 72–75). However, the strength of such 
selection in SL-CoV is unclear; recent work found primarily sta-
tistically insignificant patterns with regard to selection relating to 
CpG and GC content (55), and there have been results suggesting 
there is selection both against (76) or for (55) U content. In pre-
vious work, we ran simulations with an analogous model which 
showed that selection at linked sites, which can act to reduce 
diversity at synonymous sites, minimally affects our analysis (29).

Our analysis of the SL-CoV samples indicates that recombina-
tion occurs at least as often as mutation in nearly all lineages 
[(𝛾∕𝜇)pool > 1; see Fig. 3F], a result that differs substantially from 
inference based on Bayesian MCMC phylogenetic simulations on 

a similar SL-CoV dataset, which found that recombination events 
occur 200 times less frequently than mutations (20). Phylogenetic 
methods typically attempt to infer the ancestry of each piece of 
DNA within the sampled genomes by modeling all possible 
recombination and mutation events that could have occurred since 
its coalescence. Inference of the maximum likelihood set of recom-
bination events relies on the existence of inconsistencies in the 
inferred tree of different pieces of DNA across the sample. As 
branches are joined going backward in time, the size of the trees 
decreases monotonically, and there is progressively less evidence 
to call recombination events. Such methods are thus expected to 
underestimate recombination rates in strongly clustered samples 
with very deep branches, such as the SL-CoV dataset (Fig. 3A). 
In contrast, our approach accounts for recombination events that 
occur in the external, unsampled pool; these events cannot be 
individually inferred, however their signature is the correlation 
profile. These correlations develop over long timescales under the 
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Fig. 4. Gene pool structure and masking of recombination by sequence similarity. (A) Schematic depicting samples recombining with distinct gene pools which 
have no overlap, and overlapping gene pools where recombination can occur between multiple pools and a given sample. (B) Dendrogram of SARS-CoV-2 
sequences from the NCBI database, where one sequence from each Pango lineage was randomly selected to represent that lineage. Pairwise distances were 
computed using genome-wide synonymous diversity, and clustering was performed with the average linkage algorithm (see SI Appendix). Lineages whose parent 
lineages are World Health Organization designated Variants of Concern and Interest [as of October 27, 2021 (70)] have colored tips, all other tips are colored gray. 
(C and D) Schematics illustrating hypothesis for why detecting recombination using correlated substitutions is not possible using just SARS-CoV-2 sequences. 
Panel C shows SARS-like coronavirus (SL-CoV) samples recombining with a diverse pool, and panel D shows SARS-CoV-2 recombining with a pool of SARS-CoV-2 
sequences. LCA is last common ancestor. (E) Tukey boxplots of the distributions of coalescence times of sequence pairs for samples and pools corresponding 
to the schematics in C and D. For the SARS-like coronaviruses (SL-CoV), the distributions are the mean coalescence times for sequence pairs within each of the 
clusters and cluster pairs shown in Fig. 3E. For the calculation of T

sample
 of the SL-CoVs, only clusters and cluster pairs with RC effect size >2 were used (see Main 

text and SI Appendix, Eq. S3). For SARS-CoV-2, the boxplot depicts the distribution of coalescence times for the sequence pairs of the tree shown in Fig. 4B. The 
line bisecting the box is the 50th percentile, the upper and lower edges of the box are the 25th and 75th percentile, respectively, and the whiskers are 1.5*IQR. 
Horizontal axis is logarithmic (the lower whisker for SARS-CoV-2 extends to zero).
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https://www.pnas.org/lookup/doi/10.1073/pnas.2206945119#supplementary-materials
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combined effect of historical recombination and mutation events 
in the pool (29) and may enable more accurate measurements of 
(�∕�)pool for deeply branched samples (30). Additionally, the 
recombination rate estimated in ref. 20 is limited to recombina-
tion during co-infection events between distinct viral lineages, 
while the pool recombination rate we estimate here is based on 
all recombination events that occur in the ancestry of the viral 
gene pool, including within the same lineage.

