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Metabolomics has been increasingly applied to biomarker discovery, as untargeted

metabolic profiling represents a powerful exploratory tool for identifying causal links

between biomarkers and disease phenotypes. In the present work, we used untargeted

metabolomics to investigate plasma specimens of rats, dogs, and mice treated with

small-molecule drugs designed for improved glycemic control of type 2 diabetes

mellitus patients via activation of GPR40. The in vivo pharmacology of GPR40 is

not yet fully understood. Compounds targeting this receptor have been found to

induce drug-induced liver injury (DILI). Metabolomic analysis facilitating an integrated

UPLC-TWIMS-HRMS platform was used to detect metabolic differences between

treated and non-treated animals within two 4-week toxicity studies in rat and dog, and

one 2-week toxicity study in mouse. Multivariate statistics of untargeted metabolomics

data subsequently revealed the presence of several significantly upregulated endogenous

compounds in the treated animals whose plasma level is known to be affected during

DILI. A specific bile acid metabolite useful as endogenous probe for drug–drug interaction

studies was identified (chenodeoxycholic acid-24 glucuronide), as well as a metabolic

precursor indicative of acidic bile acid biosynthesis (7α-hydroxy-3-oxo-4-cholestenoic

acid). These results correlate with typical liver toxicity parameters on the individual level.

Keywords: metabolomics, drug safety—clinical pharmacology, ion mobility—mass spectrometry, OPLS DA,

GPR40 agonists

INTRODUCTION

The metabolome is defined as the collection of all small-molecule metabolites circulating in an
organism (Fiehn, 2002). Metabolomics is an emerging science aimed at identifying and quantifying
all small molecules present in a complex biological sample present at a specific time point
(Goodacre et al., 2004).

Since changes in the metabolome level are caused by both environmental and biological
circumstances, the investigation of the metabolome has the potential to provide insight into
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the genotype–phenotype relationship of an organism (Fiehn,
2002; Schuhmacher et al., 2013). Thus, by their untargeted nature,
metabolomic analysis techniques are a promising approach
for creating novel insights into physiological mechanisms via
unfolding the biochemical composition of complex biogenic
samples (Weckwerth and Morgenthal, 2005).

The method of choice for metabolomic analyses is
chromatography coupled to mass spectrometry, granting
both sensitivity and low detection limits (Dettmer et al., 2007).
Metabolomic techniques, however, remain limited in their
degree of reliance concerning the identification of detected
signals within an untargeted metabolomics study. Metabolomic
research historically emerged using gas chromatography coupled
to mass spectrometry (GC-MS) and has become a gold standard
for identifying and quantifying low-molecular compounds
up to about 600 Da through the development of common
protocols and the creation of spectral databases. This allows
for the day-to-day identification of core compound families
like sugars and amino acids (Fiehn, 2008, 2016; Kind et al.,
2009). To increase the metabolic coverage to compounds that
exceed the limitations of GC-MS, intense efforts are being
made to conduct metabolomic analyses on the LC-MS (liquid
chromatography–mass spectrometry) platform, which can cover
a wider range of potentially interesting biogenic molecules
(Halket et al., 2005). LC-MS based metabolomics, however,
still lacks standardization and comprehensive databases for
reliable metabolite identification, due to the inherent complexity
of metabolites that do not follow a common building block
like proteins.

We note that initiatives to standardize output from LC-MS-
based metabolomic analyses have been initiated (Members et al.,
2007), and databases are constantly being created and augmented
(Smith et al., 2005; Horai et al., 2010; Wishart et al., 2017).
However, up to date, a robust validation by a reference standard
concerning retention time and fragment spectrum match is
needed for the reliable identification of a metabolite (Schrimpe-
Rutledge et al., 2016).

Despite these technological challenges, untargeted metabolic
screening facilitating liquid chromatography hyphenated to
high-resolution mass spectrometry is already recognized as an
explorative bioanalytical tool in various areas of life sciences

Abbreviations: 7-HOCA, 7α-Hydroxy-3-oxo-4-cholestenoic acid; ALP, Alkaline
phosphatase; ALT, Alanine-aminotransferase; AST, Aspartate-aminotransferase;
BSEP, Bile salt export pump; CA, Cholic acid; CCS, Collisional cross-
section; CDCA, Chenodeoxycholic acid; CDCA-24G, Chenodeoxycholic acid-
24 glucuronide; CYP27A1, Sterol 27-hydroxylase; CYP7A1, Cholesterol 7-
alpha-monooxygenase; DCA, Deoxycholic acid; DDI, Drug-drug interaction;
DILI, Drug-induced liver injury; FFAR1, Free fatty acid receptor 1; GCA,
Glycocholic acid; GCDCA-S, Glycochenodeoxycholic acid sulfate; GDCA,
Glycodeoxycholic acid; GPR40, G-protein-coupled receptor 40; GGT, Gamma-
glutamyltransferase; GLDH, Glutamate dehydrogenase; HDCA, Hyodeoxycholic
acid; NTCP, Sodium-taurocholate cotransporting polypeptide; OAT, Organic
anion transporter; OATP1B1, Organic anion transporting polypeptide 1B1;
OATP1B3, Organic anion transporting polypeptide 1B3; OPLS-DA, Orthogonal
partial least squares discriminant analysis; TDCA, Taurodeoxycholic acid;
TCA, Taurocholic acid; TOF-MS, Time-of-flight mass spectrometry; UDCA,
Ursodeoxycholic acid; UPLC-TWIMS-HRMS, Ultra performance–traveling wave
ion mobility separation–high-resolution mass spectrometry.

