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Abstract: In this study, electron paramagnetic resonance (EPR) and gas chromatography-mass
spectrometry (GC-MS) techniques were applied to reveal the variation of lipid free radicals and
oxidized volatile products of four oils in the thermal process. The EPR results showed the signal
intensities of linseed oil (LO) were the highest, followed by sunflower oil (SO), rapeseed oil (RO), and
palm oil (PO). Moreover, the signal intensities of the four oils increased with heating time. GC-MS
results showed that (E)-2-decenal, (E,E)-2,4-decadienal, and 2-undecenal were the main volatile
compounds of oxidized oil. Besides, the oxidized PO and LO contained the highest and lowest
contents of volatiles, respectively. According to the oil characteristics, an artificial neural network
(ANN) intelligent evaluation model of free radicals was established. The coefficients of determination
(R2) of ANN models were more than 0.97, and the difference between the true and predicted values
was small, which indicated that oil profiles combined with chemometrics can accurately predict the
free radical of thermal oxidized oil.

Keywords: free radical; electron paramagnetic resonance; volatile; lipid oxidation; artificial neural
network (ANN)

1. Introduction

Vegetable oils, such as palm oil (PO), rapeseed oil (RO), sunflower oil (SO), and linseed
oil (LO), are essential components in the human diet [1]. However, the oxidation and hy-
drolysis of lipids occurs in high-temperature cooking and frying, causing loss of nutrition,
deterioration of quality, unpleasant flavors, and the formation of toxic compounds [2].
Extensive studies on lipid autoxidation have been performed in recent decades focusing on
the analysis of traditional chemical indexes and oxidation hazard products [3–5]. However,
the thermal oxidation of lipids at high temperatures is a more complex process than au-
toxidation as high temperature accelerates the reactions between fatty acids. Additionally,
some secondary products that are different from the typical oxidation products are formed
under oxygen-deficient conditions. Furthermore, the high energy input triggers the reac-
tion easily, while the propagation and termination of free radicals at high temperatures
make the process complex [6].

Among the oxidative products, volatile products are generated due to the breaking of
fatty acid chains, resulting in the overall flavor of the oil. The flavor constitutes hundreds of
volatile compounds, particularly in RO [7,8]. The flavor and volatile products vary widely
depending on oil type, processing technique, and oil quality. Krist et al. [9] found that the
main volatiles of linseed oil were trans- 2-butenal and acetic acid, while trans-2-pentenal,
α-pinene, trans-2-heptenal, trans-3-octen-2-one, and trans,trans-2,4-heptadienal were the
dominant volatile compounds. Considering the flavor discrimination of edible oil with
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different extractions, Dun et al. [10] compared hot-pressed and cold-pressed peanut oil
and found that the volatiles in hot-pressed peanut oil presented a fresh, fatty, nutty, and
baking flavor, while volatiles obtained from the cold-pressed peanut oil showed a fresh
and nutty flavor. Upon heating at high temperatures, the pleasant flavor is generated by
the rapid cleavage of fatty acid chains [11]. However, the flavor of oil deteriorates during
lipid oxidation due to the pyrolysis and polymerization of the fatty acid chains. Therefore,
these volatile compounds are the direct evaluation indicators of lipid oxidation.

Several techniques have been used to investigate the lipid oxidation process, including
nuclear magnetic resonance (NMR) [12,13], near infrared spectroscopy (NIRS) [14], gas
chromatography-mass spectrometry (GC-MS) [15], liquid chromatography tandem mass
spectrometry (LC-MS/MS) [16], and fluorescence spectroscopy [17]. There has been a
growing interest to invent novel methods, such as digital image colorimetric analysis,
supramolecular chemistry, and other sensitive techniques for the analysis of minor oxi-
dation products in lipid oxidation [18–21]. The mechanism of lipid oxidation is the chain
reaction of free radicals. However, most of the methods discussed above are based on the
changes in the fatty acid chains, while only a few are applicable to the analysis of lipid free
radicals. As the oxidation proceeds, fatty acids are degraded into short chains, including
peroxyl, lipid, alkoxyl, and hydroperoxyl radicals. Free radicals in lipids are reactive and
unsteady. Recently, electron paramagnetic resonance (EPR) spin trapping has been widely
applied to determine and identify the radicals in food and lipid [22,23]. This technique
allows for the analysis of the changes in free radicals in a complex reaction system with
the advantages of accuracy and sensitivity. However, the EPR technique for detection of
lipid free radicals involves the use of trapping agents, such as 5,5-dimethyl-1-pyrroline
N-oxide (DMPO) and α-phenyl-N-tert-butylnitrone (PBN), which are unstable and prone
to degrade in light and humid conditions. Besides, the EPR detection is performed at high
temperature and is time-consuming [23].

An artificial neural network (ANN) was applied in food to assess aspects of a kinetic
model, physicochemical properties, and to facilitate quality analysis and intelligent control
design [24]. Generally speaking, an ANN is used to predict product indicators with the
inputs of parameters [25]. Husna and Purgon (2016) used a BP-ANN model to predict the
moisture content of durian slice with the mass, temperature, thickness, and drying time
as inputs [26]. Sun et al. (2019) established the ANN of flavor changes in ginger during
microwave vacuum drying based on LF-NMR parameters [27]. Sun et al. (2019) applied
ANN to monitor water states of typical fruits and vegetables after drying treatments [28].
Besides, ANN has been successfully applied in cell biology and diseases. For example,
Le et al. established a reliable method for biologists to use SNARE identification by ANN,
which provided a basis for applying a fastText word embedding model into bioinformat-
ics [29]. Do et al. found that an ANN model achieved excellent performance in predicting
S-sulfenylation sites compared to other well-known tools on a benchmark dataset [30].

