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ABSTRACT
Human pegivirus (HPgV-1), previously known as GB virus C (GBV-C) or hepatitis G virus (HGV), is 
a single-stranded positive RNA virus belonging to the genus Pegivirus of the Flaviviridae family. It 
is transmitted by percutaneous injuries (PIs), contaminated blood and/or blood products, sexual 
contact, and vertical mother-to-child transmission. It is widely prevalent in general population, 
especially in high-risk groups. HPgV-1 viremia is typically cleared within the first 1–2 years of 
infection in most healthy individuals, but may persist for longer periods of time in immunocom-
promised individuals and/or those co-infected by other viruses. A large body of evidences indicate 
that HPgV-1 persistent infection has a beneficial clinical effect on many infectious diseases, such 
as acquired immunodeficiency syndrome (AIDS) and hepatitis C. The beneficial effects seem to be 
related to a significant reduction of immune activation, and/or the inhabitation of co-infected 
viruses (e.g. HIV-1). HPgV-1 has a broad cellular tropism for lymphoid and myeloid cells, and 
preferentially replicates in bone marrow and spleen without cytopathic effect, implying 
a therapeutic potential. The paper aims to summarize the natural history, prevalence and dis-
tribution characteristics, and pathogenesis of HPgV-1, and discuss its association with other 
human viral diseases, and potential use in therapy as a biovaccine or viral vector.
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Introduction

Human pegivirus (HPgV-1) is a spherical enveloped 
virus of about 50 nm in diameter [1]. It belongs to 
the genus Pegivirus of the family Flaviviridae and has 
a 9.4 kb positive-sense single-strand RNA genome that 
is organized similar to hepatitis C virus (HCV) [2,3]. 
HPgV included type 1 (HPgV-1) and type 2 (HPgV-2). 
HPgV-1 can cause persistent infection, but is not asso-
ciated with hepatitis and other obvious clinical symp-
toms or diseases in healthy people [2]. In particular, 
a large number of studies have shown that HPgV- 
1 persistent infection slows the disease progression 
caused by human immunodeficiency virus type 1 
(HIV-1) and/or other viruses and improves the survival 
of patients, suggesting that HPgV-1 infection plays 
a beneficial role when co-infected with other viruses 
[4–7,]. Currently, the natural history, pathogenic 
mechanisms, and potential impact of HPgV-1 on 
human health remain to be seen. In this paper, we 
summarize the history, prevalence and pathogenesis of 
HPgV-1, and discuss its relationship with other viral 
diseases, and the possibility of HPgV-1 as therapeutic 
tools or viral vectors.

Discovery of pegivirus

HPgV-1 was formerly known as GB virus type C (GBV- 
C) or hepatitis G virus (HGV). The abbreviation “GB” 
came from a surgeon with acute hepatitis. In 1967, 
serum from the surgeon was experimentally inoculated 
into tamarins, and resulted in hepatitis in tamarins 
[3,6]. Therefore, the presence of a new unknown virus 
that causes hepatitis was predicted. Until 1995, two new 
RNA viruses were identified from tamarins that 
received inoculation of GB passage and developed 
hepatitis. Because the two viruses belong to the family 
Flaviviridae, and are different from the previously iden-
tified hepatitis A-E viruses, they were named as GB 
virus A (GBV-A) and GB virus B (GBV-B) [7]. In the 
same year, another novel RNA virus was identified in 
the serum of non-AE hepatitis patients from West 
Africa. The virus had 53% to 59% similarity to GBV- 
A and GBV-B nucleic acid sequences, respectively, and 
approximately 47% homology to HCV sequences. 
Based on sequence homology and phylogenetic analy-
sis, the virus was classified as a new member of the 
Flaviviridae family and named as GBV-C [5,8]. In 1996, 
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HGV was identified from a patient with chronic hepa-
titis [9]. Because HGV is closely genetically related to 
GBV-C, rather than GBV-A and GBV-B, GBV-C and 
HGV represent different isolates of the same virus 
species. GBV-C and HGV initially were believed to be 
associated with non-AE hepatitis in human [5–13]. In 
2010, GBV-D was identified and described from free- 
ranging bats [10]. It shares about 50% identity to GBV- 
A and GBV-C at the amino acid level, and represents 
a distinct species within the family Flaviviridae [10].

Among GB viruses, only GBV-B was found to cause 
hepatitis, and was assigned to the genus Hepacivirus 
(Figure 1) [11,12]. GBV-C and other two viruses (GBV- 
A and GBV-D) were later found not to be associated 
with hepatitis. In 2011, Stapleton et al. assigned GBV- 
C, GBV-A, and GBV-D to the fourth genus of the 
family Flaviviridae according to their phylogenetic rela-
tionships, genome organization, and pathogenic fea-
tures (Figure 1) [3]. The new genus was named as 
Pegivirus (pe, persistent; g, GB, or G). Mammals are 
the main hosts of pegiviruses, including primates [13– 
18], horses [19–22], bats, and rodents [10,23–25]. 
Recent studies showed that pegiviruses can also infect 
non-mammals, such as geese [26,27], illustrating a wide 
range of hosts. Because GBV-C/HGV infects human 
beings, it was renamed as human pegivirus type 1 
(HPgV-1). The second human pegivirus (HPgV-2, 
also known as HHpgV-1) was firstly identified from 
blood transfusion recipients in the US in 2015 [28,29], 
and later detected in other countries (e.g. China 
[30,31], Vietnam [32], Cameroon [33]) (Figure 1). 
Figure 1 shows the phylogenetic relationship of 
pegiviruses.

