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Abstract

Many proteins contain more than one folded domain, and such modular

multi-domain proteins help expand the functional repertoire of proteins.

Because of their larger size and often substantial dynamics, it may be difficult

to characterize the conformational ensembles of multi-domain proteins by

simulations. Here, we present a coarse-grained model for multi-domain

proteins that is both fast and provides an accurate description of the global

conformational properties in solution. We show that the accuracy of a one-

bead-per-residue coarse-grained model depends on how the interaction sites in

the folded domains are represented. Specifically, we find excessive domain–
domain interactions if the interaction sites are located at the position of the Cα

atoms. We also show that if the interaction sites are located at the center of

mass of the residue, we obtain good agreement between simulations and

experiments across a wide range of proteins. We then optimize our previously

described CALVADOS model using this center-of-mass representation, and

validate the resulting model using independent data. Finally, we use our

revised model to simulate phase separation of both disordered and multi-

domain proteins, and to examine how the stability of folded domains may dif-

fer between the dilute and dense phases. Our results provide a starting point

for understanding interactions between folded and disordered regions in pro-

teins, and how these regions affect the propensity of proteins to self-associate

and undergo phase separation.
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1 | INTRODUCTION

Multi-domain proteins (MDPs) consist of more than one
folded domain that are often connected by linkers or
longer intrinsically disordered regions (IDRs), and make

up a large fraction (around 50%) of the proteomes in
eukaryotic and prokaryotic organisms (Han et al., 2007;
Van Der Lee et al., 2014). Like intrinsically disordered
proteins (IDPs), MDPs can display large-amplitude
motions that may play prominent roles in biomolecular
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functions like signaling, catalysis and regulation (Bondos
et al., 2021; Delaforge et al., 2016; Mackereth &
Sattler, 2012; Van Der Lee et al., 2014).

The biological functions of MDPs depend both on the
properties of the folded domains and the disordered
regions, and so characterizing the conformational ensem-
bles can be key to understanding how these proteins
function. In many cases, the folded and disordered
regions are studied separately, but the folded domains
might affect the conformational properties of the disor-
dered regions (Mittal et al., 2018; Taneja &
Holehouse, 2021) and the disordered regions may also
affect the properties of the folded domains (Yu &
Sukenik, 2023). For example, there is a complex interplay
between the folded and disordered regions in the RNA-
binding protein hnRNPA1, that affects its conformational
ensemble in solution and its propensity to undergo phase
separation (Martin, Thomasen, et al., 2021). However,
describing the conformational ensembles of MDPs in
solution generally requires a combination of biophysical
experiments and molecular dynamics (MD) simulations
(Thomasen & Lindorff-Larsen, 2022).

All-atom MD simulations have been used to generate
conformational ensembles of IDPs and MDPs and to
study intra- and inter-domain interactions (Sekiyama
et al., 2022; Zheng et al., 2020). Such simulations, how-
ever, are often limited by the large system sizes and long
time scales which limit efficient sampling of these
dynamic proteins. Coarse-grained (CG) models may
increase the sampling efficiency by reducing the number
of particles in the simulation systems (Bereau &
Deserno, 2009; Gopal et al., 2010; Monticelli et al., 2008;
Neri et al., 2005). The accuracy, transferability, and effi-
ciency of such models, however, depend on the degree of
coarse-graining and the parameterization strategy (Heo &
Feig, 2024). One commonly used model is the Martini
force field, which uses a four-to-one mapping scheme
with explicit solvent (Souza et al., 2021). Different ver-
sions of Martini have been modified to produce improved
ensembles of IDPs and MDPs (Benayad et al., 2020;
Thomasen et al., 2022, 2024). For IDPs, there has in the
last years been extensive work using even coarser models
where each amino acid residue is represented by a single
bead. The interaction sites are generally located at the Cα

positions and separated by bonds that are 0.38 nm long,
and we therefore here term these Cα models. Several
related models rely on a similar functional form to the
HPS model introduced by Dignon et al. (2018) and may
include bonded terms, an Ashbaugh-Hatch potential
(Ashbaugh & Hatch, 2008) for shorter-range interactions
and a Debye-Hückel electrostatic screening potential.
Such models have for example been used to study the
conformational ensembles and interactions within and

between IDPs (Dannenhoffer-Lafage & Best, 2021;
Dignon et al., 2018; Joseph et al., 2021; Regy et al., 2021;
Tesei & Lindorff-Larsen, 2023; Valdes-Garcia et al., 2023;
Wessén et al., 2022).

Coarse-grained models developed for IDPs do not rep-
resent the stability of folded proteins well, because the
finely balanced energy contributions from individual
backbone and side-chain interactions are not captured by
the reduced representation. As a consequence, additional
(often harmonic) restraints are applied to maintain the
folded configurations in folded proteins and MDPs
(Borges-Araújo et al., 2023; Souza et al., 2021). Even
when applying such restraints to models developed for
IDPs, extra attention needs to be paid to interactions
related to folded domains since it is still unclear whether
the models are fully transferable to MDPs. In particular,
Cα-based one-bead-per-residue mappings do not account
for the specific orientations of side chains in folded pro-
teins (Kolinski & Skolnick, 1998). For example, hydro-
phobic residues, whose side chains are “tucked away” in
the hydrophobic core of the protein, may be exposed at
the surface of the protein in a Cα based representation.
One approach to help overcome this problem is to use a
different or scaled set of force field parameters for inter-
actions that involve folded regions (Dignon et al., 2018;
Kim & Hummer, 2008; Krainer et al., 2021). Another pos-
sible solution is the introduction of more terms in the
energy function to better describe long-range interactions
(Li et al., 2012; Tan et al., 2023) or to introduce aniso-
tropic interactions (Sieradzan et al., 2022).