We analyzed every complete genome assembly for SARS-CoV-2 
from human hosts in NCBI (444,145 at the time of analysis) and 
created a map of correlated substitutions across the genome 
(Fig. 2F). We did not observe any regions with strongly correlated 
substitutions, nor did we find that any genes had correlation pro-
files which indicated the presence of recombination (Fig. 2 G–I 
and SI Appendix, Fig. S4). At first, this may give the impression 
that SARS-CoV-2 has recombined little since it entered the human 
population in late 2019. However, given i) the high recombination 
rates of related SL-CoV strains, ii) the high levels of ancestral 
recombination we measured between SARS-CoV-2 and SL-CoV, 
and iii) the conserved molecular mechanism of RNA replication 
which underlies template switching, we hypothesize that recom-
bination is most likely occurring among SARS-CoV-2 in human 
hosts yet insufficient time has passed for SARS-CoV-2 to accu-
mulate enough diversity to allow for detection of recombination 
via correlated substitutions. A simple comparison of an average 
linkage dendrogram sampling across all major lineages of SARS-
CoV-2 (Fig. 4B) shows that the overall diversity levels are orders 
of magnitude lower for SARS-CoV-2 as compared to the SARS-
like coronavirus dendrogram (Fig. 3A). Other studies have previ-
ously suggested that the current lack of SARS-CoV-2 diversity 
impedes the ability to detect recombination (77, 78) resulting in 
what these investigators suggest are potentially large underesti-
mates of recombination levels in these pandemic datasets (79).

We can further this argument by estimating differences in 
coalescence times for SARS-CoV-2 versus the SL-CoVs as a 
whole. We use a standard maximum likelihood phylodynamic 
approach (TreeTime; (54)) to estimate the mutation rate as 
� ≈ 9.8 × 10−4bp−1 ⋅ year−1 for SARS-CoV-2 (see Methods for 
details); for the SL-CoVs, previous studies have inferred 
� ≈ 5.0 × 10−4bp−1 ⋅ year−1 (20, 21). We use these mutation 
rates along with �sample and �pool to estimate the mean coalescence 
times for pairs in the sample and pool for the SL-CoVs and 
SARS-CoV-2. For the SL-CoVs, if we use the median values of 
�sample and �pool  for the parameter distributions of the 27 clusters 
appearing in Fig. 3 E and F, we find that T sample ∼ 1.6 × 10−1 y 
and T pool ∼ 3.5 × 102 y (Fig. 4E; for T sample, we use cluster pairs 
for which RC effect size > 2, as described in Results). This suggests 
that the SL-CoV samples recombined with pools which have 
been accumulating diversity for much longer times than the sam-
ples (Fig. 4C). For SARS-CoV-2, we can use the �sample distribu-
tion of the SARS-CoV-2 sequence pairs in the dendrogram in 
Fig. 4B to compute the median coalescence time for pairs as: 
T sample ∼ 4.2 × 10−1 y (Fig. 4E; �sample was computed for each 
sequence pair using the classic population genetics expression for 
pairwise heterozygosity (80) given as Eq. S8 in the SI Appendix). 
For this dataset, which is comprised solely of SARS-CoV-2 
sequences from human hosts, opportunities for recombination 
have almost exclusively stemmed from co-infection events involv-
ing multiple strains from local transmission chains between 
humans, in which every RNA sequence is highly similar (Fig. 4D). 
Furthermore, in the case of this SARS-CoV-2 dataset, we know 
that our sample has effectively the same coalescence time and rate 
of synonymous substitution as the pool, because sequences in the 
sample and pool are highly overlapping (the pool here being 

un-sequenced SARS-CoV-2 strains in the human population). 
If we therefore use T sample as our estimate of T pool  in SARS-
CoV-2, this suggests that, consistent with expectation, the 
SL-CoV pools have had much longer to accumulate diversity, 
which allows us to differentiate between two sequences which 
have swapped to create a new hybrid when analyzing correlated 
substitutions. While we cannot predict when sufficient diversity 
will have accumulated to allow for the detection of recombination 
via correlated substitutions, T pool  for the SL-CoVs suggests this 
may be on the order of ∼ 102 y. This analysis therefore further 
emphasizes the current need for computationally-efficient 
approaches to sift through the massive amounts of available 
sequencing data to pinpoint recombinant SARS-CoV-2 sequences 
(e.g., refs. 78 and 81–83).