Genome organization and protein products of 
HPgV-1

Like other members of the family Flaviviridae, HPgV-1 
genome encodes an open reading frame (ORF) that is 
translated into a single pre-polyprotein consisting of 
approximately 3000 amino acid residues (Figure 2) 
[3,8]. The coding region is flanked by long 5’ and 3’ 
untranslated regions (UTRs). The 5’-UTR contains an 
internal ribosome entry site (IRES), which recruits 
ribosomes to guide viral mRNA translation [3,34]. 
The pre-polyprotein is further cleaved into two struc-
tural proteins (envelope proteins E1 and E2) and six 
non-structural proteins (NS2, NS3, NS4A, NS4B, 
NS5A, and NS5B) by cellular and viral proteases 
(Figure 2).

Because of sharing similar genome organization and 
homologous genes to HCV [3], HPgV-1 is believed to 
have similar life cycle to HCV, including i. viral 

attachment and entry; ii. endocytosis; iii. fusion and 
uncoating; iv. translation and polyprotein processing; 
v. RNA replication; vi. virion assembly; vii. virion 
release [35]. Its proteins are also predicted to have 
similar functions with their counterparts in HCV [36– 
39]. Compared with HCV, the encoding region for 
a core protein is not identified for HPgV-1 (Figure 2) 
[3,40]. However, a basic protein is predicted at 
upstream of the signalase site before E1 in HPgV-1 
genome [40]. This protein may participate in RNA 
packaging during virion assembly. Another additional 
protein (p*) is an about 6 kDa protein analogous to the 
HCV p7. Structural proteins E1 and E2 are envelope 
glycoproteins [36]. They are released from pre- 
polyprotein via enzymatic hydrolysis by a host signal 
peptidase [3,36]. By forming heterodimers on the sur-
face of viral particles, they participate in viral assembly 
and are responsible for virus entry. E2 glycoprotein is 
responsible for the binding of the virus to cell receptors, 
which induces membrane fusion and promotes the 
entry of HPgV-1 into host cells [36,41]. E2 glycoprotein 
possesses immunogenicity and induces humoral 
immune response [2,42,43]. Furthermore, E2 glycopro-
tein interacts with co-infected viruses (e.g. HIV-1) and 
host proteins, and further participates in the regulation 
of host immune activation [44,45]. It alters IL-2-signal-
ing pathways by reducing TCR-induced IL-2 produc-
tion to inhibit the T-lymphocyte activation, and 
inhibits the IL-12 signaling pathway to reduce the pro-
liferation of NK cell [46,47].

NS2, NS3, and NS4A are responsible for the cleavage 
of non-structural proteins [41,48,49]. The cleavage of 
NS2/NS3 is mediated by NS2 protease, and the cleavage 
of other NS proteins is mediated by NS3 protease with 
NS4A as a cofactor [49,50]. NS4B is a highly hydro-
phobic protein that may be involved in the formation 
of membranous structures supporting RNA replication. 
NS5A is known as a cytoplasmic phosphorylated pro-
tein that may participate in and regulate RNA replica-
tion [48]. NS5B is a RNA-dependent RNA polymerase 
that is responsible for genome replication of HPgV-1 
[8,49]. HPgV-1 proteins and their functions are sum-
marized in Table 1.

Prevalence and distribution

HPgV-1 has a high global prevalence. About one-sixth 
of the global population was estimated to be sero- 
positive for HPgV-1, and approximately 750 million 
people had viremia [2,3,51,52]. The at-risk population 
had substantially higher prevalence of HPgV-1 than the 
general population, and the prevalence of HPgV-1 var-
ied considerably in different countries/regions of the 

VIRULENCE 325



Figure 1. Phylogenetic relationship of pegivirus. The phylogenetic tree was constructed based on RdRp gene sequences of selected 
Flaviviridae members using the maximum-likelihood (ML) method (MEGA 7.0.26). Four genera are classified in the Flaviviridae family. 
The main hosts of these viruses are also shown in the figure. The red branches highlight the members of the genus Pegivirus.
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world (Figure 3). In the general population and healthy 
blood donors, HPgV-1 prevalence ranged from 0.8% to 
44.6%, while in the at-risk population, the prevalence 

rate ranged from 1.8% to 75.3% [53–96]. HPgV-1 has 
a higher prevalence in the developing world than in the 
developed world (Figure 3). For example, HPgV-1 pre-
valence in healthy blood donors was 0.8–46.6% in the 
developing world (e.g. Asia, Africa, and South 
America), while the rate was 1.1–6% in the developed 
world (e.g. North America, Europe, and Australia). 
Similar trend was also observed in the at-risk popula-
tion with high HPgV prevalence (1.8–75.3%) in the 
developing world, but relatively low prevalence (9– 
48.6%) in the developed world. Geographic difference 
in HPgV-1 prevalence was believed to be associated 
with the socio-economic situation of a country/region, 
which reflects the income and welfare levels of local 
people, and affects their medical and health conditions 
[51]. People with lower income and welfare levels 