As an alternative, other coarse-grained models repre-
sent a residue by more than one bead to represent back-
bone side chain orientations and interactions (Hyeon
et al., 2006; Maity et al., 2022; Mugnai et al., 2023; Pappu
et al., 1996; Sieradzan et al., 2022; Yamada et al., 2023;
Zhang et al., 2022; Zhang et al., 2023). In some of these
models, one bead is placed at Cα and the other one is at
the center of mass (COM) of side chain atoms. In this
way, side chain interactions can be explicitly taken into
account, improving the simulated dynamical behavior of
folded protein simulations and model transferability. In
previous studies, this strategy has been used to study con-
formational ensembles of IDPs or unfolding pathways of
proteins (Hyeon et al., 2006; Mugnai et al., 2023). While
effective, using multi-bead-per-residue models increases
the time to sample configurations in simulations, and
requires the determination of a larger number of force
field parameters.

We have previously developed and applied an auto-
mated procedure to optimize the “stickiness” parameters
(λ) in a one-bead-per-residue model by improving the
agreement with experimental small-angle X-ray scatter-
ing (SAXS) and paramagnetic relaxation enhancement
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(PRE) nuclear magnetic resonance (NMR) data for a
large set of IDPs (Norgaard et al., 2008; Tesei & Lindorff-
Larsen, 2023; Tesei, Schulze, et al., 2021). The most
recent CALVADOS (Coarse-graining Approach to
Liquid–liquid phase separation Via an Automated Data-
driven Optimization Scheme) model (CALVADOS 2) was
further tuned to describe phase behavior of multi-chain
conformational ensembles of IDPs from simulations by
reducing the range of non-ionic interactions (Tesei &
Lindorff-Larsen, 2023).

Here, we explore the use of the CALVADOS model
for simulations of MDPs. We find that when the CALVA-
DOS 2 parameters are used in simulations of MDPs with
interaction sites at the Cα positions, the resulting struc-
tures in some cases show excessive interactions between
the folded domains, leading to compact ensembles that
do not agree with SAXS data. To remedy this problem,
we describe a strategy where interaction sites in folded
regions are located at the COM of the residue, and show
that simulations with this model result in substantially
improved agreement with experiments. We optimize the
parameters in CALVADOS using the COM representa-
tion to derive a refined set of CALVADOS parameters
(CALVADOS 3). When we combine the COM representa-
tion of folded domains with harmonic restraints between
residues in the folded domains and the CALVADOS
3 parameters we obtain good agreement with experimen-
tal data on single-chain properties of MDPs and IDPs.
Finally, we show how this model may be used to study
the interactions between folded and disordered regions in
proteins that undergo phase separation, and how the

stability of folded domains might change during phase
separation.

2 | RESULTS

2.1 | A modified representation
improves accuracy for multi-domain
proteins

We first evaluated the accuracy of the original CALVA-
DOS 2 model for simulations of MDPs. We therefore used
the CALVADOS 2 parameters (Tesei & Lindorff-
Larsen, 2023) and a Cα representation to run simulations
of 56 IDPs and 14 MDPs (Tables S1, S2, and S3). In all
systems, the interaction sites are located at the Cα posi-
tions in both folded and disordered regions; for the
MDPs, we applied an additional elastic network model to
keep domains intact during simulations (Figure 1a, see
Section 4). We term this combination of the force field
parameters (CALVADOS 2) and the Cα representation of
the interaction sites in the folded domains as
CALVADOS2Cα . As expected and reported previously
(Tesei & Lindorff-Larsen, 2023), we found that simula-
tions of IDPs with CALVADOS2Cα resulted in good agree-
ment between experimental and calculated values of Rg

(Figure 1b). In contrast, we found more substantial differ-
ences between experimental and calculated values of Rg

for several MDPs (Figure 1b). In particular, we found that
the Rg was underestimated for several MDPs including a
series of two fluorescent proteins connected by Gly-Ser

(a) (b) (c) (d) (e) (f)

FIGURE 1 Simulations of MDPs and IDPs using a Cα representation, COM representation or side-chain center-of-mass (SCCOM)

representation. Location of the interaction sites in a β-sheet when using (a) a Cα representation, (c) a COM representation, and (e) a SCCOM

representation. Comparison between simulated and experimental Rg values for IDPs (orange) and MDPs (green) using (b) the

CALVADOS2Cα model (CALVADOS 2 parameters and a Cα representation for both folded and disordered regions), (d) the CALVADOS2COM
model (CALVADOS 2 parameters and a COM representation for the interaction sites in the folded regions), and (f) the CALVADOS2SCCOM
model (CALVADOS 2 parameters and a SCCOM representation for the interaction sites in the folded regions). The region labeled “GS-
proteins” in panel B contains a number of proteins consisting of pairs of β-sheet-rich fluorescent protein connected by glycine-serine linkers

(Moses et al., 2024). Pearson correlation coefficients (r) and relative mean signed deviation rMSD¼ Rg,sim�Rg,exp
� �

=Rg,exp
� �

are reported in

the legend, and errors represent standard errors of the mean calculated using bootstrapping. A negative rMSD value indicates that the

calculated radii of gyration are systematically lower than the experimental values. The black diagonal lines in panel B, D and F

indicate y¼ x.
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linkers of different lengths (here termed GS-proteins;
Moses et al., 2024). This observation was confirmed by
calculations of the relative mean signed deviation, rMSD,
between experimental and calculated values of Rg that
shows that these are on average underestimated by 18%
in the MDPs (Figure 1b).

