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Abstract

Background: Results of phylogenetic analysis are often visualized as phylogenetic trees. Such a tree can typically
only include up to a few hundred sequences. When more than a few thousand sequences are to be included,
analyzing the phylogenetic relationships among them becomes a challenging task. The recent frequent outbreaks
of influenza A viruses have resulted in the rapid accumulation of corresponding genome sequences. Currently,
there are more than 7500 influenza A virus genomes in the database. There are no efficient ways of representing
this huge data set as a whole, thus preventing a further understanding of the diversity of the influenza A virus
genome.

Results: Here we present a new algorithm, “PhyloMap”, which combines ordination, vector quantization, and
phylogenetic tree construction to give an elegant representation of a large sequence data set. The use of
PhyloMap on influenza A virus genome sequences reveals the phylogenetic relationships of the internal genes that
cannot be seen when only a subset of sequences are analyzed.

Conclusions: The application of PhyloMap to influenza A virus genome data shows that it is a robust algorithm for
analyzing large sequence data sets. It utilizes the entire data set, minimizes bias, and provides intuitive visualization.
PhyloMap is implemented in JAVA, and the source code is freely available at http://www.biochem.uni-luebeck.de/
public/software/phylomap.html

Background
Phylogenetic trees are commonly used as a visualization
tool [1] to help reveal the relationships among homolo-
gous sequences. When the number of sequences is limited,
the relationships can be clearly observed from the tree;
however, when more than a few thousand sequences are
to be included, not only the accuracy of the inferred phy-
logenetic trees decreases, but it also becomes increasingly
difficult to study the resulting trees and find patterns [2],
and the computational demands of building a huge phylo-
genetic tree tend to be staggering. Researchers usually
build a tree by sampling a small amount of data rather
than constructing a complete tree using the entire dataset
[3-8]. However, the sampling is generally done according

to the experience of the researcher and is sometimes arbi-
trary. The conclusions drawn from such trees may be
biased.
Higgins used Principal Coordinate Analysis (PCoA) [9]

to visualize large sequence data sets, which are difficult
to analyze using phylogenetic trees. He showed that
PCoA can be considered complementary to phylogenetic
tree analysis as it does not assume an underlying hier-
archical structure in the data. A similar multidimensional
scaling method was used by Smith et al [10] to analyze
the antigenic and genetic evolution of influenza A virus.
Wong et al. [11] used correspondence analysis to show
the codon usage biases of influenza A virus. Ordination
(i.e. displaying a set of data points in two or three dimen-
sions so as to make the relationships among the points in
higher dimensional space visible) has proved to be a
powerful tool to visualize large datasets with high dimen-
sionalities; nevertheless, it only preserves the main trends
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in the data but most of the information on detail gets
lost. When the intrinsic dimensions of the data set are
high, the results can sometimes be misleading.
Here, we present a new method - Phylogenetic Map

(PhyloMap) - that combines PCoA, vector quantization,
and phylogenetic tree construction to give an elegant
visualization of a large sequence data set using all the
data while still trying to capture the accurate relation-
ships among them. Compared to traditional phyloge-
netic tree analysis, which is practicable only with a
maximum of a few hundred sequences, PhyloMap can
handle thousands of sequences at one time. PhyloMap
first uses PCoA to help depict the main trends and then
uses the “Neural-Gas” approach [12] to obtain multiple
data centers which best represent the data set. The
resulting data centers will be used to build a phyloge-
netic tree. Finally, we map the tree onto the PCoA result
by preserving the tree topology and the distances. As the
two different visualizations are superimposed, the result-
ing plot can greatly reduce the risk of misinterpretation.
Influenza A viruses are commonly classified by serolo-

gical differences in their hemagglutinin (HA) and neura-
minidase (NA) proteins. The gene sequences between
different HAs or NAs are also significantly divergent and
can be easily classified by serological type. However, the
recent emergence of the 2009 H1N1 swine-origin human
influenza A (H1N1) virus (S-OIV) [13] demonstrates that
this classification has its limitations: “H1N1” is the desig-
nation for one of the two established seasonal subtypes
as well as for the highly pathogenic 1918 virus that
caused the “Spanish flu” pandemic [14-20], and for the
currently spreading new swine-origin virus [5]. While a
better classification is obviously needed [3,21], the cluster
patterns of the internal genes (PB2, PB1, PA, NP, M1,
M2, NS1, and NS2) of influenza A virus are less clear.
We applied PhyloMap to influenza A virus internal
genes, using all publicly available sequences. The results
reveal patterns in those genes that cannot be seen when
only a subset of sequences is analyzed, and can help us
better characterize the diversity of influenza A virus gen-
omes by considering not only the serological type differ-
ences but also the internal genes.