(Gertsman and Barshop, 2018). In the field of biomarker research
and discovery, untargeted metabolomics is expected to yield
novel insights into biochemical pathways and ultimately lead
to improved understanding of the biological system at hand
(Monteiro et al., 2013; Zhao and Lin, 2014).

In this study, we employ an integrated approach of UPLC
coupled to traveling-wave ion mobility separation (TWIMS)-
TOF–mass spectrometry with subsequentmultivariate analysis to
investigate endogenous compounds in toxicity studies performed
with GPR40 agonist-type drugs. TWIMS is a separation
technique in the gas phase, which discriminates molecules due to
their three-dimensional shape. In combination with UPLC-MS,
this setup introduces the drift time—more commonly expressed
as collisional cross section (CCS, in Å²)—as additional separation
parameter besides mass-to-charge (m/z) ratio, retention time,
and intensity (Shvartsburg and Smith, 2008). The determination
of CCS values is especially helpful to distinguishing co-eluting
compounds of the same m/z ratio, but different steric properties
(Santos et al., 2010; Rainville et al., 2017). We have previously
shown that this mass spectrometric platform is well-suited to
investigate small molecules in a complex biological sample in
drug metabolism studies (Blech and Laux, 2013; Fiebig et al.,
2016); for the present untargeted metabolomics study, the full
potential of described UPLC-TWIMS-HRMS facility is harnessed
as well.

GPR40, also known as free fatty acid receptor 1 (FFAR1),
is a class A G-protein coupled receptor mainly expressed
in pancreatic beta cells and proven to modulate glucose-
dependent insulin secretion over short- and medium-chain fatty
acids (Briscoe et al., 2003; Itoh et al., 2003). In recent years,
this receptor has attracted much attention in pharmacological
research as it can be triggered by synthetic small-molecule
agonists investigated for the potential treatment for diabetes
mellitus type 2 (Burant, 2013; Poitout and Lin, 2013). In 2010,
fasiglifam was reported as the first drug to selectively stimulate
GPR40 and significantly improve glycemic control, making it
a promising candidate drug for patients with type 2 diabetes
(Tsujihata et al., 2011). However, in 2015, development of
fasiglifam was terminated in phase III clinical trials due to safety
concerns regarding liver toxicity (Li et al., 2015).

In the present work, we investigated the effects of two
novel synthetic GPR40 agonists in a 4-week rat and dog
and a 2-week mouse toxicity study with compound BI-
1 and BI-2, respectively. We aimed to obtain a deeper
understanding of mechanistic and toxic implications of GPR40
activation. Untargeted metabolic screening in plasma samples in
combination with a specialized multivariate statistical approach
revealed the presence of seven upregulated bile acids, similar to
reported findings on toxicologically relevant cholestatic activity
known to be induced by GPR40 agonists (Li et al., 2015).
Additionally, a specific bile acid precursor, 7α-hydroxy-3-oxo-4-
cholestenoic acid (7-HOCA), was present in the treated plasma,
which revealed insights into the biosynthetic route of bile acids
in the performed studies. Furthermore, a glucuronide metabolite
of chenodeoxycholic acid (CDCA-24G) was found, which was
recently described as a substrate of organic anion transporters
(Takehara et al., 2017). Further efforts to establish causal
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links between unbiased metabolomics methods and disease
phenotypes will be crucial for increasing our understanding of
disease pathology.

RESULTS

Visualization of Discriminating Metabolites
Between Control and Treatment Groups
Extracted m/z features aligned by mass, retention, and drift time
were assembled in a data matrix together with their respective
chromatographic injections for subsequent statistical analysis.
This resulted in a data matrix X, containing N observation rows
(injections) and K variable columns (m/z features), where each
observation is characterized by hundreds to thousands of m/z
values (Supplementary Figure 1). Such data sets represent a so-
called megavariate analytical problem featuring multiple latent
variables (Eriksson et al., 2013), which can be approached by
different kinds of multivariate data analysis (Rubingh et al.,
2006; Eriksson et al., 2013; Worley and Powers, 2013). In
our setup, we used OPLS-DA (orthogonal partial least squares
discriminant analysis) to investigate the data. OPLS-DA is
especially well-suited to highlight discriminating variables in a
two-class problem; thus, the method of choice to investigate
factors that cause group separation between two conditions in
multidimensional data sets (Trygg and Wold, 2002; Eriksson
et al., 2013)—in our case the comparison of control vs. treatment
animals. Themost important visualization of anOPLS-DAmodel
helpful in identifying discriminating variables is the so-called
S-Plot. The S-Plot is a scatter plot which visualizes variable
influence in a model (Wiklund et al., 2008).

In the present study, we used the S-Plot to spot the most
prominently changing chemical entities between control and
treatment groups. Figure 1 shows a typical S-Plot resulting from
comparing a control (non-treatment) group of 10 animals against
a dose group consisting of eight animals. S-Plots depict variable
magnitude (modeled co-variation) on the x-axis and reliability
(modeled correlation) on the y-axis. For experiments that aim
to identify molecules with biomarker traits—as is often the case
in metabolomics studies—both high variable magnitude and
correlation are desired, thus compounds of interest are spotted
in the top-right corner in case of upregulation (and bottom-
left corner in case of downregulation). If xenobiotics (as in our
case, the drug and its metabolites) are present in the sample
and captured by the analysis, they will be very visible in the S-
Plot, because these molecules are not present in the non-treated
group and thus cause maximum variation between control and
treatment and thus are located near the top of the correlation axis.
This effect can be exploited to quickly identify drug metabolites
in drug metabolism studies, whose aim is the detection and
structure elucidation of the major biochemical modifications of
a drug after administration.