As a first attempt at creating a model for both IDPs
and MDPs, we used our previously described protocol
(Norgaard et al., 2008; Tesei, Schulze, et al., 2021) to opti-
mize the λ stickiness parameters of the CALVADOS
model targeting simultaneously SAXS and NMR data on
56 IDPs and 14 MDPs. The resulting λ values were gener-
ally smaller than those in CALVADOS 2 (Figure S1a) in
line with the finding that the MDPs were too compact
using CALVADOS 2. Nevertheless, it was also clear that
this new parameter set made the agreement worse for
disordered proteins (Figure S1b–e) and did not result in a
satisfactory model to describe both IDPs and MDPs.

We instead hypothesized that the compaction of sev-
eral MDPs was a result of placing the interaction sites at
the Cα positions in the folded domains. In particular for
β-sheet-containing proteins, this geometry would mean
that residues whose side chains are buried inside the
folded domain are represented by interaction sites located
closer to the protein surface (Figure 1a); thus buried
hydrophobic residues might appear as solvent exposed.
We therefore constructed a new model where the interac-
tion sites within folded regions were placed at the COM
of the residue (Figure 1c) and constrained by harmonic
restraints; when used with the CALVADOS 2 parameters,
we term this model CALVADOS2COM. We stress that
only the bead locations in the folded domains differ
between the CALVADOS2Cα and CALVADOS2COM
models; residues in disordered regions are represented by
one bead centered on the Cα positions in both models. In
the absence of folded domains, CALVADOS2COM and
CALVADOS2Cα are thus identical and simulations with
the two models gave comparable results (Figure 1b,d). In
contrast, simulations of the MDPs with CALVADOS2COM
were in substantially better agreement with experiments
than simulations with CALVADOS2Cα as evidenced, for
example, by an increase in Pearson correlation coefficient
from 0.5 to 0.95 and an increase in rMSD from �18% to
0% (Figure 1b,d). In addition to the COM representation,
we also examined whether a side-chain center-of-mass
(SCCOM) representation, shifting bead positions of bur-
ied residues further away from the surface, could yield
even more accurate Rg predictions than the COM repre-
sentation (Figure 1e). We performed single chain simula-
tions with the CALVADOS 2 parameters and the SCCOM
representation (CALVADOS2SCCOM) and found that
CALVADOS2SCCOM on average resulted in an overestima-
tion of the Rg of MDPs of 11% (Figure 1d,f). As an

alternative solution to decrease the too strong
interactions between folded domains, it has previously
been suggested to scale down interactions between pairs
of folded domains (by a factor of 0.7) and between folded
domains and disordered regions (by a factor of
0:84¼ ffiffiffiffiffiffiffi

0:7
p

) (Krainer et al., 2021). While applying this
rescaling to CALVADOS 2 (termed CALVADOS2Cα

70%) led to improved agreement with experiments, the
improvement was smaller than when using the COM rep-
resentation, and the simulations had a remaining bias
towards underestimating the radii of gyration (Figure S2).
Therefore, we proceeded by using the COM representation
in this study.

To examine in more detail why the CALVADOS2Cα

model resulted in more compact conformations of MDPs
than CALVADOS2COM, we calculated the time-averaged
non-ionic (Ashbaugh-Hatch) interaction energies
between residues of different folded domains. For this
analysis we selected GS0, a construct with two fluores-
cent proteins separated by a 29-residue-long linker
(Moses et al., 2024), since the Rg value of GS0 deviates
substantially from experiments in simulations with
CALVADOS2Cα (Figure 1b). In the energy maps, we see
evidence of substantial inter-domain interactions
between residues 140–230 of one fluorescent protein and
residue 340–440 of the other (Figure 2a). In contrast,
these domain–domain interactions are not observed
when simulating with COM representation (Figure 2b).
The comparison of the two energy maps thus supports
the hypothesis that the too compact conformations of
MDPs in simulations with CALVADOS2Cα result from
inter-domain attractions that are decreased in the COM
representation (Figure 2c).

2.2 | Optimizing CALVADOS using a
center-of-mass representation

Having shown that the COM representation gave an
improved description of MDPs while preserving the accu-
racy when simulating IDPs, we proceeded to optimize
the CALVADOS model further. We used our iterative
Bayesian optimization scheme (Norgaard et al., 2008;
Tesei, Schulze, et al., 2021) to optimize the λ stickiness
parameters of the CALVADOS model targeting simulta-
neously SAXS and NMR data on 56 IDPs and 14 MDPs
(Tables S1, S2, and S3). In these simulations we used the
COM representation of the folded domains and we thus
term the final model CALVADOS3COM to represent both
the force field and the COM representation of the folded
regions. The resulting λ values in CALVADOS3COM are
similar to those in CALVADOS 2 (Figures 3 and S3). We
found that simulations of IDPs with CALVADOS3COM
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and CALVADOS2COM gave similar agreement to SAXS
experiments. Likewise, we found a similar agreement for
the MDPs (Figures 1d and 3b,c).