Methods
The PhyloMap algorithm
The input to PhyloMap is a set of aligned sequences,
either amino acids or nucleotides. The algorithm
involves five steps as shown in Figure 1. First, a distance
matrix is calculated using the input alignment. This dis-
tance matrix will serve as the input to PCoA and
Neural-Gas to get the principal coordinates of each
sequence and k sequences as cluster centers, where k is
defined by the user. Subsequently, the k sequences
selected by the clustering algorithm will be used to

build a phylogenetic tree. Finally, we adopted a multidi-
mensional scaling technique similar to “Sammon’s map-
ping” [22] to map the phylogenetic tree onto the first
two axes of the principal coordinates. The results can
then be plotted for inspection.
1. Distance Matrix
The idea of ordination is to map the input sequences
onto a low-dimensional space so that the distances and
relationships of the sequence set are preserved as much
as possible. In order to do that, one has to calculate a
distance matrix D which contains the distances between
each pair of sequences. The distance matrix is calculated
by the “Phylip” package [23] using a continuous-time
Markov process. Higgins [9] suggested several ways of
calculating distances that will be guaranteed to be Eucli-
dean such as the simple P-distance and using the Smith
& Smith matrix [24]. However, none of these measure-
ments can correct multiple substitutions, and they do
not follow any evolutionary model. The distances
inferred by the continuous-time Markov process [25]
are not Euclidean but are close to P-distance when the
sequence divergence is small. As the purpose of PCoA
is to find the main trends rather than accurately recon-
struct the distances between sequences in the lower
dimensional space, the effect of non-Euclidean distances
can be neglected. For the influenza A internal protein

Figure 1 Flow chart of the PhyloMap algorithm.
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sequences analyzed here, the Jones-Taylor-Thornton
[26] model is used to infer the distances.
2. Principal coordinate analysis
PCoA was first described by Gower [27]. Starting by
converting the n × n distance matrix D, which has ele-
ments dij, to the similarity matrix E with elements

eij = −1
/

2 · d2
ij, (1)

E is then centralized so that we have matrix F with
elements

fij = eij − ēi − ēj + ē, (2)

where ēi is the mean of row i, ēj is the mean of col-
umn j, and ē is the grand mean of the matrix E.
The eigenvectors and the eigenvalues of the matrix F

are calculated. Each eigenvector is normalized so that its
sum of squares equals the corresponding eigenvalue.
The eigenvectors are ranked according to the eigenvalue
in a decreasing order. The first two eigenvectors are
used as the two-dimensional coordinates of each
sequence. The information (variation) preserved by the
first two eigenvectors is the ratio of the sum of the first
two eigenvalues to the sum of all eigenvalues.
3. Vector quantization (Clustering)
The clustering algorithm we choose here is the “Neural-
Gas” [12]. The Neural-Gas proceeds similar to k-means
but has the nice feature of providing results which hardly
depend on the initialization. Therefore, performing only
one run is sufficient and the algorithm yields stable
results when run multiple times. The output of the clus-
tering algorithm is a set of k cluster centers, where k is
defined by the user. The Neural-Gas provides cluster
centers each of which minimize the mean distance to the
sequences it represents. However, we are not really
searching for clusters. What we want is a set of sequences
that best represent the data set. Therefore, finally, we
substitute each cluster center by its closest sequence. The
Neural-Gas will also guarantee that the centers are evenly
distributed across the entire data set. In this application
of Neural-Gas, we consider the algorithm as a sampling
rather than as a clustering method. When using the
resulting center sequences to build a phylogenetic tree,
the tree will explore the variation of the data set without
bias. For details of the algorithm, please refer to Marti-
netz et al. [12]. The number of sampling sequences
might influence the accuracy of the inferred phylogenetic
tree (see Discussion). For visualization purposes, it
should not be too low, or else the sampling sequences
would not be sufficient to represent the variation of the
data. If chosen too high, the result of PhyloMap might be
difficult to inspect visually. In practice, we found a sam-
pling tree with no more than 50 sequences can be shown
clearly in PhyloMap.