Figure 2. Genome organization of HPgV-1 and HCV. The genome encodes a single pre-polyprotein that is cleaved into mature viral 
proteins after co-translation and post-translation. Compared to HCV, HPgV-1 genome encodes two additional predicted proteins 
(protein X at upstream of E1, and protein p* between E2 and NS2), but does not encode a core protein that is an RNA-binding 
protein and forms the virion nucleocapsid.

Table 1. HPgV-1 proteins and their functions.
Protein Function

E1 Envelope glycoproteins
E2 Envelope glycoproteins, receptor binding
p7-like Similar in size to HCV p7
NS2 Component of the NS2-3 protease, mediating cleavage at the 

NS2/NS3 junction
NS3 Protease, mediating the cleavage of NS proteins, C-terminal 

NTPase and helicase
NS4A Cofactor for NS3-mediated cleavages of NS proteins
NS4B Membrane alteration inducer
NS5A Multifunctional phosphoprotein
NS5B RNA-dependent RNA polymerase, genomic RNA replication

Note: The functions of some HPgV-1 proteins are predicted according to 
their counterparts in HCV. 

Figure 3. Global prevalence and distribution of HPgV-1. BD: blood donors; HR: high-risk population mainly including IDUs, CSWs, and 
MSM.
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appeared to have a higher risk of HPgV-1 infection 
than those with higher income and welfare levels 
since the former more likely participate in illegal or 
paid blood donation and reuse unsterilized needles 
and/or contaminated instruments.

On the other hand, HPgV-1 prevalence appears to 
have obvious genotypic and geographical characteristics. 
HPgV-1 genotypes 1 and 2 are mainly distributed in 
Africa [54,55,78]; genotype 2 is more prevalent in 
Europe [79,80]; genotype 3 is prevalent in Asian coun-
tries and South America [81–84]; genotype 4 and 5 
remains dominant in Philippines and other countries in 
Southeast Asia [85,86]; genotype 6 is circulating in 
Indonesia [87]. Genotype 7 was recently found in 
Yunnan Province of China, and some other Asian coun-
tries, such as Qatar [88,89]. The difference in the distri-
bution of HPgV-1 genotypes might be associated with 
origin, evolution, and transmission of these genotypes.

Transmission and at-risk population of HPgV-1

Like HIV-1, HBV, and HCV, HPgV-1 is a blood-borne 
virus [2,90]. It is efficiently transmitted by percuta-
neous injuries (PIs) and blood transfusion, which 
explains why high proportion of HPgV-1 infection 
was found among healthy blood donors. Because of 
high-frequency exposure behavior, intravenous drug 
users (IDUs) are the major high-risk group for HPgV- 
1 infection, and have very high positive rate for this 
virus (Figure 3). Furthermore, people who received 
acupuncture were found to have significantly higher 
prevalence of HPgV-1 (16.5%) than those who never 
received acupuncture (9.4%) [91], implying that acu-
puncture increases the risk of HPgV-1 infection.

Apart from occupational exposure to PIs, and con-
taminated blood and/or blood components, HPgV-1 
can also be transmitted by sexual contact (including 
heterosexual and homosexual contacts) and vertical 
mother-to-child transmission [87,89–94]. Commercial 
sex workers (CSWs) and men who have sex with men 
(MSM) are also the major high-risk groups for HPgV-1 
infection. Because of sharing the same transmission 
routes with HIV-1, HCV, and HBV, high proportion 
(3.2–47.9%) of HPgV-1 co-infection was often reported 
in the individuals who are positive for the above- 
mentioned viruses [95–104].

Blood donors

HPgV-1 prevalence in blood donors varied largely in 
different countries/regions (0.8–46.6%) (Figure 3). The 
vast majority of the studies reported HPgV-1 preva-
lence less than 5% in blood donors, while few studies 

showed higher HPgV-1 prevalence (>10%) in some 
countries/regions (e.g. India [105,106], China [107– 
122], Kuwait [108]). The global prevalence of HPgV-1 
was estimated to be 3.1% in blood donors [51]. The 
pooled prevalence of HPgV-1 was 1.7% in North 
America, 9.1% in South America, 2.3% in Europe, and 
2.4% in Asia [51]. Based on 67,348 blood donors, 
HPgV-1 prevalence was estimated to be 3.3% in 
China [110]. Currently, HPgV-1 is not included in the 
routine blood donor screening test. The prevalence of 
HPgV-1 in general population and blood donors high-
light the risk of post-transfusion infection even though 
HPgV-1 infection was largely believed to be benign. 
Concerns are being raised on whether screening for 
HPgV-1 should be included in the routine blood 
donor assay.