In our three studies, each S-Plot consisted of roughly 3,000
m/z features. In order to reduce this amount of “known
unknown” analytes toward a tangible set of compounds of
potential physiological interest, only m/z features appearing in
at least two or our three studies within the range of 0.1 or

higher co-variation and 0.4 or higher correlation were kept in the
data set.

Identification of Specific Bile Acids as
Significantly Upregulated Compounds
Systematic evaluation of the S-Plots of the three studies unfolded
the presence of several upregulated m/z features in the sectors
of the treated group. With the fragmentation (“high”) spectrum
being in accordance in all three studies each (rat, dog, mouse),
exhaustive structure annotation by interpretation of fragment
spectra and literature search was done, which resulted in the
identification of a set of compounds belonging to the bile acid
family. All identified compounds were validated by reference
standards (see Figures 2, 4 and Supplementary Figures 2–4).

Table 1 shows all detected bile acids that could be verified via
purchasable reference substances. In particular, cholic acid (CA,
m/z 407.28 [M-H]−), taurodeoxycholic acid (TDCA, m/z 498.29
[M-H]−), and taurocholic acid (TCA, m/z 514.28 [M-H]−) were
found to be present in significantly elevated levels in the high-
dose group of the dog and rat study. Figure 2 shows an annotated
fragmentation (“high”) spectrum of these identified bile acids.
Subsequently, individual responses (peak area) for each identified
compound were extracted from the data and compared within
each study. In a similar fashion, two bile acid-related compounds
could be elucidated from the data set via the described untargeted
approach due to upregulation in all the high-dose groups,
namely, 7α-hydroxy-3-oxo-4-cholestenoic acid (7-HOCA) and
chenodeoxycholic acid glucuronide (CDCA-24G).

Increased Liver Enzyme Levels Correlate
With Increased Plasma Bile Acid Levels in
the BI-1 Rat Study
On average, AST, ALT, and ALP enzyme levels in the treated
samples were 1.63-, 3.08-, and 1.25- fold higher respectively
compared to the levels in the corresponding control samples.
AST enzyme levels were strongly and significantly correlated
with CA, TDCA, 7-HOCA, and TCA bile acid levels across all
samples (Table 2). AST levels were strongly and significantly
correlated with ALT levels in all measured samples (Table 3). AST
and ALT levels are shown in Figures 3A,B, respectively. Overall,
the correlation matrix for ALT, AST, and ALP levels revealed a
moderate correlation between these enzyme levels (Table 3).

Similarly, for the six bile acid levels under study (CA, TDCA,
TCA, GDCA sulfate, CDCA-24G, 7-HOCA), the correlation
matrix revealed a strong association between the bile acid levels
overall in all measured samples, e.g., CA vs. 7-HOCA, r = 0.93,
TDCA vs. TCA r = 0.88, TCA vs. CA r = 0.74. TCA and TDCA
levels are shown in Figures 3C,D, respectively.

On average, CA, TDCA, TCA, and 7-HOCA bile acid levels in
the treated samples were 14.21-, 2.56-, 3.29-, and 9.15-fold higher,
respectively, compared to the levels in the corresponding control
samples. Of note, GDCA sulfate and CDCA-24G were absent in
all the control animals in this study (all measured values were 0),
while in the treated animals, GDCA sulfate levels were measured
at 2796.18 ± 2129.41 (mean ± SD), and CDCA-24G at 70739 ±
105413.64 (mean± SD).
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FIGURE 1 | (A) The S-Plot distributes the variables between two groups depending on their abundance in each sample (observations). The treatment group is

represented in quadrant 1 while the control group lies in quadrant 3. (B) Mass spectrometry signals of two different types of analyte: Case 1 represents a drug or drug

metabolite, which will appear near the top of the S-Plot due to its non-occurrence in the control samples (highest reliability and high magnitude). In case 2, depending

on their presence in control and treatment groups, endogenous compounds will appear top-right or bottom-left in the S-Plot. An ideal biomarker has both high

reliability and high magnitude and thus would be located in either one of the corners of the two groups. Red line: triple standard deviation; yellow line: double standard

deviation; green line: average.

Liver Enzyme Levels and Plasma Bile Acid
Levels in the BI-1 Dog and BI-2 Mouse
Studies
In the dog study, AST enzyme levels in the low-, medium-, and
high-dose groups were, on average, 1.04-, 0.96-, and 1.42-fold,
respectively, compared to the levels in the control samples. ALT
levels were, on average, 1.003-, 0.86-, and 2.8-fold in the low-,
medium-, and high-dose groups compared to the control sample
levels. ALP levels were, on average, 0.85-, 0.78-, and 4.52-fold
in the low-, medium-, and high-dose groups compared to the
control sample levels.

AST enzyme levels were strongly and significantly correlated
with TCA bile acid levels across samples in the dog study
(Table 4). AST levels were representative of other measured liver
enzyme parameters, specifically ALT and ALP levels (AST and
ALT levels shown in Figures 3E,F, respectively). The correlation
matrix for ALT, AST, and ALP levels revealed a strong correlation
between these enzyme levels overall (Table 5).