4. Phylogenetic tree construction
Subsequently, we use the sequences selected by the
Neural-Gas to build a phylogenetic tree. The Neighbor-
joining (NJ) tree is used in PhyloMap with the same dis-
tance measurement used for calculating the distance
matrix for PCoA. Other non-distance-based tree building
methods can also be used (see the discussion below). The
NJ tree is unrooted since we just want to find the major
lineages of the sequences rather than to portray the exact
evolutionary history.
5. Mapping the phylogenetic tree onto the PCoA result
The core algorithm of PhyloMap is to map the phyloge-
netic tree onto the two-dimensional coordinates calcu-
lated by PCoA. We adopted a multidimensional scaling
method (MDS) similar to “Sammon’s mapping” [22], but
a few changes have been made to fit our specific problem.
A phylogenetic tree has two types of nodes:

• Leaf nodes: nodes that do not have any children;
each node represents a sequence.
• Inner nodes: nodes have children nodes and a par-
ent node. The root node of the tree can be consid-
ered a special inner node that has no parent node.

Each leaf node corresponds to one point in the two-
dimensional PCoA result. The positions of these points
are fixed, which means the coordinates of the leaf nodes
are predefined and cannot be changed when drawing
the tree. If we want to preserve the edge length between
nodes, only the inner nodes can be moved. Unlike other
MDS problems where the distances of one data point to
all other data points are known, in PhyloMap each inner
node is only constrained by three other nodes: one par-
ent node and two children nodes.
We first define an error function Es similar to “Sam-

mon’s mapping":

Es =
1∑

i<j
s · d∗

ij

N∑
i<j

(
s · d∗

ij − dij

)

s · d∗
ij

2

(3)

where s is a scaling factor that compensates for the
distance difference between the tree space and the
PCoA space (if the same distance measurement is used
both in PCoA and tree building, then s = 1), d∗

ij is the
edge length between node s and node j in the tree, and
dij is the distance between node i and node j in the 2D
PCoA result.
The algorithm will then employ gradient descent on

the inner nodes to minimize Es. The distance dij defined
between node i and j is the straight-line distance. How-
ever, in our problem, the straight-line distance can only
generate poor results, either large Es or a plot that is dif-
ficult to inspect visually. This is because the leaf nodes
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cannot move and, hence, all the distance constraints
have to be satisfied by the inner nodes. If the inner
nodes only explore a small space, which will provide
attractive visual results, Es might be too large to accu-
rately preserve the tree distances. To solve this problem,
we use the Bezier curve [28] to compensate for the dis-
tances that are shorter than in the original tree. In this
case, if the distances are shorter, they can be exactly
preserved in the PhyloMap. Only the distances larger
than in the original tree will contribute to the error
(Figure 2C). So in the gradient descent procedures, we
use a strategy which tries to keep most of the straight-
line distances shorter than in the original by updating
the longer distances more frequently than the shorter
ones. The error function Eb after Bezier curve compen-
sation is defined as:

Eb =
1∑

i<j
s · d∗

ij

N∑
i<j

(
s · d∗

ij − db
ij

)2

s · d∗
ij

(4)

where db
ij is the length of the Bezier curve between

node i and node j.
The algorithm can be summarized as follows:
Input: tree: T; leaf-node coordinates: Cleaf; scaling fac-

tor: s; max. number of iterations: maxiters; error e.
Output: all node coordinates Cnode, corresponding

Bezier curve control point Cbezier and error Eb after
Bezier curve compensation.
1: Du := calculate the desired distance matrix using all

nodes in T.
2: Cnode := randomly initializing the coordinates of the

inner nodes and attach Cleaf.
3: Ds := calculate the actual distance matrix using

Cnode.
4: while maxiters is not reached or ei ≤ e
5: for each inner node
6: update the coordinate of the inner node using gra-

dient decent once every five iters.
7: update the coordinates of the inner node using gra-

dient decent only if
there exists at least one edge connected to this node

with dij > s · d∗
ij four times every five iters.

8: update Ds using the new coordinates.
9: end for each
10: ei := calculate error using equation (3).
11: end while
12: for each dij < s · d∗

ij

13: Cbezier := calculate the Bezier curve control point
so that dij = s · d∗

ij.
14: end for each
15:Eb := calculate error using equation (4).

Influenza A virus genome data
We compiled a data set containing 74,309 sequences of
influenza A virus internal proteins as available from the
NCBI database [29] on 03-01-2010 (as summarized in
Table 1). We defined strict rules [30] for data validation
to ensure a high quality of our dataset. Each sequence
included in the data set is complete or nearly complete.
All eight gene products were aligned separately using

MUSCLE [31], and the alignment results were curated
manually to assure a high quality such that gaps were
minimal. For calculating the distance matrix (described
above), protein sequences were used. The reason to use
protein instead of nucleotide sequences is that while at
the nucleotide level, two sequences may vary greatly,
they may be very close at the amino-acid level due to
functional restraints [15,19]; thus, the distance between
two amino-acid sequences is more relevant for the
assessment of their functional differences. For most of
the internal genes, around half of the protein sequences
are redundant. Hence, only one of a set of identical
sequences was used to compose the data set as the
input of the PhyloMap.