IDUs

IDUs are the most important high-risk group for 
HPgV-1 infection, and have prevalence of 11.6–89.2% 
in different studies. HPgV-1 viremia was more com-
mon among IDUs compared to healthy volunteers [79]. 
Based on 3779 IDUs from different studies, the pooled 
prevalence of HPgV-1 was estimated to be 33.6% 
[79,89,92,101,111–138]. Furthermore, HPgV-1 preva-
lence among IDUs appeared to be higher in developed 
world than those in developing world. For example, few 
studies showed that HPgV-1 prevalence among IDUs 
reached 89.2% in North America [117], 41.9% in 
Australia [113,121], while in Africa and South 
America, the pooled prevalence was 20.8% and 25.8%, 
respectively. In Asia and Europe, the pooled prevalence 
was 32% and 34%, respectively.

Because of frequent needle sharing behavior, co- 
infection of HPgV-1 with HIV-1, HBV, and/or HCV 
was very common among IDUs. The co-infection rate 
ranged from 11.6% to 85.8% [101,111,114,121, 
122,129,131,133,137–139]. In particular, the prevalence 
of triple infection with HPgV-1, HIV-1, and HCV was 
often higher than that of dual infection by HPgV-1 and 
HIV-1 or HCV [111,132,133].

CSWs and MSM

Sexual transmission routes of HPgV-1 include heterosex-
ual and homosexual transmission. CSWs and MSM are 
the most predominant high-risk groups for heterosexual 
and homosexual infection of HPgV-1, respectively. 
HPgV-1 prevalence varied from 0% to 35.5% among 
CSWs and from 12.5% to 36.2% among MSM 
[52,89,92,120,121,126,128,131–133,135,136,138,140–143]. 
The pooled prevalence of HPgV-1 was 17.3% and 19.7% 
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in CSWs and MSM, respectively, suggesting similar trans-
mission risk of HPgV-1 among the two high-risk groups. 
Importantly, the worst-hit continent of HPgV-1 preva-
lence was CSWs in Asia (17.9%) and MSM in Australia 
(36.2%), respectively.

Pathogenesis

The pathogenicity of HPgV-1 remains controversial. 
A large number of epidemiological and clinical studies 
did not support an association of HPgV-1 infection 
with any known clinical diseases (reviewed in 
[4,144,145]). Although the virus was detected in the 
saliva and serum of healthy people and replicates 
in vivo at high titer, neither obvious clinical symptoms 
were observed, nor significant immune activation in 
any cell types was detected [146,147]. Approximately 
80% of healthy people or immune competent indivi-
duals spontaneously clear viraemia within 2 years of 
HPgV-1 infection [2,3,117,148]. However, in immuno-
compromised individuals and/or individuals with other 
infectious diseases, HPgV-1 viraemia can persist for up 
to decades [2]. The maintenance of persistent infection 
may be ascribed to the ability of HPgV-1 to avoid 
immune recognition and T cells immune activation 
[36,149]. HPgV-1 E2 glycoprotein is believed to contain 
T cell receptor-inhibitory motifs, and contributes to 
viral persistence by reducing T cells immune activation 
[149]. On the other hand, HPgV-1 does not induce 
broad antibody responses. The specific antibody 
response appears to be restricted to E2 [2,3,42,117]. 
Anti-E2 antibody is associated with the clearance of 
HPgV-1 viraemia, and can prevent HPgV-1 reinfection 
[2,43,150].

HPgV-1 is frequently co-infected with other blood- 
borne viruses, such as HIV-1 and HCV. HPgV-1 persis-
tent infection inhibits abnormal and excessive immune 
activation in patient co-infected with HIV-1, HCV, or 
EBOV, and often shows beneficial clinical effects in 
these patients [4,144,145]. In particular, HPgV-1 infec-
tion slows disease progression and prolong survival 
time of HIV-1 infected individuals by directly inhibit-
ing HIV-1 infection and replication, and/or reducing 
immune activation of T lymphocytes [151–158].

Although most HPgV-1 infections are self-limited, 
few immunocompromised individuals with HPgV-1 
infection developed lymphoma [159–164]. In 2018, 
Fama et al. reported that HPgV-1 infection was closely 
associated with the overall risk of lymphoma [165]. The 
association was observed for almost every major lym-
phoma subtype except chronic lymphomatous leukemia 
(CLL)/small lymphocytic lymphoma (SLL) and 
Hodgkin’s lymphoma (HL). A recent meta-analysis 

supported the positive association of HPgV-1 persistent 
infection with lymphoma risk [166]. HPgV-1 is 
a lymphotropic virus that causes persistent infection 
in both T and B lymphocytes [2,167]. Persistent 
HPgV-1 infection may induce DNA mutations and 
potentially malignant transformation in lymphocytes, 
which promote the development of lymphoma 
[165,166]. The possible causal relationship between 
HPgV-1 viremia and lymphoma risk suggests that 
HPgV-1 may be a risk marker and a potential thera-
peutic target for lymphoma.