On average, TDCA bile acid levels in the treated samples
were 0.87-, 0.25-, and 4.4-fold in the low-, medium-, and high-
dose groups, respectively, compared to the levels in the control
samples. Similarly, TCA levels in the treated samples were 0.8-,
1.04-, and 8.4-fold in the low-, medium-, and high-dose groups,

respectively, compared to the levels in the control samples. TCA
and TDCA levels are shown in Figures 3G,H, respectively. Of
note, CA was absent in all the control animals in this study
(all measured values were 0), while in the treated animals, CA
levels were measured at 767 ± 783, 896 ± 751.4, and 12550
± 783 (mean ± SD) in the low-, medium-, and high-dose
groups, respectively.

We note that the small sample sizes in the low- and medium-
dose groups in the dog study prevent the statistical analysis from
being extrapolated to the overall treated population. As a result,
the comparative and correlative findings should be interpreted
with caution and viewed as hypothesis-generating because of the
small number of samples we assessed.

In the mouse study, AST, ALT, and ALP enzyme levels in
the treated samples were, on average, 1.16-, 1.53-, and 0.77-
fold, respectively, compared to the levels in the corresponding
control samples (see Supplementary Figure 6). Since TDCA
levels were not detectable in either control or treated mouse
samples, and CA levels were not detectable in the control mouse
samples, we did not perform a formal statistical comparison
between the control and treated groups on bile acid levels and
we did not assess the correlation between liver enzyme and bile
acid levels.
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FIGURE 2 | Analysis of the fragmentation (“high”) spectra of the bile acids which display the most significant changes between control and dosed groups. Main peaks

for cholic acid (CA) contain decarboxylation combined with dehydration and desaturation (m/z 343.26) and further cleavage on position 17 (m/z 289.21). For

taurodeoxycholic acid (TDCA) and taurocholic acid (TCA), the taurine peaks (m/z 124), [taurine-NH3], 106.98, as well as the sulfur trioxide radical anion (m/z 79.95)

are visible, with a mass accuracy of each fragment below 5 mDa to between the compound in the sample and purchased reference compound.

Identification of Single Bile Acids in
Untreated Plasma Samples
Identification of single bile acids from plasma was hampered
due to the presence of additional peaks corresponding to the
same precursor value of one bile acid. It has been reported that
bile acids are prone to epimerization caused by the microbial
intestine, leading to different conformational modifications of the
original structure while maintaining the same mass (Aldini et al.,
1989; Rudling, 2016). Extraction of ions with m/z 407.28 from
the chromatograms, which corresponds to the [M-H]− of CA,
yielded a single peak in the reference standard of CA, as well
as a single peak in the treated specimen of the dog study at the
minute 16 mark, with both peaks displaying a CCS value of 196
Å² as depicted in Figure 4; in the treated rat andmouse specimen,
several signals of m/z 407.28 could be observed additional to the
one at minute 16, predominantly at minute 15.3 and 14.6, with
a CCS value of 203 Å² (Figure 4). The additional peaks in the

rodent studies, however, showed a near-exact fragment spectrum
compared to the reference compound and the compound in
the dog study, while featuring different CCS values. The same
behavior was observed with TDCA and TCA (not shown). This
leads us to assume the additional peaks are isomeric forms of
said bile acids in the rodent plasma, which have undergone
epimerization at some point.

DISCUSSION

Physiological Implications of Increased
Plasma Bile Acids
Bile acids have been studied extensively in the past, as these
metabolites perform a number of vital physiological functions
(Marin et al., 2015). Collectively, they form a family of steroid
acids and are synthesized via a multistep pathway starting from
cholesterol in the liver. Upon conjugation to glycine or taurine,
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TABLE 1 | Overview of identified bile acids and bile acid-related compounds in the three toxicity studies.

Chemical name Abbreviation Molecular

formula

Monoisotopic

mass

[M–H]− CCS [M–H]− Main fragments CAS number Mass accuracy

(mDa)

Cholic acid CA C24H40O5 408.288 407.280 196.80 289, 343 81-25-4 0.4

Taurodeoxycholic acid TDCA C26H45NO6S 499.297 498.290 200.40 79, 106, 124 516-50-7 1.3

Taurocholic acid TCA C26H45NO7S 515.292 514.284 201.43 79, 106, 124 81-24-3 0.7

Deoxycholic acid DCA C24H40O4 392.293 391.285 198.90 343, 69 83-44-3 2.1

Glycocholic acid GCA C26H43NO6 465.309 464.302 195.58 400, 74 475-31-0 0.5

Glycodeoxycholic acid GDCA C26H43NO5 449.314 448.307 193.20 402, 74 360-65-6 0.7

Hyodeoxycholic acid HDCA C24H40O4 392.293 391.285 203.37 373, 69 83-49-8 1.1

7α-Hydroxy-3-oxo-4-

cholestenoic

acid

7-HOCA C27H42O4 430.308 429.301 198.73 411, 123 115538-85-7 1.3

Chenodeoxycholic acid

24-glucuronide

CDCA-24G C30H48O10 568.325 567.317 220.46 391, 113, 85 208038-27-1 0.8

All compounds listed in the table had detectable levels in all three toxicity studies performed, except for TDCA, which was not detectable in the mouse study in both control and treated

samples, and for CA, which was not detectable in the control samples in the mouse and dog studies. Data for the identified bile acids are shown in Figures 3A–H, and the statistical

comparisons against the corresponding control groups (where applicable) are described in the text. Mass accuracy of identified compounds is shown exemplary according the values

found in the BI-1 dog study.