Results
PhyloMap reduces the risk of misinterpretation
We have generated the PhyloMap for all influenza A
virus internal genes using their protein sequences, i.e.
PB2, PB1, PA, NP, M1, M2, NS1, and NS2 (Figures 2, 3,
4, 5, 6, 7, 8, 9, 10 and 11). Figure 2A illustrates the
results for the example of the influenza A virus NP
gene. The following major lineages can be easily identi-
fied: (i), seasonal human H1N1 (as shown by the data
points close to “12: A/Taiwan/5072/1999(H1N1)”), (ii),
seasonal human H3N2 (as shown by the data points
close to “2: A/Waikato/122/2003(H3N2)”), (iii), early
human (as shown by the data points close to “15: A/
United Kingdom/1/1933(H1N1)”), (iv), classical swine
[32] (as shown by the data points close to “26: A/Swine/
Wisconsin/163/97(H1N1)”, which includes S-OIV), (v),
equine (as shown by the data points close to “15:
A/United Kingdom/1/1933(H1N1)”), and (vi), avian
(as shown by the data points close to “20: A/gray teal/
Australia/2/1979(H4N4)”). PhyloMap has successfully
captured all major lineages of the influenza A virus NP
gene that were shown to exist in a previous study [3]
using sequences sampled manually.
It is obvious that PCoA alone can already identify

most of the major lineages; however, without the sup-
port of the mapping tree, it fails to portray the distances
between some strains. The straight-line distance
between “29: A/equine/Sao Paulo/4/1976(H7N7)” and
“33: A/smew/Sweden/V820/2006(H5N1)” is short, but if
we follow the tree, the distance is substantially longer.
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Figure 2 NP PhyloMap. (A) The PhyloMap for 2984 NP protein sequences. Each spot in the plot corresponds to one sequence, and the first
two dimensions represent 56.7% of the total variation. The phylogenetic tree mapped onto the plot is shown in (B). The mapping error is
0.00259. The strain names that stand for the numbers in the plot are shown in the phylogenetic tree in (B). (B) The NJ tree of NP protein
sequences built using distances inferred by the JTT model; 40 sequences have been selected by PhyloMap as data centers, the other two
sequences (in bold italics) have been added manually. This tree has been mapped onto the PCoA result as shown in (A). Bootstrap values (1000
replications) for key nodes are shown. The tree was annotated using “TreeGraph 2” [58]. (C) The relationships of the distances between nodes in
the original phylogenetic tree (B) and in the PhyloMap after mapping (A). Correlation coefficient: 0.998. Errors before Bezier curve compensation:
0.0496, after Bezier curve compensation: 0.00259. The errors after Bezier curve compensation are caused by the distances that are longer in the
PhyloMap than in the original tree.
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The real distance may need another dimension in the
PCoA to be displayed. The tree here has served to add
more dimensions to the 2D PCoA plot.
While the topology of the tree is defined, different

tree-drawing algorithms can generate very different tree
representations. The subtrees can be arbitrarily placed
by the tree-drawing algorithms [33] and can be moved
up and down with a certain degree of freedom. The
relationships between taxas usually cannot be clearly
observed without further manually adjusting the tree.
PCoA here has defined the positions of the leaf nodes in
PhyloMap, which intuitively provide clustering informa-
tion and the scale of their divergences. In a phylogenetic
tree, some intermediate sequences would be arbitrarily
placed into one of the major lineages [9]; however, with
the guiding of PCoA, the intermediate position of such
sequences becomes apparent. For example in Figure 2B,
we might interpret the phylogenetic tree by putting the
protein sequence of “9: A/Singapore/1-MA12B/1957
(H2N2)” into the human H3N2 lineage if only the tree
is present, but its obvious intermediate position can be
clearly seen in the PhyloMap (Figure 2A). The low boot-
strap value of that subtree also suggests caution should
be applied when drawing conclusions from the phyloge-
netic tree.