Furthermore, Balcom et al. reported two cases of 
HPgV-1 related fatal brain leukocyte encephalitis, in 
which lymphocytic infiltration and gliosis were 
detected in the brain tissue, suggesting neurotropism 
of HPgV-1 [168]. The neural cell tropism of HPgV-1 
was supported by another recent study that showed that 
HPgV-1 infects specific nerve cells in the human brain, 
such as astrocytes and microglia [169]. By inhibiting 
antiviral signaling pathways, HPgV-1 can establish per-
sistent infection and promote the development of neu-
rological diseases [169].

Given the potential association of HPgV-1 infection 
with the lymphoma risk [165,166], development of 
anti-HPgV-1 small molecule drugs might be beneficial 
for the treatment and prophylaxis of lymphoma. 
However, it is very time- and resource-consuming for 
the development of efficient antiviral small molecule 
drugs, which needs a suitable in vitro culture system 
for virus growth. Currently, there was no suitable cul-
ture system of HPgV-1 production (reviewed in [2]). 
Therefore, repurposing of existing anti-drugs may be 
an alternative strategy. One exciting development in 
antiviral researches is the development of direct-acting 
antivirals (DAAs) against HCV [170–173]. DAAs target 
the NS3/4A protease, the NS5A protein, and the NS5B 
polymerase of HCV, and cure HCV infection in over 
90% of patients [172]. Despite the fact that HPgV-1 
shares homogenous genes and has close epidemiologi-
cal association with HCV, DAAs seem not to inhibit 
HPgV [174]. In view of the fact that HPgV-1 infection 
is benign in healthy individuals, whether it is necessary 
to develop anti-HPgV-1 therapeutic drugs deserves to 
be cautiously assessed.

HPgV-1 co-infection and human diseases

HPgV-1 has a high co-infection rate with other human 
viruses such as HIV-1 and HCV. HPgV-1 persistent 
infection can lead to significant improvements in clin-
ical parameters and outcomes in patients co-infected 
with other viruses (Table 2), showing a beneficial effect 
on other viral diseases to some extent [4,144]. The 
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beneficial outcome of HPgV-1 persistent infection was 
mainly associated with the inhibition or reduction of 
abnormal and excessive immune activation, especially 
the immune activation of T lymphocytes [4,144,145].

Co-infection with HIV-1

Approximately 5–47.9% HIV-1 infected individuals were 
co-infected with HPgV-1 [55,89,95–100,151,153–156,175– 
185]. People who co-infected with HIV-1/HPgV-1 gener-
ally had relatively slower disease progression of AIDS and 
prolonged survival [89,153,155,156,181]. CD4 + T cell 
count and HIV-1 viral load are two crucial predictors of 
HIV/AIDS disease progression, and are used to determine 
the initiation and to evaluate the efficacy of highly active 
antiretroviral therapy (HAART) [186,187]. A large number 
of studies revealed that HPgV-1 viral load is significantly 
positively correlated to CD4 + T cell number, but negatively 
correlated to HIV-1 viral load [97,98,151,153,154,175, 
176,178–182,188–191] (Table 2). These findings indicate 
that HPgV-1 persistent infection is associated with 
a beneficial effect on HIV/AIDS.

There are diverse mechanisms involving in the ben-
eficial effect of HPgV-1 co-infection on HIV-1 disease 
progression. First, HPgV-1 infection reduces surface 
expression of chemokine receptors CCR5 and CXCR4, 
both of which serve as co-receptors for HIV-1 entry 
into host cells (including CD4 + T cells, macrophages, 
DC cells) [183,192–195]. On the other hand, HPgV-1 
E2 glycoprotein and NS5A protein can up-regulate the 
productions of the CCR5 ligands (e.g. RANTES, MIP- 
1α, and MIP-1β) and the CXCR4 ligand SDF-1, respec-
tively [97,190,193,196]. Down-regulation of HIV-1 co- 

receptors and increased release of their ligands inhibit 
HIV-1 entry and reduce viral cell-to-cell transmission. 
Second, HPgV-1 E2 glycoprotein can reduce the pro-
duction of mature capsid protein P24 and matrix pro-
tein P17 by inhibiting the processing of HIV-1 Gap 
precursor (P55), and thereby inhibit HIV-1 assembly 
[144,145,197,198]. Third, persistent immune activation 
and decreased Th1/Th2 cytokine ratio in HIV-1 infec-
tion are associated with rapid progression to AIDS. 
HPgV-1 co-infection reduces HIV-1-mediated activa-
tion of T, B, and/or NK cells, and contributes to the 
maintenance of balance between T-helper 1 (Th1) cyto-
kines and Th2 cytokines, which delay the development 
of AIDS [199–202]. For example, HPgV-1 E2 glycopro-
tein inhibits T cell activation by reducing TCR-induced 
IL-2 production and altering IL-2 signaling pathways 
[152,156,202–205]. Furthermore, HPgV-1 infection is 
associated with an increase of CD4 and CD8 double- 
negative T cells (CD4-CD8-CD3+), which also contri-
bute to reduction of immune activation and mainte-
nance of immune homeostasis, further improving the 
survival of HIV-1 infected individuals [144,184,206]. 
Fourth, HPgV-1 E2 glycoprotein can induce antibodies 
to neutralize and precipitate diverse HIV-1 isolates 
possibly by cross-reaction with a cellular antigen on 
HIV-1 particles [45]. Fifth, HPgV-1 co-infection was 
reported to control HIV-1 replication by activating the 
endogenous interferon system, and to reduce Fas- 
mediated apoptosis of CD4 + T cells by down- 
regulating Fas expression [207]. Furthermore, HPgV-1 
co-infection appeared to improve the response to 
HAART in HIV-infected individuals and the duration 
of HAART did not reduce HPgV-1 viremia [178,208].