Having optimized λ, we validated the CALVADOS3-

COM model on 25 IDPs and 9 MDPs (Tables S4 and S5)
that were not used in training for any of the models
(Figure 4). For the 25 IDPs, we found good agreement for
all three models (CALVADOS2Cα , CALVADOS2COM, and
CALVADOS3COM) (Figure 4a–c). We note again that the
COM representation is only applied to the folded domain.
All IDPs have Cα representations, so CALVADOS2Cα and
CALVADOS2COM are the same models for IDPs. In con-
trast, for MDPs we found that CALVADOS3COM and
CALVADOS2COM perform substantially better than
CALVADOS2Cα (Figure 4a–c). Our validation results thus
show that the CALVADOS3COM model gives improved
agreement for simulations of MDPs while retaining the
accuracy of CALVADOS2Cα for simulations of IDPs.

Across the 34 independent test proteins we find χ2Rg

D E
values of 50, 22, and 15 for CALVADOS2Cα , CALVA-
DOS2COM, and CALVADOS3COM, respectively (Figure S4),
and both CALVADOS2COM and CALVADOS3COM have
essentially no bias (rMSD≈0; Figure 4b,c).

2.3 | Simulations of phase separation
of disordered and multi-domain proteins

We and others have previously used one-bead-per-residue
models such as CALVADOS to study the self-association
and phase separation of IDPs (Dannenhoffer-Lafage &

Best, 2021; Dignon et al., 2018; Joseph et al., 2021;
Regy et al., 2021; Tesei & Lindorff-Larsen, 2023; Tesei,
Schulze, et al., 2021; Valdes-Garcia et al., 2023; Wessén
et al., 2022). In some cases, these models have also been
used to study phase separation of proteins that contain a
mixture of folded and disordered regions (Conicella
et al., 2020; Dignon et al., 2018; Her et al., 2022). We
therefore examined whether the CALVADOS3COM model
could be used to study phase separation of both IDPs and
MDPs. We used multi-chain simulations in a slab geome-
try (Dignon et al., 2018) to simulate the partitioning of
proteins between a dilute and dense phase, and calcu-
lated the dilute phase concentration (the saturation con-
centration; csat) as a sensitive measure of the accuracy of
the model. We first simulated 33 IDPs and found that
simulations with CALVADOS3COM gave an agreement
with experimental values of csat that is comparable to that
of CALVADOS2Cα (Table S6, and Figures S5, S6, and S7).

We then proceeded to use CALVADOS3COM to study
the phase separation of MDPs including hnRNPA1*
(where * denotes that residues 259–264 have been deleted
from full-length hnRNPA1), full-length FUS (FL_FUS)
and other MDPs with experimental estimates of csat
(Table S7; Wang et al., 2018; Martin, Thomasen, et al.,
2021). Simulations of hnRNPA1* with CALVADOS2Cα ,
under conditions where the experimental dilute phase
concentration is 0.17mM, resulted in essentially all pro-
teins in the dense phase (csat ¼ 0 mM; Figure 5a). In con-
trast, simulations using CALVADOS3COM resulted in a
lower propensity to phase separate and a calculated value
of csat ¼ 0:14�0:01 mM that is comparable to experi-
ments (Figure 5b).

(a) (b) (c)

FIGURE 2 Energy calculations reveal substantial inter-domain interactions. We calculated interaction energy maps (of the Ashbaugh-

Hatch term in the force field) from simulations using (a) the CALVADOS2Cα model and (b) the CALVADOS2COM model. We show only a

subset of the map representing interactions between the first (residues 1–226 on the y-axis) and second (residues 256–470 on the x-axis)

folded domains. (c) Examples of structures of GS0 with the same Rg as the average over simulations using CALVADOS2Cα (left) and

CALVADOS2COM (right). The starting structure of the simulations is shown in the middle, where green and orange parts are the two

fluorescent proteins connected by a flexible linker (gray). The regions that interact strongly in the CALVADOS2Cα simulations are

colored blue.
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To understand the origin of these differences, we
calculated interaction energy maps of the proteins in
the dense phase. Experiments have shown that the LCD
in hnRNPA1* (residues 186–320) plays a central role
in driving phase separation (Martin, Thomasen,
et al., 2021; Molliex et al., 2015), and we indeed found
evidence for substantial LCD–LCD interactions in the
dense phases in simulations with both CALVADOS2Cα

(Figure 5c) and CALVADOS3COM (Figure 5d). In the sim-
ulations with CALVADOS2Cα we, however, also observed
more substantial interactions between the folded RRM
(RNA recognition motif) domains (residues 14–97 and

105–185) and between the RRMs and the LCD. In simu-
lations with CALVADOS3COM these interactions were
much weaker, presumably explaining the increase of csat
in these simulations.

Having demonstrated that CALVADOS3COM provides
a more accurate description of the phase behavior of
hnRNPA1* than CALVADOS2Cα , we proceeded to per-
form simulations of several other MDPs for which we
found estimates of csat in the literature (Figures 6, S8, and
S9). As for hnRNPA1*, we found that CALVADOS2Cα

substantially overestimates the tendency of these proteins
to undergo phase separation (i.e., underestimate csat). The

(a)

(c)

(b)

FIGURE 3 Optimizing the λ parameters using a COM representation for folded domains. (a) Comparison between λ values from

CALVADOS 2 (blue) and CALVADOS3COM (red). (b) Comparison between simulated and experimental Rg values for IDPs (orange) and

MDPs (green) using CALVADOS3COM. Pearson correlation coefficients (r) and rMSD are reported in the legend. The black diagonal line

indicates y¼ x. (c) Relative difference between experimental and simulated Rg values from CALVADOS3COM (red), CALVADOS2Cα (blue)

and CALVADOS2COM (blue hatched). χ2Rg

D E
values across IDPs and MDPs in training set are reported in the legend. Error bars show the

experimental error divided by Rg,exp .
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use of the COM representation in CALVADOS3COM
decreases the protein–protein interactions, and thus sub-
stantially improves the agreement with experiments,
though differences remain.