The diversity of influenza A virus internal genes
Six distinct major lineages can be identified from the
PhyloMap for all genes, i.e. seasonal human H3N2, seaso-
nal human H1N1, early human, classical swine, equine,
and avian viruses. The latter have been further separated
into two sublineages (western hemisphere avian lineage
and eastern hemisphere avian lineage) in a previous
study [3] that used nucleotide sequences, but this cannot
be unambiguously observed from the PhyloMap built
with protein sequences. For PB2, the triple reassortment
swine strains [34,35], which include the S-OIV, form a
visually separable lineage in PhyloMap (Figure 3).
The PhyloMap shows similar patterns for PB2, PA,

NP, M1, and M2 (Figures 3, 5, 2, 6 and 7). The NS1
and NS2 genes are different from other genes by having
a unique lineage called Group B. We can see from the
PhyloMap plot (Figures 8 and 10) that NS1 and NS2
Group B has a clear boundary and is far away from
other sequences, which are collectively called Group A
[36]. Because of Group B, the NS1 and NS2 PhyloMap
looks very different from other genes. However, if we
remove Group B sequences from the NS1 and NS2 data

set and recalculate the plot (Figures 9 and 11), we can
see a topology similar to other genes (Figures 2, 3, 4, 5,
6 and 7). NS1 and NS2 Group B is composed of a vari-
ety of subtypes that are mostly avian strains, with only a
few human and swine cases. The sample time spans the
years from 1949 to 2008. However, other internal genes
in the strains that contain Group B NS1 and NS2 genes
do not form a separate lineage and most of them fall
into the lineage of avian viruses.
PB1 also shows a pattern very different from other

genes. PB1 of human H3N2 was derived from avian
strains in 1968 through reassortment [3,37]. We can see
from the PhyloMap that the human H3N2 virus PB1
sequences are closer to avian strains than other H3N2
genes. Moreover, PB1 shows a more conservative evolu-
tion pattern, as the genetic distances between different
lineages are much smaller than for other internal genes.
Another recent study also suggested the conservation of
PB1 [19]. This is easy to explain, as PB1 is the catalytic
subunit of the viral RNA-dependent RNA polymerase
and should have a stable function in any host. A single
amino-acid exchange in the functional site may abolish
protein function and interrupt the viral life cycle.
The swine influenza viruses spread throughout the

entire PhyloMap, further supporting the idea of swine
being a “mixing-vessel” [38,39]. We also observed from
the current sequenced samples that there are no avian
strains containing internal gene segments from seasonal
human strains. In contrast, there are many human
strains carrying some internal gene segments from avian
viruses. This observation combined with the seasonal
human strain internal gene segments can be clearly
separated from avian strains (except for PB1), suggesting
that once the internal gene segments were fully adapted
to man, they lost the ability to infect avian hosts.
By observing the first few dimensions of PCoA results,

one can tell what are the major forces causing the data to
variate from each other. We can see that the first dimen-
sion in our PCoA results on the internal genes generally
reflects the host differences, and the second dimension
reflects some of the subtype differences. The third
dimension (not shown in the figures) further separates
the swine and equine strains from others. The above
observations show that the diversities of influenza A
virus internal genes are mainly shaped by host differences
and virus subtypes. However, using only subtype and host
information is still not enough to distinguish major
lineages among internal genes. For instance, the human