TABLE 2 | Correlation matrix between enzyme and bile acid levels in the rat study

(N = 18 total samples).

r (p-value) CA TDCA 7-HOCA TCA

AST 0.8 (5e-5) 0.74 (4e-4) 0.9 (4e-7) 0.62 (5.6e-3)

ALP 0.68 (2e-3) 0.47 (4.8e-2) 0.65 (3.5e-3) 0.6 (8.5e-3)

ALT 0.75 (3e-4) 0.64 (4e-3) 0.88 (4e-7) 0.58 (1e-2)

Pearson’s correlation coefficient r and the corresponding p-value for the hypothesis test

are reported.

a process through which the bile acids become cell-impermeable,
they are stored as bile salts in the gallbladder, from which they
are secreted into the intestinal tract, namely, as bile flow. In
the terminal ileum, they are reabsorbed by bile-salt transporters,
which in return inhibits bile acid synthesis (Monte et al., 2009).

Bile acids are water-soluble compounds whose best-known
role is to aid in the absorption of lipid nutrients through the
formation of mixed micelles. Among their other functions, they
are also involved in biliary secretion of toxins (Amigo et al., 2003)
and can act as antimicrobial agents in the gut (Ridlon et al.,
2014). In recent years, bile acids have been identified as important
signaling molecules for endocrine processes (Monte et al., 2009;
Chiang, 2013; Schadt et al., 2016).

A possible explanation for the elevated bile acid levels in
treatment plasma samples is the emergence of cholestatic effects
(Zamek-Gliszczynski et al., 2012). Cholestasis is a condition
where bile flow from the liver to the intestine tract is impaired,
with accumulation of bile acids in the liver and decreased bile
in the intestine. Bile acids in abnormally high concentrations
damage the bile duct epithelial cells and hepatocytes, while
chronic cholestasis eventually leads to inflammation and
ultimately liver failure (Li and Apte, 2015).

An important factor involved in the hepatic excretion of
xenobiotics with regard to drug metabolism is the bile salt

TABLE 3 | Correlation matrix between enzyme levels in the rat study (N = 18 total

samples).

r (p-value) AST ALP ALT

AST 0.45 (4e-2) 0.89 (4e-7)

ALP 0.45 (6e-2) 0.49 (4e-2)

ALT 0.89 (4e-7) 0.49 (4e-2)

Pearson’s correlation coefficient r and the corresponding p-value for the hypothesis test

are reported.

export pump (BSEP). BSEP is an ABC (ATP-binding cassette)-
transporter located in the hepatic canalicular membrane and is
responsible for the secretion of bile acids into bile in humans.
Mutations in BSEP or disturbances in its homeostasis can result
in toxic bile salt accumulation (Kubitz et al., 2012). Stieger et al.
showed that certain drugs can negatively affect BSEP and thus
induce acquired cholestasis, which represents an example of
drug-induced liver injury (DILI) (Stieger et al., 2000; Stieger,
2010).

One of the first examples of reduced bile secretion caused
by the administration of a drug was troglitazone, which was
found to competitively inhibit human and dog BSEP (Preininger
et al., 1999; Stieger, 2010). This mechanism has been reported in
the more recent case of the GPR40 agonist fasiglifam in 2015,
whose development was terminated during clinical phase III
due to concerns about liver toxicity: fasiglifam increased CA,
TDCA, TCA, and UDCA levels by at least 2 times (Li et al.,
2015). With the exception of UDCA, which was not observed in
our studies, these findings align with our results and suggest a
similar mechanism of BI-1 and BI-2 in the enterohepatic system,
which could eventually lead to drug-induced liver injury. This
is supported by clinical pathological analysis of BI-1 and BI-
2 regarding the upregulation of the liver enzymes AST, ALT,
ALP, GGT, and GLDH, as well as total and direct bilirubin
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FIGURE 3 | Levels of bile acids TCA and TDCA and the toxicologically relevant liver enzymes AST and ALT as measured in the rat and dog studies. (A) AST levels are

significantly elevated in the treated vs. control group animals in the rat study (N = 10 vs. N = 8, respectively, p-value = 4.5 · 10−4, non-parametric Mann–Whitney

test). (B) ALT levels are significantly elevated in the treated vs. control group animals in the rat study (N = 10 vs. N = 8, respectively, p-value = 4.5 · 10−5,

(Continued)
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FIGURE 3 | non-parametric Mann–Whitney test). (C) TCA levels are significantly elevated in the treated vs. control group animals in the rat study (N = 10 vs. N = 8,

respectively, p-value = 4.5 · 10−5, non-parametric Mann–Whitney test). (D) TDCA levels are significantly elevated in the treated vs. control group animals in the rat

study (N = 10 vs. N = 8, respectively, p-value = 4.5 · 10−5, non-parametric Mann–Whitney test). (E) No statistically significant difference in AST levels between control

and treated groups were found in the BI-1 dog study. Each p-value listed and its corresponding horizontal bar refer to the statistical comparison of AST levels between

the control and one of the treated groups, either low, medium, or high dose (N = 5/3/3/5 for the control/low dose/medium dose/high dose groups, respectively). (F)