2.4 | Examining changes in folding
stability in condensates

Experiments have shown that the protein-rich environ-
ment of condensates can modulate the stability of folded
proteins or nucleic acids (Ahmed et al., 2024; Chen
et al., 2024; Nott et al., 2015; Ruff et al., 2022). Inspired by

these findings, we used the ability to simulate both folded
and disordered regions with CALVADOS 3 to examine
how partitioning into condensates may shift the folding
equilibrium of a folded domain. As it is difficult to sample
the folding-unfolding equilibrium by simulations, we stud-
ied it indirectly using a thermodynamic cycle that involves
differences in partitioning of the folded and unfolded
forms into a condensate (Nott et al., 2015).

To demonstrate how CALVADOS 3 enables such ana-
lyses, we simulated the isolated RRM1 and RRM2 from
hnRNPA1* (Figure 7a) in the presence of a condensate of
the LCD of hnRNPA1* and calculated the free energies
of partitioning of the RRM domains in their native,
folded state, ΔGN

part. Using the same approach, we per-
formed direct-coexistence simulations without applying
harmonic networks to the RRMs to calculate the free
energies of partitioning of the RRMs in their unfolded
state, ΔGU

part. A comparison of the concentration profiles
from our direct-coexistence simulations shows that the
unfolded RRMs accumulate in the condensate and are
depleted from the dilute phase to a greater extent than
the folded RRMs (Figure 7b–c); We quantify this via a
more negative free energy of partitioning, ΔGU

part <ΔGN
part

(Figure 7d). The preference of the unfolded state for the
condensate is particularly pronounced for RRM2, for
which we estimate a two-fold decrease in the free energy
of partitioning (ΔGU

part�ΔGN
part ¼�0:7 kcal=mol). From

the thermodynamic cycle, this in turn means that the
folding stability of RRM2 is 0.7 kcalmol�1 lower (less sta-
ble) in the condensate than in the dilute phase.

To put these changes into context, we used a recently
developed machine learning approach (Cagiada
et al., 2024) to predict the absolute protein folding stabili-
ties of the isolated RRMs in the dilute phase, ΔGdil

N!U , and
obtained 6.6 kcalmol�1 for RRM1 and 4.4 kcalmol�1 for
RRM2. Using these values and assuming a two-state
model, we estimate that the partitioning into the conden-
sate has a negligible effect on the amount of unfolded
state for RRM1; in contrast we predict a four-fold
increase in the population of the unfolded state of RRM2
from exp �ΔGdil

N!U=RT
� �

≈ 1=2000 to exp � ΔGdil
N!Uþ

��
ΔGU

part�ΔGN
partÞ=RT�≈ 1=500. Although substantial addi-

tional work is needed to examine the accuracy of
CALVADOS 3 for quantifying differences in partitioning
of folded and unfolded proteins into condensates, these
data show a promising use of our model for predicting
unfolding in condensates.

3 | DISCUSSION

In this work, we found that simulations with the
CALVADOS2Cα model, previously shown to represent

(a)

(b)

(c)

FIGURE 4 Validation of the CALVADOS3COM model using

proteins that were not used during training. Comparison of

simulated and experimental Rg values on a validation set using

(a) CALVADOS2Cα , (b) CALVADOS2COM and

(c) CALVADOS3COM. Pearson correlation coefficients (r) and rMSD

are reported in the legend. The black diagonal lines indicate y¼ x.
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single-chain and multi-chain properties of IDPs, underesti-
mated the radii of gyration of MDPs. Changing the CG
mapping method from Cα to COM substantially improved
the agreement with experimental data. This observation is
in line with the finding that reconstruction of all-atom
structures from a center-of-mass representation is more
accurate than from a Cα representation (Heo & Feig, 2024).
We reoptimized the “stickiness” parameters in the context
of a COM-based model based on experimental data for both
IDPs and MDPs. The resulting CALVADOS3COM model
provides a good description of both single- and multi-chain
simulations of both IDPs and MDPs.

The relatively low csat value calculated from slab sim-
ulations of hnRNPA1* with CALVADOS2Cα further

supported that interactions between the folded domains are
overestimated by Cα-based models without any further
modifications. Considering that the SCCOM-based model
(CALVADOS2SCCOM) overestimated Rg of MDPs, we sug-
gest that the COM-based model (CALVADOS3COM)
appears to strike a good balance, leading to improved
values of csat for MDPs. Nevertheless, some systematic
differences remain even with this model, which resulted
in underestimates of csat for different constructs of the
protein FUS. Together, our results show that the new
parameter set and the center-of-mass representation
(CALVADOS3COM) retain the accuracy of CALVADOS
2 for IDPs, but improve the description of proteins with
both disordered and folded domains. We therefore term
this new model CALVADOS 3, with the implicit notion
that this model is used with center-of-mass representa-
tion of residues within folded regions. We note that a pre-
print describing our work (Cao et al., 2024) used a
slightly different set of parameters, and we suggest to
refer to that model as CALVADOS 3beta.

When simulating MDPs with CALVADOS 3 we need
to restrain the folded domains using harmonic restraints.
In the current work, we have manually determined the
boundaries for which regions are considered to be folded,
though automated methods will be needed for large-scale
applications. Tools for automatic predictions of domain
boundaries exist (Holm & Sander, 1994; Lau et al., 2023)
and might be combined with AlphaFold to set the har-
monic restraints (Jussupow & Kaila, 2023).