Co-infection with HCV

HPgV-1 infection was closely related to HCV infection 
because of sharing the same transmission routes. About 
11.8–37.2% HCV-infected individuals were co-infected 
with HPgV-1 [101–103,209–212]. Recent studies 
showed that HCV-infected individuals were also 
found to have a high proportion of HPgV-2 infection 
[30–32,174,213,214]. HPgV-1 infection was found to be 
associated with a significant reduction in the severity of 
HCV-related liver disease in HCV/HIV-1-co-infected 
patients, showing a beneficial influence [101,103,210]. 
In HCV/HIV-1-co-infected patients, HPgV-1 persistent 
infection remarkably decreases AST and ALT levels by 
down-regulating some crucial genes from intra-hepatic 
T-cell signal transduction, and then significantly 
improves chronic hepatitis C-related liver injury and 
reduces the incidence of hepatopathy (Table 2) 
[101,210]. These genes include LCK, DOK2, interleukin 

Table 2. HPgV-1 prevalence in persons co-infected with HIV-1 
or HCV or EBOV and clinical outcomes.

HPgV-1 co- 
infected cohorts

HPgV-1 
prevalence Clinical outcomes

HIV-1 infected 5−47.9% Higher survival, CD4 cell counts, and 
CD4+/CD8+ ratio 
Lower HIV-1 viral loads, and T-cell 
activation 
Slower progression to AIDS 
Decreased levels of cytokines and 
chemokines 
Down-regulation of CCR5 and 
CXCR4 expression 
Improved response to HAART 
Superior quality of life

HIV-1/HCV co- 
infecteda

11.8−37.2% Reduction in cirrhosis, hepatic fibrosis 
and inflammation 
Down-regulation of LCK and DOK2 
expression 
Lower ALT and AST levels

EBOV infected 26.5% b Higher survival

a: HPgV-1 infection does not show significant beneficial effect for HCV- 
mono-infected individuals. Furthermore, the data and clinical findings are 
mostly based on patients with HIV-1/HCV/HPgV-1 triple co-infection. 

b: Data from one report. 
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2 receptor gamma (IL2R-γ), and cyclin D3 (CCND3), 
and are closely associated with T-cell receptor complex 
(TCR) [210]. However, a similar beneficial influence of 
HPgV-1 infection was not observed in HCV mono- 
infected patients [103]. The possible reason for this 
difference is that HPgV-1 is also a lymphotropic virus 
that may interact with HIV-1 by infecting the same 
cells, but not with HCV because of different cell targets.

Co-infection with Ebola virus

Ebola virus (EBOV) is an aggressive virus that causes 
highly lethal Ebola hemorrhagic fever (EHF) on 
humans and non-human primates. In Sierra Leone, 
Liberia and Guinea, the worst-hit areas by Ebola epi-
demic, about 11.1–18.9% of healthy individuals were 
infected by HPgV-1 (Figure 3). In a retrospective study 
that analyzed previous deep-sequencing data, 13 
(26.5%) of 49 EBOV-infected individuals were found 
to be co-infected with HPgV-1 [215]. The survival rate 
of HPgV-1 co-infected Ebola patients was 53.8%, sig-
nificantly higher than that (22.2%) of HPgV-1 negative 
Ebola patients, suggesting that HPgV-1 co-infection 
may attenuate the pathogenicity of EBOV [215]. The 
beneficial effect of HPgV-1 co-infection on Ebola 
patient might be also associated with reduced proin-
flammatory cytokines production and excessive T-cell 
activation.

Virus isolation and animal models

Cell tropism and host range

Because HPgV-1 was first identified from patients with 
acute or chronic non-A-E hepatitis, it was initially 
considered as a hepatotropic virus [3,6,5,8,9,37]. 
However, subsequent evidences did not support an 
association of HPgV-1 infection with either acute 
and/or chronic hepatitis. In particular, HPgV-1 RNA 
was found to be more frequently detected in circulating 
lymphocytes, but not or in a very low level in liver 
biopsies of infected people [2,216–218]. Furthermore, 
HPgV-1 RNA level remained relatively stable in 
patients with pre-transplantation HPgV-1 infection 
after liver transplantation, while HCV RNA level 
increased steady in patients with chronic hepatitis 
C after liver transplantation [219]. These evidences 
suggest that HPgV-1 is lymphotropic, rather than 
hepatotropic.

HPgV-1 RNA was detected in multiple lineages of 
peripheral blood mononuclear cells (PBMCs, including 
T lymphocytes, B lymphocytes, NK cells, and mono-
cytes), indicating a wide tropism [167,220–222]. 