While previous studies have examined recombination in 
SL-CoVs via the analysis of phylogenetic incongruence and 
Bayesian inference (20–25), our work here offers unique advan-
tages and insights; it makes no assumptions of phylogenetic struc-
ture or evolutionary parameters (i.e., specification of prior 
distributions for parameters which is necessary for Bayesian infer-
ence), and we infer population genetic parameters of the larger, 
unsampled viral reservoirs that the SL-CoVs have recombined 
with. Moreover, we use differences in diversity levels between a 
sample and its pool to determine the residual clonal signal in the 
data. Our methodology enables analysis of the massive datasets 
that have become the norm in COVID-19 epidemiology, which 
are prohibitively large for current Bayesian simulation-based 
approaches. Our work yields a new set of tools to analyze recom-
bination in positive-sense RNA viruses and reveals the parameters 
of homologous recombination of the diverse set of gene pools with 
which SL-CoVs recombine. This may aid in understanding how 
the interplay among population structure, selection, and recom-
bination acts to mold the unique genetic architecture of viruses 
at the center of major epidemics.

Materials and Methods

Generation of Multi-Sequence Alignment Files. For all RNA viruses studied, 
we used reference-guided alignment to build consensus genomes by taking 
whole genome assemblies and aligning them to a reference genome from NCBI 
(Genbank accessions for reference genomes listed in SI  Appendix, Table S5)  
using the program ViralMSA (84) with Minimap2 as the aligner (85). We then 
used our in-house program splitFasta to split the multi-FASTA file generated 
by ViralMSA into separate FASTA files for each genome, and used our program 
CollectGeneAlignments to extract CDS regions and generate an XMFA file. We fil-
tered out any gene alignment with >10% gaps using our program FilterGaps. For 
calculations of correlation profiles across single genes, our program geneMSA was 
used to split the XMFA file including all gene CDS regions into separate multi-fasta 
files for each gene, which could then be analyzed with our program mcorr-gene-
aln (described below). We created the program CollectGeneAlignments previously 
(used in refs. 30 and 31), and it can be found here: https://github.com/kussell-lab/
ReferenceAlignmentGenerator. All other in-house programs can be found here: 
https://github.com/kussell-lab/viral-mcorr.

Measurement of Correlation Coefficient of Synonymous Substitutions. 
We computed Pearson’s correlation coefficient for synonymous substitutions 
along the length of the genome using the following expression:

	 [1]

where �(X , Y ) is Pearson’s correlation coefficient for a pair of codons at genomic 
positions X and Y , and � i is the substitution profile for a site i  (as described in 
the main text, this is a binary variable assigned a 1 for difference and 0 for iden-
tity at genomic position i ). The substitution profile is measured at each fourfold 

�(X , Y )=
⟨�X�Y ⟩−⟨�X⟩⟨�Y ⟩

�

⟨�X⟩
�
1−⟨�X⟩

�
⟨�Y ⟩

�
1−⟨�Y ⟩

�
,

https://www.pnas.org/lookup/doi/10.1073/pnas.2206945119#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2206945119#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2206945119#supplementary-materials
https://github.com/kussell-lab/ReferenceAlignmentGenerator
https://github.com/kussell-lab/ReferenceAlignmentGenerator
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degenerate, third-position codon for every sequence pair k, then averaging over 
all pairs. For further details, see SI Appendix.

Measurement of Sample Correlation Profiles for Single Genes and Whole 
Genomes. Using the whole genome alignments of our sample sequences we 
measure the “substitution profile” (� i (k)) at each fourfold degenerate, third-codon 
position i  for every sequence pair k. When calculating correlation profiles for 
single genes, we do this separately for each gene’s CDS region, where all viruses 
appearing in this paper except for the coronaviruses only code for a single polypro-
tein. When computing correlation profiles across the genome of the coronaviruses 
(e.g., SI Appendix, Fig. S9 and Fig. 3 E and F), we first sort the CDS regions by the 
position they appear in the genome into one continuous sequence of codons 
and then compute correlation profiles across the entire genome. We compute 
the pairwise synonymous diversity of a CDS region as:

	 [2]

in which the bar signifies averaging over sequence pairs k and the bracket signi-
fies averaging over positions i . We compute the joint probability of synonymous 
substitutions for a pair of sites separated by l  nt as:

	 [3]

The correlation profile is then calculated as P(l) = Qs (l)∕ds. For further details 
see SI Appendix.