Despite these current limitations, we envision that
the CALVADOS 3 model will enable detailed studies of
the interactions within and between MDPs, and pave the
way for proteome-wide simulation studies of full-length
proteins similar to what has recently been achieved for
IDRs (Tesei et al., 2024). We also envision that our
approach to study changes in protein stability inside con-
densates can be used together with methods to predict

FIGURE 6 Comparison between simulated and experimental

csat values for MDPs using the CALVADOS3COM model (red) and

CALVADOS2Cα (blue). The simulated proteins are hnRNPA1*

(circle), hSUMO_hnRNPA1* (downward triangle), FL_FUS

(upward triangle), GFP_FUS (square), SNAP_FUS (pentagon),

SNAP_FUS_PLDY2F_RBDR2K (star), SNAP_FUS_PLDY2F

(x symbol), FUS_PLDY2F_RBDR2K (diamond) and hnRNPA3

(plus symbol). The black diagonal line indicates y¼ x.

(a) (b) (c) (d)

FIGURE 5 Phase coexistence simulations of hnRNPA1* using (a, c) CALVADOS2Cα and (b, d) CALVADOS3COM. Simulations were

performed at 293K and an ionic strength of 0.15M. Equilibrium density profile of hnRNPA1* using (a) CALVADOS2Cα and

(b) CALVADOS3COM. csat calculated from density profiles are 0 and 0.14mM, respectively. Average residue–residue interaction energies (the

Ashbaugh-Hatch term in the force field) between the most central chain and the rest of the condensate for (c) CALVADOS2Cα and

(d) CALVADOS3COM.
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absolute protein stability (Cagiada et al., 2024) to learn
and expand our knowledge on the rules that underlie
phase separation and changes in stability of folded, glob-
ular proteins (Ruff et al., 2022).

4 | METHODS

4.1 | Description of the model

We modeled each amino acid by one bead. We generated
Cα-beads for IDPs and assigned Cα atom coordinates to
bead positions for IDRs in MDPs according to their mod-
eled or experimental structures (Section 4.2). For struc-
tured domains, we used the following rules for the
different representations: we placed each bead position at
the Cα atom (Cα representation), or the center of mass
calculated for all the atoms in a residue (COM represen-
tation), or the center of mass calculated for only side
chain atoms of a residue (SCCOM representation). The
CALVADOS 3 energy function consists of bonded inter-
actions, non-bonded interactions and an elastic network
model as described below.

Chain connectivity of the beads is described by a har-
monic potential,

ubond rð Þ¼ 1
2
k r� r0ð Þ2, ð1Þ

with force constant k¼ 8033kJ �mol�1 �nm�2. The equi-
librium distance r0 is set to 0:38 nm if two beads are both
within IDRs, or the distance between two beads in the
initial conformation if at least one bead is within a folded
domain.

For non-bonded interactions, we use a truncated and
shifted Ashbaugh-Hatch (AH) and Debye-Hückel
(DH) potential to model van der Waals and salt-screened
electrostatic interactions, respectively. The Ashbaugh-
Hatch potential is described by

uAH rð Þ¼
uLJ rð Þ�λuLJ rcð Þþϵ 1� λð Þ, r ≤ 21=6σ

λ uLJ rð Þ�uLJ rcð Þ½ �, 21=6σ< r ≤ rc
0, r> rc

8><
>: ,

ð2Þ

where uLJ rð Þ is the Lennard-Jones (LJ) potential,

uLJ rð Þ¼ 4ϵ
σ

r

� 	12
� σ

r

� 	6
 �
, ð3Þ

(b)

RRM2RRM1

LCD

(c)

(a)

(d)

FIGURE 7 Predicting the effect of the protein-rich environment of a condensate on the stability of folded domains. (a) Structure of

hnRNPA1* highlighting the low-complexity domain (gray) and RNA-recognition motifs 1 (blue) and 2 (red). (b) Concentration profiles of

the LCD (gray) and RRM1 in the native (blue) and unfolded (cyan) state. (c) Concentration profiles of the LCD (gray) and RRM2 in the

native (red) and unfolded (magenta) state. (d) Free energy of partitioning of RRM1 and RRM2 in native and unfolded states into condensates

of the LCD. Data estimated from direct-coexistence simulations performed in two independent replicates. Error bars in (d) represent the

differences between the replicates.
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and where ϵ¼ 0:8368kJ �mol�1 and rc ¼ 2:2 or 2 nm.
Similar to previous work, we use rc ¼ 2:2nm during
the optimization of CALVADOS3COM, and use 2 nm
during validation and application (Tesei & Lindorff-
Larsen, 2023). Both σ and λ are calculated as the
arithmetic averages of residue-specific bead size and
stickiness, respectively. σ values are van der Waals vol-
umes calculated by Kim and Hummer (2008)). λ values
are treated as free parameters and optimized iteratively
through a Bayesian parameter-learning procedure as
described previously (Tesei & Lindorff-Larsen, 2023;
Tesei, Schulze, et al., 2021) to minimize the differences in
the simulated and experimental Rg and PRE data. In sim-
ulations where we scaled down interactions of folded
domains (CALVADOS2Cα 70%), we scaled down ϵ to 0:7ϵ
for domain–domain interactions and to

ffiffiffiffiffiffiffi
0:7

p
ϵ for

domain-IDR interactions.
The Debye-Hückel potential is described by

uDH rð Þ¼ qiqje
2

4πϵ0ϵr
exp �r=Dð Þ

r
, ð4Þ

where q is the average amino acid charge number, e is
the elementary charge, D¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1= 8πBcsð Þp
is the Debye

length of an electrolyte solution of ionic strength cs, B ϵrð Þ
is the Bjerrum length and ϵ0 is the vacuum permittivity.
Electrostatic interactions are truncated and shifted at the
cutoff distance rc ¼ 4nm. The temperature-dependent
dielectric constant of the implicit aqueous solution is
modeled by the following empirical relationship
(Akerlof & Oshry, 1950):