Table 1 Number of protein sequences used in the data set

PB2 PB1 PA NP M1 M2 NS1 NS2

No. of sequences 8397 8577 8522 8590 11258 10111 9982 8872

No. of non-redundant sequences 4384 4022 4173 2984 1496 2016 3734 1650
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Figure 3 PB2 PhyloMap. (A) The PhyloMap for 4384 PB2 protein sequences. Each spot in the plot corresponds to one sequence, and the first
two dimensions represent 49.6% of the total variation. The phylogenetic tree mapped onto the plot is shown in (B). The mapping error is
0.00527. The strain names that stand for the numbers in the plot are shown in the phylogenetic tree in (B). (B) The NJ tree of PA protein
sequences built using distances inferred by the JTT model, 40 sequences have been selected by PhyloMap as data centers, the other 2
sequences (in bold italics) have been added manually. This tree has been mapped onto the PCoA result as shown in (A). Bootstrap values
(1000 replications) for key nodes are shown.
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Figure 4 PB1 PhyloMap. (A) The PhyloMap for 4022 PB1 protein sequences. Each spot in the plot corresponds to one sequence, and the first
two dimensions represent 41.4% of the total variation. The phylogenetic tree mapped onto the plot is shown in (B). The mapping error is
0.00261. The strain names that stand for the numbers in the plot are shown in the phylogenetic tree in (B). (B) The NJ tree of PB1 protein
sequences built using distances inferred by the JTT model, 40 sequences have been selected by PhyloMap as data centers, the other 2
sequences (in bold italics) have been added manually. This tree has been mapped onto the PCoA result as shown in (A). Bootstrap values
(1000 replications) for key nodes are shown.
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Figure 5 PA PhyloMap. (A) The PhyloMap for 4173 PA protein sequences. Each spot in the plot corresponds to one sequence, and the first two
dimensions represent 47.6% of the total variation. The phylogenetic tree mapped onto the plot is shown in (B). The mapping error is 0.00253.
The strain names that stand for the numbers in the plot are shown in the phylogenetic tree in (B). (B) The NJ tree of PA protein sequences built
using distances inferred by the JTT model, 40 sequences have been selected by PhyloMap as data centers, the other 2 sequences (in bold italics)
have been added manually. This tree has been mapped onto the PCoA result as shown in (A). Bootstrap values (1000 replications) for key nodes
are shown.
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Figure 6 M1 PhyloMap. (A) The PhyloMap for 1496 M1 protein sequences. Each spot in the plot corresponds to one sequence, and the first
two dimensions represent 43.3% of the total variation. The phylogenetic tree mapped onto the plot is shown in (B). The mapping error is
0.00531. The strain names that stand for the numbers in the plot are shown in the phylogenetic tree in (B). (B) The NJ tree of M1 protein
sequences built using distances inferred by the JTT model, 40 sequences have been selected by PhyloMap as data centers, the other 2
sequences (in bold italics) have been added manually. This tree has been mapped onto the PCoA result as shown in (A). Bootstrap values
(1000 replications) for key nodes are shown.
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Figure 7 M2 PhyloMap. (A) The PhyloMap for 2016 M2 protein sequences. Each spot in the plot corresponds to one sequence, and the first
two dimensions represent 44.9% of the total variation. The phylogenetic tree mapped onto the plot is shown in (B). The mapping error is 0.013.
The strain names that stand for the numbers in the plot are shown in the phylogenetic tree in (B). (B) The NJ tree of M2 protein sequences built
using distances inferred by the JTT model, 40 sequences have been selected by PhyloMap as data centers, the other 2 sequences (in bold italics)
have been added manually. This tree has been mapped onto the PCoA result as shown in (A). Bootstrap values (1000 replications) for key nodes
are shown.
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Figure 8 NS1 PhyloMap. (A) The PhyloMap for 3734 NS1 protein sequences. Each spot in the plot corresponds to one sequence, and the first
two dimensions represent 60.1% of the total variation. The phylogenetic tree mapped onto the plot is shown in (B). The mapping error is
0.0023. The strain names that stand for the numbers in the plot are shown in the phylogenetic tree in (B). (B) The NJ tree of NS1 protein
sequences built using distances inferred by the JTT model, 40 sequences have been selected by PhyloMap as data centers, the other 2
sequences (in bold italics) have been added manually. This tree is mapped onto the PCoA result as shown in (A). Bootstrap values
(1000 replications) for key nodes are shown.
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Figure 9 NS1 PhyloMap excluding Group B. (A) The PhyloMap for 3283 NS1 protein sequences excluding Group B. Each spot in the plot
corresponds to one sequence, and the first two dimensions represent 48.2% of the total variation. The phylogenetic tree mapped onto the plot
is shown in (B). The mapping error is 0.00252. The strain names that stand for the numbers in the plot are shown in the phylogenetic tree in (B).
(B) The NJ tree of NS1 protein sequences excluding Group B built using distances inferred by the JTT model, 40 sequences have been selected
by PhyloMap as data centers, the other 2 sequences (in bold italics) have been added manually. This tree has been mapped onto the PCoA
result as shown in (A). Bootstrap values (1000 replications) for key nodes are shown.
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Figure 10 NS2 PhyloMap. (A) The PhyloMap for 1650 NS2 protein sequences. Each spot in the plot corresponds to one sequence, and the first
two dimensions represent 52.7% of the total variation. The phylogenetic tree mapped onto the plot is shown in (B). The mapping error is
0.00485. The strain names that stand for the numbers in the plot are shown in the phylogenetic tree in (B). (B) The NJ tree of NS2 protein
sequences built using distances inferred by the JTT model, 40 sequences have been selected by PhyloMap as data centers, the other 2
sequences (in bold italics) have been added manually. This tree has been mapped onto the PCoA result as shown in (A). Bootstrap values
(1000 replications) for key nodes are shown.
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Figure 11 NS2 PhyloMap excluding Group B. (A) The PhyloMap for 1471 NS2 protein sequences excluding Group B. Each spot in the plot
corresponds to one sequence, and the first two dimensions represent 38.7% of the total variation. The phylogenetic tree mapped onto the plot
is shown in (B). The mapping error is 0.00427. The strain names that stand for the numbers in the plot are shown in the phylogenetic tree in (B).
(B) The NJ tree of NS2 protein sequences excluding Group B built using distances inferred by the JTT model, 40 sequences have been selected
by PhyloMap as data centers, the other 2 sequences (in bold italics) have been added manually. This tree has been mapped onto the PCoA
result as shown in (A). Bootstrap values (1000 replications) for key nodes are shown.
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H1N1 strains contain three major lineages: human seaso-
nal H1N1, early human H1N1, and 2009 pandemic
H1N1. These are highlighted in additional files (Addi-
tional files 1, Figure S1, Additional files 2, Figure S2,
Additional files 3, Figure S3, Additional files 4, Figure S4,
Additional files 5, Figure S5, Additional files 6, Figure S6,
Additional files 7, Figure S7, Additional files 8, Figure S8
and Additional files 9).