Fitting Procedure for Correlation Profiles and Model Selection. The 
fitting procedure used here is largely described in refs. 30 and 31. We used 
the LMFIT python package version 0.9.7 (86) to fit the analytical form of 
P
(
l
)
 appearing in SI Appendix, Eq. S2 (link to package here: https://lmfit.

github.io/lmfit-py/). To infer recombination parameters, we fit the data with 
SI Appendix, Eq. S2 by either varying the parameters �s, �s, and fixing f  to 
be the length of the genome, or by varying all three parameters. The former 
fit is the “template-switching model,” which assumes only complete RNA 
templates are exchanged during template-switching events, and the latter 

is the “fragment-incorporation model,” which assumes that template-switch-
ing events can involve incomplete RNA templates (i.e., fragments). Both 
are described in the main text, and all data shown are the results of fitting 
with the template-switching model except for the parameters shown in 
SI Appendix, Table S2. To distinguish between profiles with distinct signa-
tures of recombination and instances of either no recombination or unclear 
signals of recombination, we compared the fits from the template-switching 
and fragment-incorporation models to what we refer to as the “null-recombi-
nation” model. In the null-recombination model, we simply set cs,1 = cs,2 = 0 
in SI  Appendix, Eq. S2, yielding P

(
l
)
= d

(
2�s

)
= 2�s∕(1 + 2�s ã). This 

gives a correlation profile independent of l , which is fit by averaging the 
measured values of P

(
l
)
, yielding a single parameter: �s. We then perform 

model selection using the Akaike information criterion (AIC) to determine 
which of the three models best predicts the data. For further details see 
SI Appendix.

Data, Materials, and Software Availability. Code data have been deposited in 
https://github.com/kussell-lab/viral-mcorr (https://doi.org/10.1101/2022.08.26. 
505425). All study data are included in the article and/or SI Appendix. Previously 
published data were used for this work. All sequences used in this study are pub-
licly available through NCBI GenBank. Accession numbers for genome assemblies 
are provided as supplementary files. Accession numbers for reference genomes 
are provided in SI Appendix, Table S5.

ACKNOWLEDGMENTS. This work was supported by NIH grant R01-GM-097356 
(to E.K.) and grant 20/1041 from the Health Research Council of New Zealand 
(to O.K.S). Asher Preska Steinberg is a Simons Foundation Awardee of the 
Life Sciences Research Foundation. We gratefully acknowledge the New York 
University (NYU) high-performance computing cluster for resources, and its staff 
for technical support.

Author affiliations: aDepartment of Biology and Center for Genomics and Systems Biology, 
New York University, New York, NY 10003; bSchool of Natural Sciences, Massey University, 
Auckland 0745, New Zealand; and cDepartment of Physics, New York University, New 
York, NY 10003

1.	 T. Nora et al., Contribution of recombination to the evolution of human immunodeficiency viruses 
expressing resistance to antiretroviral treatment. J. Virol. 81, 7620–7628 (2007).

2.	 L. Moutouh, J. Corbeil, D. D. Richman, Recombination leads to the rapid emergence of HIV-1 dually 
resistant mutants under selective drug pressure. Proc. Natl. Acad. Sci. U.S.A. 93, 6106–6111 (1996).

3.	 E. van der Walt et al., Rapid host adaptation by extensive recombination. J. Gen. Virol. 90, 734–746 
(2009).

4.	 K. Yusa, M. F. Kavlick, P. Kosalaraksa, H. Mitsuya, HIV-1 acquires resistance to two classes of antiviral 
drugs through homologous recombination. Antiviral Res. 36, 179–189 (1997).

5.	 Y. Xiao et al., RNA recombination enhances adaptability and is required for virus spread and 
virulence. Cell Host Microbe 19, 493–503 (2016).

6.	 L. Chao, T. Tran, C. Matthews, Muller’s ratchet and the advantage of sex in the RNA virus phi6. 
Evolution (N. Y). 46, 289–299 (1992).