ϵr Tð Þ¼ 5321
T

þ233:76�0:9297�Tþ1:417�10�3�T2

� 8:292�10�7�T3:

ð5Þ

We use the Henderson-Hasselbalch equation to esti-
mate the average charge of the histidine residues, assum-
ing a pKa value of 6 (Nagai et al., 2008).

We use an elastic network model (ENM) with a har-
monic potential to restrain non-bonded pairs in the
folded domains using

uENM rð Þ¼ 1
2
kd r� r0ð Þ2: ð6Þ

Here, the force constant kd is 700kJ �mol�1 �nm�2, r
is the distance between beads and equilibrium distances
r0 are directly taken from the reference structures. We
only apply the ENM to residue pairs with an r0 below a
0:9nm cutoff. We determine the predefined boundary of

each domain in MDPs by visual inspection of the three-
dimensional structures (Table S8). Each domain has a
starting amino acid and an ending amino acid indicating
the range of the domain. Only residue pairs within the
same domain are restrained by this harmonic potential
except for bonded pairs, which are restrained by the
aforementioned bonded potential. All boundaries of
MDPs are consistent with definitions in their experimen-
tal or simulation articles. In some cases, one domain
could be discontinuous because of long loops within the
domain, so we exclude those regions when defining
boundaries. Residues of α-helix, β-sheet and short loops
in a structured domain are all restrained equally with the
same force constant and cutoff distance. The application
of ENM ensures that secondary structures within folded
domains do not fluctuate substantially (Figure S10).
Non-bonded interactions (Ashbaugh-Hatch and Debye-
Hückel potential) are excluded for the restrained pairs.

4.2 | Simulations

We generated initial conformations of all IDPs as Archi-
medes' spirals with a distance of 0:38nm between bonded
beads. Atomistic structures of all MDPs used in optimiza-
tion procedures, single-chain validation and slab simula-
tions either came from our recent work (Thomasen
et al., 2024) or were modeled by superposing experimen-
tal domain structures (if available) on AlphaFold predic-
tions (Jumper et al., 2021; Varadi et al., 2022). We then
mapped all of these MDPs to CG structures based on dif-
ferent CG representations (Cα, COM, SCCOM).

We conducted Langevin dynamics simulations using
OpenMM 7.6.0 (Eastman et al., 2017) in the NVT ensem-
ble with an integration time step of 10fs and friction coef-
ficient of 0:01ps�1. Single chains of N residues were
simulated in a cubic box with a N�1ð Þ�0:38þ4nm box
edge length under periodic boundary conditions. Each
chain was simulated in 20 replicas for 6.3 ns to 77.7 ns
depending on the sequence length of the disordered
regions (Tesei et al., 2024; Tesei & Lindorff-Larsen, 2023).
Final trajectories had 4000 frames for each protein,
excluding the initial 10 frames in each replica.

We performed direct-coexistence simulations in a
cuboidal box using Lx ,Ly,Lz

� �¼ 17,17,300½ � and
15,15,150½ �nm to simulate multi-chains of Ddx4WT and
the other IDPs, respectively. For MDPs, box sizes are
shown in Table S7. To keep the condensates thick
enough and reduce finite-size surface effects, we chose
150 chains for hnRNPA1* and 100 chains for all the other
IDPs and MDPs (see also below). We generated each IDP
chain as an Archimedes' spiral with a distance of 0:38nm
between bonded beads in the xy-plane. Each spiral was
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placed along the z-axis with a spacing of 1:47nm. To
avoid steric clashes of densely packed MDP input struc-
tures, we chose the most compact conformation sampled
by single-chain simulations with CALVADOS 2 parameters
and corresponding CG representation as the initial confor-
mation for each MDP chain. Before production simula-
tions, we performed equilibrium runs where we used an
external force to push each chain towards the center of
the box so that a condensate could be formed. We then
continued to perform production simulations, saving
frames every 0:125 ns and discarded the first 150ns before
analysis. The slab in each frame was centred in the box
and the equilibrium density profile ρ zð Þ was calculated
by taking the averaged densities over the trajectories as
previously described (Tesei & Lindorff-Larsen, 2023).

To examine finite-size effects of the direct-coexistence
simulations we performed additional simulations of
hnRNPA1* varying both the box dimensions (Lx ,Ly,Lz)
and the number of chains. We calculated both dense
and dilute phase concentrations from each simulation
and find that unless we use a very small patch
(Lx ¼Ly ¼ 11nm), the results are consistent (Figures S11
and S12;Table S9), in line with previous analyses of such
finite-size effects (Dignon et al., 2018; Joseph et al., 2021).
Convergence of the IDP simulations was assessed as pre-
viously described (Tesei, Schulze, et al., 2021).

To indicate the computational performance of single-
and multi-chain CALVADOS simulations, we show the
performance for systems of different sizes run either on
an Intel Xeon Gold 6130 CPU (for single-chain simula-
tions) or on an NVIDIA Tesla V100 GPU (for multi-chain
simulations) (Figure S13).

