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Time–frequency (TF) representations are very important tools to understand and explain circumstances, where the frequency content of non-
stationary signals varies in time. A variety of biosignals such as speech, electrocardiogram (ECG), electroencephalogram (EEG), and
electromyogram (EMG) show some form of non-stationarity. Considering Priestley’s evolutionary (time-dependent) spectral theory for
analysis of non-stationary signals, the authors defined a TF representation called evolutionary Slepian transform (EST). The evolutionary
spectral theory generalises the definition of spectra while avoiding some of the shortcomings of bilinear TF methods. The performance of
the EST in the representation of biosignals for the blind source separation (BSS) problem to extract information from a mixture of sources
is studied. For example, in the case of EEG recordings, as electrodes are placed along the scalp, what is actually observed from EEG data
at each electrode is a mixture of all the active sources. Separation of these sources from a mixture of observations is crucial for the
analysis of recordings. In this study, they show that the EST can be used efficiently in the TF-based BSS problem of biosignals.
1. Introduction: Many practical signals such as speech,
electrocardiogram (ECG), electroencephalogram (EEG),
electromyogram (EMG) as well as signals arising from
observations of many dynamic systems show non-stationarity.
Time–frequency (TF) representations are very useful to
understand and explain circumstances, where the frequency
content of non-stationary signals varies with time. Most of the
existing TF representations are based on the Wigner–Ville
distribution (WVD) [1] or a smoothed version of the WVD [2]. A
well known example for this is the spectrogram. The
spectrogram, as the square modulus of the short time Fourier
transform (STFT), is the WVD smoothed in time and frequency
by the ambiguity function of the window used in the STFT [3].

A more recently developed method using the concepts of the
STFT and continuous wavelet transform (CWT) is called
S-transform (ST). The ST uses a Fourier kernel in the signal decom-
position and preserves the phase information [4]. An improvement
on the ST was proposed [5, 6] which is called the modified ST
(MST). The MST is a signal-dependent version of the standard
ST with an improved TF resolution. Another TF representation
for spectral representation of non-stationary signals while avoiding
some of the shortcomings of bilinear TF distributions (TFDs) [7, 8]
is called the evolutionary spectrum (ES) or Priestley’s time-
dependent spectrum. The evolutionary periodogram can be used
to estimate the ES by allowing non-stationary signals to be mod-
elled as a sum of complex sinusoids with time-varying complex
amplitudes [9]. In [10], the discrete evolutionary transform (DET)
was proposed for the computation of a kernel and the corresponding
ES.

An important application for the spectral representation of non-
stationary signals is in the blind source separation (BSS) problem
[11–13]. The BSS problem can be defined as recovering n
unknown sources from m observations (mixtures) of them [14].
In general, each sensor receives a linear mixture of source signals
and the BSS methods recover all individual sources from the
mixture or at least separate a particular source. For example,
in the case of electroencephalography recordings, voltage fluctua-
tions resulting from ionic current within the neurones of the brain
are measured non-invasively. As electrodes are placed along the
scalp, what we actually observe from EEG data is a mixture of all
the active sources. Since the electrical signals must travel through
human tissue to reach the electrodes, each measured signal can be
assumed to be a linear mixture of source signals [15]. In addition,
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scalp-recorded EEG signals include non-brain sources such as
electrooculographic and electromyographic activities. The BSS
methods are very useful for extracting these sources from the
EEG data [16–27]. The unmixing matrix’s inverse can also be
used to provide a spatial illustration of each BSS-extracted
signal’s associated scalp location [21]. An example for the over-
determinded case, i.e. the number of observations are greater than
the number of sources, a method based on second-order statistics
and joint diagonalisation of a set of covariance matrices can be
found in [25]. Other examples on spatial TFDs as a generalisation
of bilinear TFDs, in the case of non-stationary signals, are in
[26, 28]. Priestley’s ES was used also for array processing in
semi-homogeneous random fields and for the direction of arrival
estimation [29, 30].