7.	 L. Chao, T. T. Tran, T. T. Tran, The advantage of sex in the RNA virus phi6. Genetics 147, 953–959 (1997).
8.	 E. Simon-Loriere, E. C. Holmes, Why do RNA viruses recombine? Nat. Rev. Microbiol. 9, 617–626 (2011).
9.	 M. M. C. Lai, “Genetic recombination in RNA viruses” in Genetic Diversity of RNA Viruses, J. J. 

Holland, Ed. (Springer, Berlin Heidelberg, 1992), pp. 21–32.
10.	 S. S. Twiddy, E. C. Holmes, The extent of homologous recombination in members of the genus 

Flavivirus. J. Gen. Virol. 84, 429–440 (2003).
11.	 K. V. Holmes, "Coronaviruses (Coronaviridae)" in Encyclopedia of Virology, Granoff Webster, Eds. 

(Academic Press, San Diego, ed. 2, 1999), pp. 291–298.
12.	 T. Bedford et al., Cryptic transmission of SARS-CoV-2 in Washington state. Science 370, 571–575 

(2020).
13.	 J. R. Fauver et al., Coast-to-coast spread of SARS-CoV-2 during the early epidemic in the United 

States. Cell 181, 990–996.e5 (2020).
14.	 E. B. Hodcroft et al., Spread of a SARS-CoV-2 variant through Europe in the summer of 2020. Nature 

595, 707–712 (2021).
15.	 N. G. Davies et al., Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. 

Science 372, eabg3055 (2021).
16.	 C. A. Pearson et al., Estimates of severity and transmissibility of novel South Africa SARS-CoV-2 

variant 501Y.V2. Preprint 50, 1–4 (2021).
17.	 E. Volz et al., Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England. Nature 593, 

266–269 (2021).
18.	 E. C. Sabino et al., Resurgence of COVID-19 in Manaus, Brazil, despite high seroprevalence. Lancet 

397, 452–455 (2021).
19.	 H. Tegally et al., Detection of a SARS-CoV-2 variant of concern in South Africa. Nature 592, 438–443 

(2021).
20.	 N. F. Müller, K. E. Kistler, T. Bedford, A Bayesian approach to infer recombination patterns in 

coronaviruses. Nat. Commun. 13, 4186 (2022).

21.	 M. F. Boni et al., Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the 
COVID-19 pandemic. Nat. Microbiol. 5, 1408–1417 (2020).

22.	 M. Nikolaidis, P. Markoulatos, Y. Van de Peer, S. G. Oliver, G. D. Amoutzias, The neighborhood of the 
Spike gene is a hotspot for modular intertypic homologous and non-homologous recombination in 
Coronavirus genomes. Mol. Biol. Evol. 6, msab292 (2021).

23.	 B. S. Chrisman et al., Indels in SARS-CoV-2 occur at template-switching hotspots. BioData Min. 14, 
1–16 (2021).

24.	 S. A. Goldstein, J. Brown, B. S. Pedersen, A. R. Quinlan, N. C. Elde, Extensive recombination-driven 
coronavirus diversification expands the pool of potential pandemic pathogens. Genome Biol. Evol. 
14, evac161 (2022)

25.	 X. Li et al., Emergence of SARS-CoV-2 through recombination and strong purifying selection. Sci. 
Adv. 6, 1–12 (2020).

26.	 H. Wang, S. L. K. Pond, A. Nekrutenko, R. Nielsen, Testing recombination in the pandemic SARS-
CoV-2 strains (2020) (February 3, 2022).

27.	 N. D. Rochman, Y. I. Wolf, G. Faure, F. Zhang, E. V. Koonin, Ongoing global and regional adaptive 
evolution of SARS-CoV-2. Proc. Natl. Acad. Sci. U.S.A. 118, e2104241118 (2021).

28.	 A. J. Drummond, A. Rambaut, BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. 
Biol. 7, 1–8 (2007).

29.	 M. Lin, E. Kussell, Correlated mutations and homologous recombination within bacterial 
populations. Genetics 205, 891–917 (2017).

30.	 M. Lin, E. Kussell, Inferring bacterial recombination rates from large-scale sequencing datasets. Nat. 
Methods 16, 199–204 (2019).