However, HPgV-1 negative-strand RNA, the marker 
of viral RNA replication, was preferentially detected in 
bone marrow and spleen, but less in PBMCs, suggesting 
that progenitor haematopoietic stem cell (HSC) may 
also be the primary target of HPgV-1 infection 
(reviewed in [2]). The presence of HPgV-1 in PBMCs 
indicates that the virus persists and replicates during 
and following subsequent lymphocyte maturation 
[2,218,220,223,224].

Old world primates are believed to be the natural 
hosts of HPgV-1 [18,225]. Apart from humans, HPgV- 
1 can also infect chimpanzees and macaques [225,226]. 
Whether other primates and/or animals are also sus-
ceptible to HPgV-1 infection remains to be determined.

In vitro culture of HPgV-1

Establishment of an in vitro cell culture system is cru-
cial for studying the biological characteristics and mole-
cular mechanisms of HPgV-1, as well as developing 
strategies for prophylactic and therapeutic interven-
tions. Development of an efficient cell culture system 
depends on permissive cells (primary cells or cell lines) 
supporting infection and production of infectious vir-
ion, and a virus or its infectious clone capable of repli-
cating and assembling virion in permissive cells.

As a lymphotropic virus, HPgV-1 extensively exists 
in multiple lineages of PBMCs [2,167], and PBMCs 
from HPgV-1 infected people were demonstrated to 
transfer the virus to primary PBMCs of healthy indivi-
duals in vitro [220,221]. Serum from HPgV-1-infected 
individuals was also demonstrated to establish infection 
in PBMCs in vitro [167]. Using primary PBMCs, 
in vitro HPgV-1 culture systems have been previously 
established, and the culture could be maintained up to 
35 days [220,221]. However, HPgV-1 replication 
appears to be very limited in PBMCs. The virus can 
be poorly produced in vitro PBMCs culture system, and 
average less than 10 HPgV-1 genomic copies can be 
detected among per 100 PBMCs [167,223]. These imply 
that only a very small proportion of PBMCs support 
HPgV-1 replication, or there are some potential cellular 
restriction factors to inhibit HPgV-1 replication in 
PBMCs [227]. On the other hand, because cellular 
receptors for HPgV-1 infection remain unknown, the 
permissive cell lines supporting HPgV-1 infection and 
replication need to be determined [2].

In recent years, reverse genetics systems have been 
developed and provide powerful tools to recover some 
uncultivated viruses [228]. Using the systems, infec-
tious clones of some emerging viruses, including HCV 
[229,230], Zika virus, and dengue virus from the 
Flaviviridae family [231–234], and the newly emerging 
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SARS-CoV-2 [235–237], have been constructed. 
Although currently the infectious clone of HPgV-1 
was not available, two full-length cDNA clones of 
HPgV-1 were previously constructed and their in vitro 
full-length RNA transcripts were proved to be infec-
tious in primary CD4 + T cells [238] and in macaques 
(Macaca mulatta) [239]. In view of sharing similar 
genome organization and homogenous genes to HCV, 
the success in the development of efficient cell culture 
systems for HCV and other Flaviviridae viruses 
[229,230] and availability of increasing number of com-
plete HPgV-1 genome sequences provide avenues for 
the development of HPgV-1 infectious clones using 
reverse genetics tools in the future.

Animal models

The lack of appropriate animal models for HPgV-1 
infection limits the understanding of its pathogenesis. 
Non-human primates (NHPs) are considered to be the 
ideal animal models for viral diseases since they are 
closely genetically related to humans than other ani-
mals. As the most widely used animal models for viral 
diseases such as HIV/AIDS, macaques and chimpan-
zees are considered as primary animal models of 
HPgV-1 infection since they might be susceptible to 
HPgV-1 infection [18,225,226,239–241]. For ethical 
and financial reasons, macaques are preferred to be 
used for the NHP model of HPgV-1. However, maca-
ques often failed to be experimentally infected with 
HPgV-1 [3].

Fortunately, some simian pegiviruses (SPgV) that are 
closely genetially related to HPgV-1 were recently iden-
tified and characterized from some old world monkey 
species (e.g. red colobus monkeys, red-tailed guenons, 
and olive baboon) [18]. Using a SPgV strain isolated 
from yellow baboons in Mikumi National Park, 
Tanzania, a macaque model of HPgV-1 infection was 
recently established [225]. The SPgV-infected macaques 
showed similar clinical characteristics (e.g. persistent 
infection, high-titer viremia, and lack of obvious patho-
genic symptoms) to HPgV-1 infected humans. In this 
model, bone marrow and spleen were further con-
firmed to be the predominant tissues for HPgV-1 repli-
cation and production [225].

On the other hand, development of NHP models for 
human infectious diseases was largely limited by extre-
mely high cost, difficulty to reach sufficient sample size, 
as well as raising ethical concerns of experimentation 
on NHPs. As the most widely used small animal mod-
els, humanized mice might represent a rapid, conveni-
ent, and promising direction for the development of 
animal models for HPgV-1 infection and other human 

viral diseases due to their rapid reproductive capacity, 
clear genetic background, and well-defined immune 
systems [242].