In prior studies, we examined the signal reconstruction from the
irregular samples and non-stationary signal representation problem
using the evolutionary spectral techniques and the discrete prolate
spheroidal sequences (DPSSs) [31–33]. Also known as Slepian
sequences, the DPSS derive from the TF concentration problem
and are defined to be the sequences with maximum spectral concen-
tration for a given duration and bandwidth. In this Letter, we evalu-
ate the performance of the evolutionary Slepian transform (EST) by
comparing the EST with MST and smoothed Wigner Ville distribu-
tion (SWVD). We chose the ST for its being an adaptive form of the
STFT and CWT and the WVD was chosen for its being a high-
resolution TF representation. To be more precise, we used the
improved versions as the MST and SWVD. We present an applica-
tion of the EST in spectral representation of non-stationary signals
for BSS problem. Experimental results demonstrate the efficiency
of EST-based representation in the BSS problem. The Letter is
organised as follows. In the next section, we review the ES and
provide the fundamental equations of signal representation. In
Section 3, we explain the EST and review properties of Slepian
sequences. We briefly review the BSS problem and related formu-
lation in Section 4. In Section 5, we present experimental methods
and results.

2. Review of the ES: Introduced by Priestley, the evolutionary
spectral theory describes the local power frequency distribution
at each instant of time as the set of bandpass filter output
powers. These powers are computed by averaging the squared
output samples in time [7]. As a special case of Priestley’s
ES, the Wold–Cramér ES considers a discrete-time non-stationary
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Fig. 1 Left: the first four Slepian sequences for chosen N=512 and
N V=3.5 and right: energy concentrations, i.e. eigenvalues
signal x[n] as the output of a linear time-varying system
with the impulse response h[n, m], driven by a stationary white
noise [8] as

x[n] =
∑n

m=−1
h[n, m]1[m], (1)

here x[n] is the output for the input 1[m]
{ }

which is a stationary,
zero-mean, unit-variance, white noise process. The representation
in (1) is known as the Wold–Cramér decomposition [7]. The
white noise process 1[m]

{ }
can be expressed as a sum of

sinusoids with random amplitudes and phases. Accordingly, the
non-stationary process x[n]

{ }
can be expressed as

x[n] =
∫p
−p

H(n, v)ejvn dZ(v), (2)

where

H(n, v) =
∑n

m=−1
h[n, m]e−jv(n−m), (3)

for Z(v) being a process with orthogonal increments. The variance
of x[n] provides the power distribution of the non-stationary process
x[n]
{ }

at each time n, as a function of the frequency parameter v
and the Wold–Cramér ES is defined as S(n, v) = |H(n, v)|2.
This definition was also proposed in [8] as a special case of
Priestley’s ES if one restricts the function H(n, w) to the class
of oscillatory functions that are slowly varying in time. In [9],
a similar condition was applied to model the component x[n]
for a particular frequency of interest v0 as

x[n] = x0[n]+ yv0
[n] = A(n, v0)e

jv0n + yv0
[n], (4)

where A n, v0

( )
represents time-varying complex amplitude as

A n, v0

( ) = H n, v0

( )
dZ v0

( )
and yv0

[n] being a zero-mean
modelling error. It can be derived that the variance of A(n, v0) is

E |A(n, v0)|2
{ } = S n, v0

( ) dv0

2p
, (5)

and repeating this process for all frequencies v, an estimate of the
time-dependent spectral density S(n, v) can be obtained. The
detailed description for the estimation of S(n, v) can is found
in [9]. In [10], using the Gabor or Malvar representations with
the Wold–Cramér representation, DET was defined to represent
a non-stationary signal and its spectrum. In the DET, an
evolutionary kernel can be obtained and the ES is the magnitude
square of the evolutionary kernel [10] for the signal

x[n] =
∑K−1

k=0

X (n, vk )e
jvk n, (6)

where vk = 2pk/K, 0 ≤ n ≤ N − 1 and X n, vk

( )
is called the

evolutionary kernel [10]. In this case, associating with the
sinusoidal representation in (1)

X n, vk

( ) = ∑N−1

ℓ=0
x(ℓ)Wk (n, ℓ)e

−jvkℓ, (7)

is an inverse discrete transformation that provides the evolutionary
kernel, X (n, vk ) in terms of the signal. Wk (n, ℓ) is in general a
time- and frequency-dependent windows [10]. Here, the ES is
defined as SDET n, vk

( ) = |X n, vk

( )|2. A similar representation
for the kernel was obtained in [9] by expressing the time-varying
window as a set of orthogonal functions.
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3. Slepian sequences and the EST: In the following section, we
give a brief review of Slepian sequences and then the EST.