No statistically significant difference in ALT levels between groups was found in the BI-1 dog study. Each p-value listed and its corresponding horizontal bar refer to the

statistical comparison of ALT levels between the control and one of the treated groups, either low, medium, or high dose (N = 5/3/3/5 for the control/low

dose/medium dose/high dose groups, respectively). (G) No statistically significant difference in TCA levels between groups were found in the BI-1 dog study. Each

p-value listed and its corresponding horizontal bar refer to the statistical comparison of TCA levels between the control and one of the treated groups, either low,

medium or high dose (N = 5/3/3/5 for the control/low dose/medium dose/high dose groups, respectively). (H) No statistically significant difference in TDCA levels

between groups were found in the BI-1 dog study. Each p-value listed and its corresponding horizontal bar refer to the statistical comparison of TDCA levels between

the control and one of the treated groups, either low, medium, or high dose (N = 5/3/3/5 for the control/low dose/medium dose/high dose groups, respectively).

TABLE 4 | Correlation matrix between enzyme and bile acid levels in the dog

study (N = 16 total samples).

rho (p-value) TDCA TCA

AST 0.65 (6.5e-3) 0.86 (2e-5)

ALP 0.58 (1.8e-2) 0.75 (8e-4)

ALT 0.5 (5e-2) 0.7 (2.5e-3)

Spearman’s correlation coefficient rho and the corresponding p-value for the hypothesis

test are reported.

TABLE 5 | Correlation matrix between enzyme levels in the dog study (N = 16

total samples).

rho (p-value) AST ALP ALT

AST 0.69 (2.8e-3) 0.82 (1e-4)

ALP 0.69 (2.8e-3) 0.76 (6.5e-4)

ALT 0.82 (1e-4) 0.76 (6.5e-4)

Spearman’s correlation coefficient rho and the corresponding p-value for the hypothesis

test are reported.

and total bile acid increase (data not shown). While total bile
acid is a useful parameter to monitor liver function, it is non-
specific, and determination of single bile acid profiles by liquid
chromatography and mass spectrometry for better mechanistic
understanding of clinically relevant data have been proposed
before (Parraga and Kaneko, 1985; Ducroq et al., 2010; Cepa et al.,
2018). We found a clear correlation between individual bile acid
and liver enzyme levels, suggesting that single plasma bile acids
might be a sensitive marker for cholestatic effects. For example,
a high correlation coefficient between TCA and AST levels in the
rat study with BI-1 suggests that TCAmirrors AST levels andmay
be used as an additional potential toxicological parameter in drug
safety studies (Figure 4).

Another bile acid-related compound, CDCA glucuronide,
could be identified in our rat and dog studies, specifically in the
high-dose groups compared to the control individuals. While
CDCA can be glucuronidated preferably in position 3 and 24,
fragmentation spectra of the available CDCA-24G reference
compound were in full accordance with the spectra of the [M-
H]− precursors in the plasma samples, pointing to the actual
presence of this acyl glucuronide in our study. Takehara et al.
reported CDCA-24G, together with GCDCA-S, as substrates

for OATPB1, OATP1B3, and NTCP: uptake of CDCA-24G and
GCDCA-S into human hepatocytes was found to be significantly
reduced after rifampicin and pioglitazone administration. These
results suggest that CDCA-24G and GCDCA-S could be used
as surrogate endogenous probes for OATP inhibition, which
could in turn be exploited in drug-drug interaction (DDI) studies
(Takehara et al., 2017). While GCDCA-S could not be found
in our data, CDCA-24G displayed robust signals in the rat and
dog studies with BI-1. Further studies are needed to determine
whether increased CDCA-24G levels in plasma are a direct
result from OATP inhibition by BI-1 or represent a general
cholestatic effect.

7-HOCA as Biosynthetic Bile Acid
Precursor
One intermediate in the acidic route of bile acid synthesis is
7α-hydroxy-3-oxo-4-cholestenoic acid (7-HOCA), which was
increased in all of our three animal studies with an average fold
change increase of at least five. 7-HOCA can be synthesized
extrahepatically and subsequently is taken up by the liver
(Bjorkhem et al., 1997). This intermediate has been reported
to accumulate in the cerebrospinal fluid in patients with
dysfunctional blood brain barrier (Saeed et al., 2014), and in
chronic subdural hematoma (Nagata et al., 1992). With respect to
its elevated presence in plasma samples, we suspect a treatment-
induced activation of the acidic bile acid pathway with the
administration of BI-1 and BI-2 in our studies (Shoda et al.,
1993). Further studies are needed to determine the physiological
implications of elevated 7-HOCA levels during treatment by
GPR40 agonists.

Concluding Remarks
We acknowledge the overall small sample sizes of biological
probes available for investigation in the current study. As
a result, the comparative and correlative findings should be
interpreted with caution and viewed as hypothesis-generating
because of the small number of samples we assessed. Our
untargeted metabolomics approach revealed the presence of
several significantly upregulated endogenous compounds in the
treated animals whose plasma level is known to be affected
during drug-induced liver injury. Future discovery of causal
links between unbiased metabolomics methods and disease
phenotypes will be crucial for increasing our understanding of
disease pathology.
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FIGURE 4 | Appearance of CA in untreated plasma samples. Left: the reference peak of the CA standard correlates to m/z 407.28 at the minute 16 mark in all three

animal species; rodent samples feature additional peaks at min 15.3 and 14.6. Right: comparison of CA standard CCS (min 16) with the peaks of each 4 biological at

minute 16 and 15.3. A clear difference in the CCS value between the signals is visible, probably by the presence of isomeric forms of CA in raw rodent plasma.