31.	 A. Preska Steinberg, M. Lin, E. Kussell, Core genes can have higher recombination rates than 
accessory genes within global microbial populations. Elife 11, e78533 (2022).

32.	 K. Bentley, D. J. Evans, Mechanisms and consequences of positive-strand RNA virus recombination. 
J. Gen. Virol. 99, 1345–1356 (2018).

33.	 S. K. Garushyants, I. B. Rogozin, E. V. Koonin, Template switching and duplications in SARS-CoV-2 
genomes give rise to insertion variants that merit monitoring. Commun. Biol. 4, 1–9 (2021).

34.	 C. L. Liao, M. M. Lai, RNA recombination in a coronavirus: Recombination between viral genomic 
RNA and transfected RNA fragments. J. Virol. 66, 6117–6124 (1992).

35.	 N. Ledinko, Genetic recombination with poliovirus type 1. Virology 20, 107–119 (1963).
36.	 G. K. Hirst, Genetic recombination with Newcastle disease virus, polioviruses, and influenza. Cold 

Spring Harb. Symp. Quant. Biol. 27, 303–309 (1962).
37.	 A. P. Gmyl et al., Nonreplicative RNA recombination in Poliovirus. J. Virol. 73, 8958–8965 (1999).
38.	 C. Savolainen-Kopra, S. Blomqvist, Mechanisms of genetic variation in polioviruses. Rev. Med. Virol. 

20, 358–371 (2010).
39.	 M. Slatkin, Linkage disequilibrium–Understanding the evolutionary past and mapping the medical 

future. Nat. Rev. Genet. 9, 477–485 (2008).

ds = ⟨� i (k)⟩ ,

Qs

�
l
�
= ⟨� i

�
k
�
� i+l (k)⟩ .

https://www.pnas.org/lookup/doi/10.1073/pnas.2206945119#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2206945119#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2206945119#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2206945119#supplementary-materials
https://lmfit.github.io/lmfit-py/
https://lmfit.github.io/lmfit-py/
https://www.pnas.org/lookup/doi/10.1073/pnas.2206945119#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2206945119#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2206945119#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2206945119#supplementary-materials
https://github.com/kussell-lab/viral-mcorr
https://doi.org/10.1101/2022.08.26.505425
https://doi.org/10.1101/2022.08.26.505425
https://www.pnas.org/lookup/doi/10.1073/pnas.2206945119#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2206945119#supplementary-materials


12 of 12   https://doi.org/10.1073/pnas.2206945119� pnas.org

40.	 A. N. Lukashev et al., Recombination in circulating human enterovirus B: Independent evolution of 
structural and non-structural genome regions. J. Gen. Virol. 86, 3281–3290 (2005).

41.	 M. S. Oberste, K. Maher, M. A. Pallansch, Evidence for frequent recombination within species human 
enterovirus B Based on complete genomic sequences of all thirty-seven serotypes. J. Virol. 78, 
855–867 (2004).

42.	 E. C. Holmes, M. Worobey, A. Rambaut, Phylogenetic evidence for recombination in dengue virus. 
Mol. Biol. Evol. 16, 405–409 (1999).

43.	 M. Worobey, A. Rambaut, E. C. Holmes, Widespread intra-serotype recombination in natural 
populations of dengue virus. Proc. Natl. Acad. Sci. U.S.A. 96, 7352–7357 (1999).

44.	 H. J. G. Tolou et al., Evidence for recombination in natural populations of dengue virus type 1 based 
on the analysis of complete genome suquences. J. Gen. Virol. 82, 1283–1290 (2001).

45.	 N. Y. Uzcategui et al., Molecular epidemiology of dengue type 2 virus in Venezuela: Evidence for 
in situ virus evolution and recombination. J. Gen. Virol. 82, 2945–2953 (2001).

46.	 A. M. Q. King, D. McCahon, K. Saunders, J. W. I. Newman, W. R. Slade, Multiple sites of recombination 
within the RNA genome of Foot-and-mouth disease virus. Virus Res. 3, 373–384 (1985).