3.1. Slepian sequences: The discrete form of prolate spheroidal
wave functions (PSWFs) [34] can be used efficiently for signal
representation [31] and called DPSSs. DPSS resulted from the
work of Slepian about the problem of concentrating a signal jointly
in temporal and spectral domains [33]. These sequences are
also known as Slepian sequences. PSWFs have been used in
many applications such as analysis of non-stationary and nonlinear
time series [35], communication theory [36] and their mathematical
properties and computation are presented in [37]. The PSWFs are
real-valued, finite support functions with maximum energy
concentration in a given bandwidth. Given a sinc-function-based
integral equation, the PSWFs fn(.) are the eigenfunctions as

fn(t) =
1

ln

∫T
−T

fn(x)S(t − x)dx (8)

where S(.) is the sinc function. Since the sinc function is orthogonal,
the PSWFs are also orthogonal and bases for finite energy signals
such as the sinc function is. The discrete forms of the PSWF
are characterised by the time-bandwidth product NV, where N is
their length and V is the normalised bandwidth. Like their
continuous-time equivalent (PSWF), the DPSSs are obtained by
solving the following eigenvalue problem:

lkfk (m) =
∑N−1

n=0

sin (2pV(n− m))

p(n− m)
fk (n). (9)

Using the notation above, given N and 0 , V , 1/2, the DPSS
is defined as a collection of N real valued, strictly bandlimited

discrete-time sequences f N ,V = f(1)
N ,V, f

(2)
N ,V, . . . , f(N )

N ,V

[ ]
with

their corresponding eigenvalues 1 . l(1) . l(2) · · · l(N ) . 0. The
second Slepian sequence is orthogonal to the first Slepian
sequence. The third Slepian sequence is orthogonal to both the first
and second Slepian sequences. Continuing in this way, the Slepian
sequences form an orthogonal set of bandlimited sequences and
the DPSSs are also orthonormal.

There are 2NV− 1 Slepian sequences with energy concentration
ratios approximately equal to one, and for the rest the concentration
ratios begin to approach zero (see Fig. 1). For a given integer
K ≤ N , we can get N × K matrix formed by taking the first K
columns of f N ,V. When K ≃ 2NV, it is a highly efficient basis
that captures most of the signal energy [36, 37].
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Fig. 2 Ground truth simulated biosignals for EEG data
3.2. Evolutionary ST: Stationary random signals can be approxi-
mated by the superpositions of random harmonic oscillations,
i.e. superposition of sinusoids of all possible frequencies with ran-
domly varying amplitudes and phases [38]. For non-stationary
signals, to obtain a similar representation, non-stationary signals
are considered as the output of a linear time-varying system with
a stationary white noise input and the Wold–Cramér representation
can be used [7]. In general, any discrete-time signal x[n] can be
represented in terms of an orthogonal basis {fk [n]} as

x[n] =
∑K−1

k=0

dkfk [n], 0 ≤ n ≤ N − 1,

dk =
∑N−1

n=0

x[n]f∗
k [n], 0 ≤ k ≤ K − 1.

(10)

We showed in [31] that x[n] can be written as follows:

x[n] =
XK−1

k=0

dkfk [n]e
−jvkn

� �
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

X n,vk( )
ejvk n, (11)

where vk = 2p(k/N ). Then, the evolutionary kernel X n, vk

� �
can

be obtained in terms of x[n] by replacing the dk coefficients with
their definition in (18)

X (n, vk ) = dkfk [n]e
−jvk n

=
XN−1

m=0

x[m]Wk (n, m)e
−jvkm,

(12)

where we obtain the TF-dependent window as

Wk (n, m) = fk [n]f
∗
k [m]e

−jvk (n−m). (13)

To obtain the evolutionary kernel, specifically the window
Wk (n, m), we considered DPSS fk [n]

� �
as the bases of the repre-

sentation. Accordingly, by taking the magnitude square
|X (n, vk )|2, we obtain the ES SEST(n, vk ) = |X (n, vk )|2.

In many practical applications, the exact bandwidth of the signal
is known, so choosing the appropriate time-bandwidth product NV
to cover all the frequencies existing in the signal is straightforward.
Therefore, having enough knowledge in the spectral characteristics
of the signals, a precise representation can be obtained in the joint
TF domain using the EST. Otherwise, we can use some bandwidth
estimation techniques such as [39–43].