MATERIALS AND METHODS

Chemicals
BI-1 and BI-2 were synthesized by the medicinal chemistry group
of Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim,
Germany (for structures, see Supplementary Figure 5).
Acetonitrile, methanol, water, and formic acid were of analytical
grade purity and were purchased from Sigma Aldrich (Steinheim,
Germany). CA, TDCA, and TCA reference standards and leucine
enkephalin were obtained from Sigma Aldrich (Steinheim,
Germany); 7-HOCA was purchased from Avanti Polar Lipids,
Inc. (Alabaster, US); CDCA-24G was obtained from Carbosynth
(Compton, UK).

Laboratory Animals
All in vivo experiments were conducted through and approved
in accordance with institutional guidelines by the local animal
welfare officer of Boehringer Ingelheim Pharma GmbH & Co.
KG, Biberach, Germany, as well as by the responsible supervisory
authority, Tübingen, Germany. Boehringer Ingelheim Pharma
GmbH & Co. KG is accredited by the Association for
Assessment and Accreditation of Laboratory Animal Care
International (AAALAC).

The study conditions were as follows: in the BI-1 toxicity study
conducted in rats (stain: Crl:WI(HAN), male), eight animals
received a daily oral dose of 1,000 mg/kg; 10 control animals
received vehicle only. In the BI-1 toxicity study conducted in

male dogs (Marshall Beagle, male), five animals received a daily
oral dose of 400 mg/kg of BI-1 (referred to in the main text as
high dose); another three animals received 40 and 10 mg/kg of
BI-1 (referred to in the main text as medium and low doses,
respectively), and five animals received vehicle only. Both toxicity
studies were performed for a total duration of 4-weeks each. Vials
containing blood samples were collected at the time of necropsy
(day 29).

In the BI-2 toxicity study conducted in mice (Crl:CD1(ICR),
male), six animals received a daily oral dose of 100 mg/kg of
BI-2; an additional nine control animals received vehicle only.
This study was performed for a total duration of 2-weeks. Vials
containing blood samples were collected at the time of necropsy
(day 15).

For all toxicity studies conducted, the doses of compounds
BI-1 and BI-2 were chosen according to previous internal
toxicity procedures to ensure that in most animals under study
a toxicological event is triggered. Two weeks is a common
and recommended minimum for performing toxicology studies
in rodent or non-rodent specifies in range-finding studies
(Derelanko and Hollinger, 2002). Plasma was chosen as the
sample collection material as the employment of a trap
column followed by an analytical column enabled the direct
use of raw plasma; this chromatographic setup allows for
minimal sample preparation in order to minimize information
loss from the complex sample. The samples analyzed in
the current study were collected from either rats, dogs,
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or mice in different toxicity studies according to sample
material availability.

UPLC-TWIMS-MSE QTOF Analysis
Frozen plasma samples were thawed and centrifuged for 2min at
8,000 rpm (Sigma 1-15 PK micro centrifuge). A 50-µL plasma
sample was conveyed into a micro vial and diluted with 50%
solvent A (v:v). Twenty five microliter plasma was subsequently
injected into the LC system. Samples were analyzed with a 1D-
trap LC system consisting of an Acquity Ultra Performance
LC (Binary and Isocratic Solvent Manager), Sample Manager
2777 (Waters) with a trap column (Triart C18-S 10µm, 20 ×

4mm, YMC), and an analytical column (Triart C18 3µm, 150
× 3mm, YMC). Solvent A was 0.02M ammonium formate +

0.1% formic acid, solvent B was acetonitrile + 0.1% formic acid
with the following gradient: 2% B (0min), 2% B (3min), 98% B
(23min), 98% B (28min), 2% B (28.1min). Flow rate was 0.45mL
min−1 with a column temperature of 40◦C. The MS-System
was a Synapt G2 (Waters) operated on MassLynx 4.1. Samples
were measured in negative electrospray mode with the following
setting: capillary voltage 1.7 kV, desolvation temperature 450◦ C;
N2 flow was 1,000 L h−1. For full-scan MS and MSE detection,
the quadrupole was set to non-resolving RF-only mode. Ions
were subsequently collected in the trap cell and pulsed into
the TWIMS (traveling-wave ion mobility separation) cell where
analytes were separated according to size/charge ratio (collision
cross section, CCS). Maintaining drift separation, analytes were
conveyed to the TOF analyzer for exact ion mass measurements.
Analytes were subsequently acquired in a mass range of 50–2,000
Da with an alternating collision energy in the transfer cell of
0 (“low spectrum”) and 45 eV (“high spectrum”) with a scan
time of 0.5 s. Mass calibration was done in both positive and
negative modes in a mass range of 50 to 2,000 Da by injecting
a mixture of 100 µL 0.1M NaOH with 20 µL FA (>98%) in
20mL ACN/H2O 80/20 v:v into the system with a flow rate
of 20 µL min−1. After mass calibration, the RMS ppm error
for exact mass measurements was 0.7 ppm (1.3 mDa). The
calibration of the ion mobility module (CCS calibration) was
done with a solution containing 50 µg mL−1 polyalanine and
5 µg mL−1 paracetamol in aqua dest. as reference components
with a flow rate of 20 µL min−1. CCS calibration was achieved
utilizing 14 reference peaks in the range of 230 to 1,150 Da
with a residual CCS of below 0.1%. To avoid possible chemical
and data interference, internal standards were not used in
this study.