47.	 D. McCahon, W. Slade, A. Priston, J. Lake, An extended genetic recombination map for Foot-and-
mouth disease virus. J. Gen. Virol. 35, 555–565 (1977).

48.	 L. Ferretti et al., Within-host recombination in the Foot-and-mouth disease virus genome. Viruses 
10, 1–14 (2018).

49.	 S. M. Jamal et al., Evidence for multiple recombination events within Foot-and-mouth disease 
viruses circulating in West Eurasia. Transbound. Emerg. Dis. 67, 979–993 (2020).

50.	 B. E. Pickett, E. J. Lefkowitz, Recombination in West Nile Virus: Minimal contribution to genomic 
diversity. Virol. J. 6, 1–7 (2009).

51.	 C. E. McGee et al., Stability of yellow fever virus under recombinatory pressure as compared with 
chikungunya virus. PLoS One 6, e23247 (2011).

52.	 T. Bedford, E. B. Hodcroft, Phylogeny of SARS-like betacoronaviruses including novel coronavirus 
SARS-CoV-2. J. Mol. Biol. 432, 3309–3325 (2020).

53.	 J. Hadfield et al., NextStrain: Real-time tracking of pathogen evolution. Bioinformatics 34, 
4121–4123 (2018).

54.	 P. Sagulenko, V. Puller, R. A. Neher, TreeTime: Maximum-likelihood phylodynamic analysis. Virus 
Evol. 4, 1–9 (2018).

55.	 N. De Maio et al., Mutation rates and selection on synonymous mutations in SARS-CoV-2. Genome 
Biol. Evol. 13, (2021).

56.	 N. De Maio et al., phastSim: Efficient simulation of sequence evolution for pandemic-scale datasets. 
PLoS Comput. Biol. 18, e1010056 (2022).

57.	 T. J. Wheeler, J. D. Kececioglu, Multiple alignment by aligning alignments. Bioinformatics 23, 
559–568 (2007).

58.	 S. K. P. Lau et al., Ecoepidemiology and complete genome comparison of different strains of 
severe acute respiratory syndrome-related rhinolophus bat coronavirus in china reveal bats 
as a reservoir for acute, self-limiting infection that allows recombination events. J. Virol. 84, 
2808–2819 (2010).

59.	 S. K. P. Lau et al., Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe 
bats. Proc. Natl. Acad. Sci. U.S.A. 102, 14040–14045 (2005).

60.	 B. Hu et al., Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights 
into the origin of SARS coronavirus. PLoS Pathog. 13, 1–27 (2017).

61.	 X. Y. Ge et al., Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 
receptor. Nature 503, 535–538 (2013).

62.	 D. Hu et al., Genomic characterization and infectivity of a novel SARS-like coronavirus in Chinese 
bats. Emerg. Microbes Infect. 7, 154 (2018).

63.	 L. T. Nguyen, H. A. Schmidt, A. Von Haeseler, B. Q. Minh, IQ-TREE: A fast and effective stochastic 
algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 
(2015).

64.	 J. Cui, F. Li, Z.-L. Shi, Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 17, 
181–192 (2019).

65.	 F. Pereira, Evolutionary dynamics of the SARS-CoV-2 ORF8 accessory gene. Infect. Genet. Evol. 85, 
104525 (2020).

66.	 L. Zinzula, Lost in deletion: The enigmatic ORF8 protein of SARS-CoV-2. Biochem. Biophys. Res. 
Commun. 538, 116–124 (2021).

67.	 J. B. Plotkin, G. Kudla, Synonymous but not the same: The causes and consequences of codon bias. 
Nat. Rev. Genet. 12, 32–42 (2011).

68.	 J. Gribble et al., The coronavirus proofreading exoribonuclease mediates extensive viral 
recombination. PLoS Pathog. 17, 1–28 (2021).

69.	 P. V’kovski, Kratzel, Steiner, Stalder, Thiel, Coronavirus biology and replication: Implications for 
SARS-CoV-2. Nat. Rev. Microbiol., 10.1038/s41579-020-00468-6 (2020).

70.	 WHO, Tracking SARS-CoV-2 variants (World Health Organization, 2021).
71.	 P. Mutz et al., Human pathogenic RNA viruses establish noncompeting lineages by occupying 

independent niches. Proc. Natl. Acad. Sci. U.S.A. 119, e2121335119 (2022), 10.1073/
pnas.2121335119.