Potential use of HPgV-1 in therapy

As a non-pathogenic virus, a large number of epidemio-
logical and clinical studies demonstrated the protective 
effect of HPgV-1 persistent infection on HIV-1 infection, 
which was well supported by diverse molecular mechan-
isms, involving in the inhabitation of HIV-1 entry and 
replication and the suppression of immune activation 
[2,36,144]. Similar beneficial effect of HPgV-1 infection 
was also observed in Ebola patients and HIV-1/HCV co- 
infected patients [101,210,215]. These imply a high 
potential of HPgV-1 as a therapeutic bio-vaccine to be 
used in people living with HIV/AIDS in resource-limited 
regions where HAART is not common [243]. 
Furthermore, HPgV-1 was demonstrated to preferen-
tially infect and replicate in HSC without cytopathic 
effect, implying another potential therapeutic application 
of HPgV-1 as viral vectors [218,224,225].

Therapeutic potential of HPgV-1 as a biovaccine was 
recently validated in a macaque model, in which the 
monkeys were sequentially infected by SPgV and simian 
immunodeficiency virus (SIV) [244]. In the model, the 
protective effect of SPgV was found to preferentially 
occur during the chronic phase of SIV infection [244]. 
In 2019, Greenhalgh and colleagues evaluated the feasi-
bility of HPgV-1 as a biovaccine for HIV/AIDS [245]. 
Based on the epidemiological data of AIDS among MSM, 
they constructed a mathematical model to evaluate the 
potential impact of HPgV-1 biovaccination on AIDS- 
associated morbidity and mortality. They revealed that 
HPgV-1 biovaccination can effectively reduce the inci-
dence of HIV/AIDS, AIDS-associated death and improve 
disability-adjusted life years (DALYs) of HIV-1 patients. 
Furthermore, the detrimental impact from HPgV-1 evo-
lution was found to be very small under relatively high 
biovaccination rates (>12.5% annually) [245]. In fact, 
HPgV-1 is relatively evolutionarily conservative [246– 
248]. The SPgV-infected macaque model also supported 
an extremely low propensity of pegivirus to accumulate 
sequence variation [225]. In this model, about 1.5 var-
iants were identified per 100 infection-days, and no con-
sensus-level variants were detected, implying a very low 
risk of the HPgV-1 biovaccine strain evolving to patho-
genic variants [225]. On the other hand, HPgV-1 co- 
infection seemed not to alter the evolution of HIV-1 
[245]. Despite the significant progress in this field, it is 
still a long way for HPgV-1 to be used as a biovaccine to 
treat human infectious diseases. A major challenge is lack 
of an efficient in vitro culture system for HPgV-1 growth, 
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which requires to first elucidate the cellular receptor of 
the virus and then develop appropriate (permissive) cell 
lines [2]. Furthermore, clinical trials to evaluate the effec-
tiveness of HPgV-1 biovaccination in HIV-1-infected 
people are mandatory before regulatory approval and 
clinical application.

Conclusion and future perspective

HPgV-1 is more like a non-pathogenic virus in the 
Flaviviridae family in spite of recent observation of 
a positive association of HPgV-1 viremia with increased 
risk of lymphoma in immunocompromised individuals. It 
is commonly prevalent in general population with extre-
mely high proportions in high-risk groups such as IDUs 
and MSM. Persistent HPgV-1 infection slows the disease 
progression and improves the survival of individuals co- 
infected with HIV-1 and other pathogens by diverse 
molecular mechanisms, showing significant beneficial 
clinical effects. As a non-cytopathic lymphotropic virus 
that infects and preferentially replicates in bone marrow 
and spleen, HPgV-1 shows high therapeutic potential for 
infectious diseases as a biovaccine or a safe viral vector.

Although the promising results in HPgV-1 related 
epidemiological, experimental, and clinical studies, 
several underlying questions remain to be addressed. 
First, lack of an efficient in vitro culture system is 
a major barrier that limits the molecular biological 
mechanism researches of HPgV-1, including but not 
limited to the identification of cellular receptor of the 
virus, life cycle, persistence and clearance mechanism, 
viral interactions with the host immune system (inter-
acting with immune cells and regulating immune acti-
vation), and with co-infected viruses (e.g. HIV-1, 
HCV, EBOV) or other pathogens (e.g. malaria) [249], 
as well as the development of suitable animal models 
and therapeutic biovaccine and/or vectors. Second, the 
association of HPgV-1 infection with the development 
of lymphoma, and even neurological diseases also need 
to be cautiously and systematically assessed. 
Furthermore, currently, COVID-19 is still the greatest 
threat to global public health. Whether there is 
a difference in the susceptibility to SARS-CoV-2 infec-
tion and the disease severity of COVID-19 between 
HPgV-1 infected and uninfected people deserves to 
be investigated.
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syndrome
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IDUs Intravenous drug users
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SARS-CoV-2 Severe acute respiratory syn-

drome coronavirus 2
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