Analysis of Liver Toxicity Parameters
Standard clinical chemistry parameters AST, ALT, ALP, GGT,
GLDH, direct bilirubin, and total bilirubin were analyzed on a
cobas R© 6000 (Roche).

Data Processing and Statistical Analysis
Recorded data files were transferred to UNIFI (V 1.8.3.116,
build 116, Waters) in.raw format and processed according
to the following settings: automatic peak detection in a
retention time range from 3 to 30min; high-energy intensity
threshold at 50 counts and low-energy intensity threshold at

200 counts. 3D peak detection was enabled using the most
intense monoisotopic ion option for quantification and the
parameter “area” as response value. Lock mass correction
with leucine enkephalin in negative mode was enabled (m/z
554.2615; combine with 3 scans, mass window 0.5 m/z). Negative
adducts to be taken into account were –H, +HCOO, +e,
+Cl,+CH3COO.

For m/z feature creation, mass, retention time, and drift
time tolerances were determined over the full range of
the chromatogram with the automated setting option in
UNIFI. The processed data was subsequently exported as.csv
files. Multivariate analysis was carried out in EZInfo (V
3.0.3.0, Umetrics AB). The OPLS/OPLS-DA models were
created by labeling the analyzed samples due to sample
type (reference/unknown); data were autofitted and Pareto-
scaled for model creation. Due to the untargeted nature
of this study and high reproducibility of the UPLC-HRMS
platform, no normalization was done. The parameters were
individually chosen/adapted by the automated peak picking
function in EZInfo.

For each individual study, an OPLS-DA model and S-
Plot were created; treated vs. control animals constitute the
basis for the discriminant analysis in EZInfo. Animals received
vehicle only represented the “reference” group in the S-Plot,
while animals which received a daily dose of drug treatment
represented the “unknown” group.

To determine any statistically significant differences in bile
acid and/or liver enzyme levels, we first tested for normality of
the data using the Shapiro–Wilk normality test. Data collected
in the dog and mouse studies were found to be non-normally
distributed. As a result, correlations between bile acid and
liver enzyme levels were assessed using the non-parametric
Spearman’s rank-order correlation, which outputs Spearman’s
correlation coefficient rho and the corresponding p-value for
the hypothesis test whose null hypothesis states that the two
sets of data are uncorrelated. Data collected in the rat study
were found to be normally distributed. As a result, correlations
between bile acid and liver enzyme levels were assessed using
the parametric Pearson’s correlation, which outputs Pearson’s
correlation coefficient r and the corresponding p-value for the
hypothesis test whose null hypothesis states that the two sets
of data are uncorrelated. Differences between groups within
the same study were assessed using non-parametric Mann–
Whitney tests. All statistical analyses were two-tailed. The Holm–
Bonferroni correction for multiple comparisons on a single
data set was used to calculate sequentially corrected p-values,
with α = 0.001 set as the determined significance threshold
for rejecting the null hypothesis of samples having similarly
ranked distributions. All statistical analyses were performed
using RStudio version 1.1.442.

Compound Identification
Annotation of m/z features of interest was done by manual
comparison of major fragments found in the literature and in
the online database HMDB (Wishart et al., 2017) according to
precursor mass within a window of 5 mDa before verification
with the purchased reference compound (see Table 1).
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All identified compounds were validated by reference
standards via level 1 identification (Salek et al., 2013) (see
Figures 2, 4 and Supplementary Figures 2–4).

SUMMARY AND CONCLUSION

We established an untargeted metabolomics platform combining
UPLC-MS analysis and high mass accuracy measurements
featuring an MSE fragmentation technique with parallel
ion mobility spectrometry (IMS). This setup, effectively
generating 4-dimensional data sets (m/z, retention time,
drift time, intensity), paired with subsequent multivariate
statistical analysis (MVA), is suitable for detection of
discriminating analytes with biomarker candidates and structural
elucidation of unknowns in complex samples and is aimed at
refining the mechanistic understanding of drug metabolism
and toxicology.

In the present study, we demonstrated the effectiveness of
this approach in three toxicity studies performed in rat, dog,
and mouse using two internal candidate GPR40 agonists. Herein,
various upregulated bile acids (e.g., CA, TDCA, and TCA) in
the dosed groups were identified, suggesting the two drugs
induced the onset of cholestatic effects. Additionally, two bile acid
related compounds (CDCA-24G and 7-HOCA) were found in
elevated levels in the collected plasma samples. CDCA-24G was
recently reported as surrogate marker for OATP inhibition and
its determination could possibly aid in DDI studies in the future
(Takehara et al., 2017). Moreover, 7-HOCA is a biosynthetic
bile acid precursor, which points to the activation of the acidic
pathway of bile acid biosynthesis in this study (Bjorkhem et al.,
1997). Our findings correlate with classical liver toxicology
parameters on an individual level and could be used to support
decision making in the early drug development phases.

While the identification of single m/z features in untargeted,
mass spectrometry-based experiments is currently the bottleneck
in metabolomics research, explorative omic approaches have
the unique ability to shed light on mechanistic relations, as
showcased by the toxicity investigations in this study, which
revealed distinct elevated bile acids as likely cause of DILI.
Further efforts to establish causal links between unbiased

metabolomics methods and disease phenotypes will be crucial for
increasing our understanding of disease pathology in the future.
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