72.	 G. M. Jenkins, E. C. Holmes, The extent of codon usage bias in human RNA viruses and its 
evolutionary origin. Virus Res. 92, 1–7 (2003).

73.	 P. C. Y. Woo, B. H. L. Wong, Y. Huang, S. K. P. Lau, K. Y. Yuen, Cytosine deamination and selection of 
CpG suppressed clones are the two major independent biological forces that shape codon usage 
bias in coronaviruses. Virology 369, 431–442 (2007).

74.	 T. Mourier et al., Host-directed editing of the SARS-CoV-2 genome. Biochem. Biophys. Res. Commun. 
538, 35–39 (2021).

75.	 M. Dilucca, S. Forcelloni, A. G. Georgakilas, A. Giansanti, A. Pavlopoulou, Codon usage and 
phenotypic divergences of SARS-CoV-2 genes. Viruses 12, 498 (2020).

76.	 A. M. Rice et al., Evidence for strong mutation bias toward, and selection against, U content in SARS-
CoV-2: Implications for vaccine design. Mol. Biol. Evol. 38, 67–83 (2021).

77.	 A. Ignatieva, J. Hein, P. A. Jenkins, Evidence of ongoing recombination in sars-cov-2 through 
genealogical reconstruction. Mol. Biol. Evol. 39, 1–11 (2022).

78.	 D. VanInsberghe, A. S. Neish, A. C. Lowen, K. Koelle, Recombinant SARS-CoV-2 genomes are currently 
circulating at low levels. Virus Evol. 7, 1–12 (2021).

79.	 Y. Turakhia et al., Pandemic-scale phylogenomics reveals the SARS-CoV-2 recombination landscape. 
Nature 609, 994–997 (2022), 10.1038/s41586-022-05189-9.

80.	 J. Wakeley, Coalescent Theory: An Introduction (Macmillan Learning, ed. 1, 2009).
81.	 H. Yi, 2019 Novel coronavirus is undergoing active recombination. Clin. Infect. Dis. 71, 884–887 

(2020).
82.	 D. Haddad et al., SARS-CoV-2: Possible recombination and emergence of potentially more virulent 

strains. PLoS One 16, 1–20 (2021).
83.	 A. Varabyou, C. Pockrandt, S. L. Salzberg, M. Pertea, Rapid detection of inter-clade recombination in 

SARS-CoV-2 with Bolotie. Genetics 218, iyab074 (2021).
84.	 N. Moshiri, ViralMSA: Massively scalable reference-guided multiple sequence alignment of viral 

genomes. Bioinformatics 37, 714–716 (2021).
85.	 H. Li, Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 

(2018).
86.	 M. Newville, T. Stensitzki, D. B. Allen, A. Ingargiola, LMFIT, Non-linear least-square minimization and 

curve-fitting for python. Zenodo, 10.5281/zenodo.11813 (2014).

https://doi.org/10.1038/s41579-020-00468-6
https://doi.org/10.1073/pnas.2121335119
https://doi.org/10.1073/pnas.2121335119
https://doi.org/10.1038/s41586-022-05189-9
https://doi.org/10.5281/zenodo.11813

	Correlated substitutions reveal SARS-like coronaviruses recombine frequently with a diverse set of structured gene pools
	Significance
	Results
	Using Correlated Substitutions to Infer Recombination Rates in RNA Viruses.
	Correlated Substitutions Show Evidence of Recombination Across Specific Genes in SARS-Like Betacoronaviruses.
	Clonal Structure of the SARS-Like Betacoronaviruses.
	Correlated Substitutions Reveal the Gene Pool Structure of SARS-Like Betacoronaviruses.

	Discussion
	Materials and Methods
	Generation of Multi-Sequence Alignment Files.
	Measurement of Correlation Coefficient of Synonymous Substitutions.
	Measurement of Sample Correlation Profiles for Single Genes and Whole Genomes.
	Fitting Procedure for Correlation Profiles and Model Selection.

	Data, Materials, and Software Availability
	ACKNOWLEDGMENTS
	Supporting Information
	Anchor 24