To estimate the free energy of partitioning of
RRM1 (residues 11–89) and RRM2 (residues 105–179)
into condensates of hnRNPA1* LCD (GS followed by res-
idues 186–258 and 265–320), we performed direct-
coexistence simulations at 298 K, pH 7.5, and 150 mM
ionic strength, in a cuboidal box with sidelengths
Lx ,Ly,Lz
� �¼ 15,15,150½ � nm. The structures of the native
states of RRM1 and RRM2 were based on the crystal
structure (Shamoo et al., 1997) as previously described
(Martin, Thomasen, et al., 2021). We performed two inde-
pendent simulations, each 21 μs long, for each system
and, after centering the LCD condensate in the middle of
the box, calculated concentration profiles along the z-axis
using the last 20 μs of each trajectory. We estimated the
free energies of partitioning as ΔGpart ¼RT ln cdil = cconð Þ
where R is the gas constant and cdil and ccon are the aver-
age concentrations of the RRMs in the dilute phase and
in the LCD condensate, respectively. The error on ΔGpart

was estimated as the difference between the values from
the two independent simulation replicas. Absolute fold-
ing stabilities of RRM1 and RRM2 were calculated using

the Google Colab implementation of a recently described
model for predicting absolute protein stability (Cagiada
et al., 2024).

4.3 | Parameter optimization

Our Bayesian Parameter-Learning Procedure (Tesei &
Lindorff-Larsen, 2023) of the “stickiness” parameters, λ,
aimed to minimize the following cost function:

ℒ λð Þ¼ χ2Rg

D E
þη χ2PRE
� ��θ ln P λð Þð Þ: ð7Þ

χ2Rg
and χ2PRE denoting Rg and PRE differences

between experiments and simulations are estimated as

χ2Rg ¼
Rexp
g �Rcalc

g

σ exp

 !2

ð8Þ

and

χ2PRE ¼
1

N labelsN res

XN labels

j

XN res

i

Y exp
ij �Y calc

ij

σ exp
ij

 !2

: ð9Þ

Here P λð Þ is a statistical prior of λ (Tesei & Lindorff-
Larsen, 2023), σ exp is the error on the experimental
values, Y is PRE data, either Ipara=Idia or Γ2 is calculated
using the rotamer library approach implemented in
DEER-PREdict (Tesei, Martins, et al., 2021), N labels is the
number of spin-labeled mutants, and N res is the number
of measured residues. The prior loss, θ ln P λð Þð Þ, quan-
tifies the difference between prior distribution P λð Þ and
current λ values (with min-max normalization at each
step) to avoid overfitting. The coefficients are set to
η¼ 0:1 and θ¼ 0:08. λ is not allowed to be negative but
can be greater than 1.0 during optimization.

We used a training set consisting of 56 IDPs and
14 MDPs to perform the optimization. All of those pro-
teins were from our previous studies (Tesei & Lindorff-
Larsen, 2023; Thomasen et al., 2023). A summary of the
training data and other properties of different CALVA-
DOS models is shown in the supporting material
(Table S10). We used 51 IDPs and 14 MDPs as training
set for fitting against experimental SAXS Rg data and
5 IDPs were used for fitting against experimental PRE
data (Tables S1, S2, and S3). We then used a validation
set to validate the performances of our new optimized
models on reproducing experimental Rg. This validation
set was composed of 25 IDPs and 9 MDPs. Twelve IDPs
in this validation set were from our previous work and
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the rest (13 IDPs and 9 MDPs) were newly collected
experimental Rg data in this work (Tables S4 and S5). We
also collected nine MDPs with measured values of csat to
examine the accuracy of the phase behavior simulated
with the models presented in this work (Table S7).

The optimization procedure went through several
cycles until convergence of the final total cost (jΔℒ j <1,
Δℒ is the difference between the lowest total cost
of final total the current and previous cycle, Figure 7).
Within each cycle, we use the optimized λ values from
the previous cycle to perform new single-chain simula-
tions (initial λ values for the first cycle are CALVADOS
2 parameters, (Tesei & Lindorff-Larsen, 2023)), calculate
Rg and PRE for each frame and then nudge values in the
λ set iteratively to minimize the cost function (five resi-
dues are randomly subjected to small perturbations sam-
pled from a Gaussian distribution with μ¼ 0,σ¼ 0:05).
This trial λ set (λk) is used to calculate the Boltzmann
weights of each frame by wi ¼ exp � U ri,λkð Þ½ð
�U ri,λ0ð Þ�=kBTÞ, where U is the AH potential, ri are
coordinates of a conformation, kB is the Boltzmann con-
stant and T is temperature. The resulting weights are
then used to calculate the effective fraction of frames by

ϕeff ¼ exp �PN frames
i wi log wi�N framesð Þ

h i
; if ϕeff ≥ 0:6, trial

λk acceptance probability is determined by the Metropolis

criterion, min 1, exp ℒ λk�1ð Þ�ℒ λkð Þ
ξk

� 	n o
, where ξk is a unit-

less control parameter, its initial value is set to 0.1 and
scaled down by 1% at each iteration until ξ<10�8, which
means a micro-cycle is complete. Within a cycle, a total
of 10 micro-cycles are performed. In this work, the opti-
mization procedure converged within three cycles. There-
fore, we used the resulting λ values from the third cycle
as the final parameter set. We ran one additional optimi-
zation cycle to confirm the convergence of the training.
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