PhyloMap helps locating the origin of emerging influenza
A virus
As the main patterns of influenza A internal genes can be
clearly seen from the PhyloMap result, one can start to
investigate the more subtle relationships of the data by
zooming in onto certain clusters or adding sequences of
interest into the sampling tree. The sequences of the
sampling tree found by the Neural-Gas approach mini-
mize the quadratic errors. As a result, they can well
represent the diversity of the data set. When it comes to
finding the origin of a new strain, the samplings can pro-
vide a good reference data set that would not miss
important lineages. We have mapped the genes of 1918
“Spanish flu” (”A/Brevig Mission/1/1918(H1N1)“) and
S-OIV (”A/California/04/2009(H1N1)“) into the Phylo-
Map in addition to the sampling sequences. In our sam-
pling trees, the “Spanish flu” (internal genes) forms a
separate branch and cannot be put into any major
lineages. This orphan position of “Spanish flu” seems to
support the previous notion that these gene segments
may have been acquired from a reservoir of influenza
virus that has not yet been sampled [17,18]. One can also
easily identify the origin of every internal gene of S-OIV
from PhyloMap: PB2, PA, M1, and M2 from avian
strains; PB1 from human H3N2; NP, NS1, and NS2 from
classical swine.

Discussion
While phylogenetic tree inference methods are relatively
well developed, their interpretation relies heavily on
visual inspection [40]. The difficulties of analyzing a huge
tree have been mainly tackled by developing sophisti-
cated tree visualization software. Visual data exploration
usually follows a three-step process [41]: overview, zoom
and filter, and details-on-demand. Despite advances in
the visualization software [42,43], it is very difficult to
comprehend the entire tree during the overview stage.
When the data set reaches a few thousand sequences,
this way of phylogeny analysis becomes almost impossi-
ble. PhyloMap was developed specifically for the overview
process by summarizing the main phylogeny information.
Both PCoA and “Neural-Gas” can be considered data
compression techniques suitable to preserve the most
important information in the data. Once the main trends
in the data set are identified, one can zoom in onto areas

of interest, thus reducing the data set to a size that can
be well visualized by traditional phylogenetic trees.
Other means of adding more information to ordina-

tion such as superimposing a minimal spanning tree
and a relative neighborhood graph have been proposed
by Guiller [44]. However, all those methods require
using all the data points, thereby only generating unrec-
ognizable results when the data set is large. Our pro-
posed method can also serve as a general way of adding
another layer of information to any ordination analysis
of data relationships that can alternatively be described
by using a tree structure.
The PCoA used here is a linear dimensionality-reduc-

tion technique [45,46]. Despite the recent advances in
nonlinear dimensionality reduction, we find PCoA very
suitable for PhyloMap. First, PCoA finds the greatest var-
iance in the data set; in other words, it preserves the global
pattern and this is one of the main purposes of PhyloMap.
Other methods such as Isomap [45] using geodesic dis-
tance might not make too much sense in phylogenetic
analysis. Methods such as LLE [46] are designed to pre-
serve local properties which is obviously not suitable for
PhyloMap. Second, PCoA is robust in the sense that it
does not depend on the initiation and does not require
other parameters. The well-established algorithm for sol-
ving PCoA is both computationally efficient and numeri-
cally stable. Although the phylogenetic distances inferred
using some evolutionary models are not Euclidean, result-
ing in negative eigenvalues, in practice, those values are
usually very small compared to the first few eigenvalues.
Thus, they have only minor influence on the results and
will not distort the main trends in the data.
In PhyloMap, we use distance-based methods to build