4. Review of The BSS method:
4.1. Problem formulation: BSS covers a wide range of applications
and has been a topic of great interest in diverse fields such as digital
communications, pattern recognition, biomedical engineering and
financial data analysis, among others. In general, the available
BSS methods use the following data model for each signal
received at each sensor [25]:

x[n] = Cs[n]+ m[n], (14)

such that

† x[n] = [x1[n], . . . , xp[n]]
T is a p vector of observations;

† s[n] = [s1[n], . . . , sq[n]]
T is a q vector of unknown sources;

† C is a p× q mixing or array matrix; and
† m[n] is a zero mean and s2is a variance white noise vector.

The objective is to obtain an estimate Ĉ of C and obtain
sources as

ŝ[n] = Ĉ#x[n] ≃ Gs[n]+ Ĉ#m[n] (15)
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where # represents pseudoinverse and G is a matrix with only one
non-zero entry per row and column [25]. In particular, the
approaches using TF signal representations for BSS involve the fol-
lowing steps [44]:

† Estimation of the spatial TF spectra.
† Estimation of whitening matrix and noise variance.
† Joint diagonalisation of the noise compensated and whitened
spatial TF spectra matrices.

More details on the BSS algorithm above can be found in
[26, 44, 45].

4.2. Spatial evolutionary transform and BSS: In the TF approach
for the BSS problem, using the data model received at each
sensor, the cross-power spectral estimate can be written as [30]

Ŝxx(n, v) = CŜss(n, v)C
H + s2b[n]Hb[n]I . (16)

In this Letter, in the equation above, Ŝxx(n, v) is the evolutionary
spatial Slepian estimate. Representing W as the p× q whitening
matrix

S̃xx(n, v) = W (Ŝxx(n, v)− s2I)WH (17)

and letting U = WC, whitened and noise compensated matrix is

S̃xx(n, v) = UŜss(n, v)U
H (18)

where U is unitary and diagonalises S̃xx(n, v) for any (n, v)
[44–46]. The unitary matrix can be estimated from the
eigenvectors of any S̃xx(n, v) with distinct eigenvalues and the
mixing matrix is obtained using C = W #U . The source signals
are then estimated as in (15) [44].

5. Methods: Using the TF representation-based BSS algorithm
given in [44], we simulated an overdetermined case (i.e. n ≤ m).
The overdetermined case can be an example for speech signal
processing, biomedical signal processing or telecommunications
applications, where there are typically more sensors than the
number of sources. Since the available EEG data recordings lack
ground truth, we used the ground truth data provided by
Independent Component Analysis Laboratory [17, 47], which are
simulations of typical biosignals such as EEG (see Fig. 2)
representing eyeblink, muscle movement of limbs and heart etc.,
to test the performance of the EST for the BSS. In our
Healthcare Technology Letters, 2018, Vol. 5, Iss. 6, pp. 242–246
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Fig. 4 Separated sources using the MST-based BSS

Fig. 3 Observations of simulated EEG data for n = 3 and m = 4

Fig. 5 Separated sources using the EST-based BSS

Fig. 6 Separated sources using the SWVD-based BSS

Fig. 7 MSE versus SNR for the Source 3 of EEG data
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experiment, we chose a random matrix as the mixing matrix for
generating noisy [signal-to-noise ratio (SNR) = 20 dB]
observations (see Fig. 3). The separation of three sources and
estimation from observations, using the MST, EST and SWVD
are presented in Figs. 4–6. To give an evaluation of the
performance of source separation in terms of SNR and
mean-squared error (MSE), we chose ground truth Source 3 of
the EEG data and compared it with the separated Source 3 for
various SNRs using the MST, EST and SWVD-based BSS
methods (see Fig. 7).

6. Conclusions: In the BSS problem, we tested simulated EEG
signals as source signals to be separated from the noisy
observations obtained via a random mixing matrix. Comparing
the results of estimated sources, we observed that EST provides
the best performance in separation of individual simulated EEG
signals. The EST is shown to be an efficient approach for
separation of signals (biosignals and/or non-biosignals) from
(electrophysiological) recordings. As our future work, we will
expand our experiments to larger data sets for the BSS and also
explore methods that can enable us to determine the number of
sources in the observation mixtures.

7. Funding and declaration of interests: Conflict of interests:
None declared.
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