the sampling tree. As the distances are measured in the
same way both in PCoA and in the phylogenetic tree,
when mapping the tree onto the PCoA result, the error
can be minimized. However, the sampling tree can also
be built with parsimony-based or maximum-likelihood
based methods. But in such cases, the edge lengths in the
tree and the 2D PCoA result might not be on the same
scale. We need to estimate the scaling factor s in equa-
tion (4). It is very difficult to exactly estimate s before the
mapping is made, so s can only be searched within a cer-
tain range (The ratio of the distance between the furthest
cluster centers in the PCoA result and the corresponding
length in the tree can be a good starting value). This pro-
blem does not exist in classical MDS, since all the data
points during the mapping can move freely, but in Phylo-
Map, the leaf nodes are fixed.
The accuracy of an inferred phylogenetic tree depends

on many factors such as the number of sequences, num-
ber of characters (number of aligned positions), and
substitution rate. In general, the accuracy of the inferred
phylogenetic tree increases while more characters are
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used [47,48]. However, there are also many debates on
whether to increase the number of sequences or the
number of characters to improve the resolution of the
phylogenetic analysis. In the case that the number of
available characters to build the phylogenetic tree is
fixed such as for the internal genes of influenza A virus,
one might choose a small number of sequences to
derive the most reliable tree. There are two interesting
questions connected with this approach: how to choose
the sequences, i.e. which sampling methods to apply,
and how many sequences are needed given the number
of characters. As for the sampling, we believe that clus-
tering methods such as Neural-Gas should be used in
order to avoid bias to arise from manual sampling,
although some criteria should be developed to further
test the influence of different clustering methods on the
accuracy of the inferred tree. But an objective way of
finding the optimal number of sequences is still lacking,
and further theoretical and empirical studies are needed.

Conclusions
PhyloMap is a robust algorithm for analyzing phyloge-
netic relationships in large sequence data sets. It can
utilize the entire data set and avoids the bias introduced
by manual samplings. PhyloMap introduces two data
compression techniques (dimensionality reduction and
vector quantization) into phylogenetic studies to reduce
the data without losing important information. The
visualizations generated summarize the main phylogeny
information and overcome the shortcomings of phyloge-
netic tree construction and ordination analysis when
used alone.
There have been only a few studies targeting the phy-

logenetic diversity of the internal genes of influenza A
virus [3,8,54]. However, the phylogenetic trees built in
some of these studies only sampled a small portion of
the data and therefore might not reflect the actual size
and composition of the lineages, and the representative
sequences might be biased [3]. PhyloMap gives a more
comprehensive overall picture of the evolution of influ-
enza A viruses and may further help define a new
nomenclature system for influenza A viruses.
Research on influenza A viruses has suggested that they

are constantly undergoing frequent reassortment [55,56].
However, as the overall phylogenetic relationships of the
internal genes have been largely unknown so far, few stu-
dies have addressed the scale of reassortment and the
patterns of segment compatibility in cases where the
reassortment occurred between distant lineages [57].
Furthermore, a robust way of identifying reassorted
strains is lacking. When a new strain emerges, it is a
tedious job for researchers to compare different topolo-
gies of various phylogenetic trees to find the reassort-
ment patterns. We are confident that PhyloMap can help

develop new insights into the relationships between the
internal genes, in order to find new means of studying
reassortment.
PhyloMap is implemented in JAVA, and the source

code is freely available for download at http://www.bio-
chem.uni-luebeck.de/public/software/phylomap.html To
visualize the results, some Matlab routines are also
available from the above link.

Additional material

Additional file 1: NP PhyloMap highlights human H1N1 influenza A
virus. The figure of NP PhyloMap highlights human H1N1 influenza A
virus

Additional file 2: PB2 PhyloMap highlights human H1N1 influenza A
virus. The figure of PB2 PhyloMap highlights human H1N1 influenza A
virus

Additional file 3: PB1 PhyloMap highlights human H1N1 influenza A
virus. The figure of PB1 PhyloMap highlights human H1N1 influenza A
virus

Additional file 4: PA PhyloMap highlights human H1N1 influenza A
virus. The figure of PA PhyloMap highlights human H1N1 influenza A
virus

Additional file 5: M1 PhyloMap highlights human H1N1 influenza A
virus. The figure of M1 PhyloMap highlights human H1N1 influenza A
virus

Additional file 6: M2 PhyloMap highlights human H1N1 influenza A
virus. The figure of M2 PhyloMap highlights human H1N1 influenza A
virus

Additional file 7: NS1 PhyloMap highlights human H1N1 influenza
A virus. The figure of NS1 PhyloMap highlights human H1N1 influenza A
virus

Additional file 8: NS2 PhyloMap highlights human H1N1 influenza
A virus. The figure of NS2 PhyloMap highlights human H1N1 influenza A
virus

Additional file 9: Figure legend. The figure legend for Additional file 1,
2, 3, 4, 5, 6, 7 and 8.
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