The free radicals formed by the degradation and oxidation of fatty acids during
the thermal process should be investigated as these could reflect the degree of thermal
oxidation of lipids and oil. In this study, the traditional chemical indexes involving the
thermal oxidation of vegetable oils were collected, and the lipid free radicals of oils under
different heating temperatures were studied by EPR. At the same time, the flavor change of
oils during heating was determined by gas chromatography mass spectrometry (GC-MS).
The characteristic volatiles of oils were selected by hierarchical clustering analysis (HCA).
The free radical prediction models of vegetable oils during the thermal process were
established by ANN aided by chemical properties and GC-MS. This study is expected
to provide an intelligent method for the fast and accurate detection of free radicals of
vegetable oils during the thermal process.
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2. Results and Discussion
2.1. Free Radical Analysis under Thermal Process

Thermally oxidized oils were examined for free radical production by the EPR spin
trapping technique using DMPO to reveal the variation of radicals in four kinds of oil.
Firstly, the EPR spectra of palm oil, DMPO solution (control), and PO in DMPO oxidized
at 120 ◦C are shown in Figure 1a. The negligible EPR signal was found in PO or DMPO
solution, while a very intense EPR signal was observed in the combination of PO and
DMPO. Similar results were also presented by the other three oils with different heat
temperatures. The mechanism of successful detection under experimental condition was
that the spin trapping technique can form considerably stable spin adducts which are
totally different from high reactive and unstable radicals. Most of the samples showed
multiple EPR signals. The most obvious adducts were caused by alkyl radicals, and
a typical six peaks and some small peaks could be seen. Taking the example of PO,
experimental and simulated EPR spectra of PO detected at 120 ◦C in the presence of DMPO
are shown in Figure 1b. The composite spectrum indicated a mixture of four distinct
radical adducts. After simulation and calculation of their respective hyperfine splitting
constants (aN, aH in Gauss) by computer, the spin adducts were assigned as peroxyl
(DMPO/•OOR; aN = 14.75, aβH = 12.86, aγH = 1.50, g value = 2.00732), alkoxyl (DMPO/•OR;
aN = 14.45, aβH = 9.18, aγH = 1.17, g value = 2.00711), alkyl (DMPO/•R; aN = 14.31, aβH = 20.02,
g value = 2.00702), and an DMPO-likely radical adducts with a characteristic three-line
EPR spectrum (aN = 14.79, aβH = 2.00, g value = 2.00725).

The EPR measurements of four fresh oils were carefully performed under the tem-
perature of 120 ◦C (Figure 1c). The signal intensity of the EPR spectrum, was taken as an
important parameter to indicate the amounts of free radicals. The highest signal intensity
was observed in the LO sample, followed by SO and RO, while the lowest was found in
PO. In general, the signals increased during the entire period. In the first 10 min, the total
spin adducts in SO and LO increased rapidly and then slowed down in the last 10 min,
while the signals in PO and RO show low initial increased rates. It can be predicted that the
signal intensities of LO and SO reached a plateau after 30 min, while the PO and RO signals
showed a steady increase. These opposite trends showed the difference in the oxidative
stability of the four oils. The magnitude of the signal in each oil sample was mainly at-
tributed to the double bonds of the unsaturated fatty acids, indicating the stability against
oxidation. Accordingly, PO was mainly composed of oleic acid (33.56%) and palmitic
acid (29.29%), while RO, SO, and LO mainly consisted of oleic acid (46.29%), linoleic acid
(51.87%), and linolenic acid (41.02%), respectively. In the study by Symoniuk et al., this
feature was known as the oxidizability value, which could be calculated using the fatty
acid profile [31]. Based on the EPR signals, the thermal-oxidative stability of the four oils
was in the order of PO > RO > SO > LO, corresponding to the initial OSI results in Table 1.
For instance, in the absence of the antioxidants, the oxidative stability of PO can only
be attributed to the highest amount of saturated fatty acids. Meanwhile, the free radical
signals in PO showed a relatively lower increase rate. Therefore, in 30 min of heating, the
trends of the signal intensities in the four oils showed significant differences, which can
also explain the different degradation behavior of the four heated vegetable oils.

Table 1. OSI of four kinds of vegetable oils.

Oil PO RO SO LO

OSI (h) 13.06 8.85 2.42 0.75
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Figure 1. The EPR spectrums of palm oil (a), experimental and simulated EPR spectrums of palm 
oil (b) and signal intensities of four oils heated at 120 °C (c). (Note: Exp, experimental spectrum. 
Sim, simulation of the EPR spectrum. •OOR, simulation of the DMPO/•OOR spectrum. •OR, sim-
ulation of the DMPO/•OR spectrum. •R, simulation of the DMPO/•R spectrum. •Mix, simulation 
of the DMPO likely adducts. PO, palm oil. RO, rapeseed oil. SO, sunflower oil. LO, linseed oil). 

2.2. EPR Analysis of Oxidation Behavior 
Figure 2 also exhibits the signal intensities of the oils heated at 120 °C, 150 °C, and 

180 °C. In general, the intensities of the EPR signals in LO and SO were high, while PO 

Figure 1. The EPR spectrums of palm oil (a), experimental and simulated EPR spectrums of palm oil
(b) and signal intensities of four oils heated at 120 ◦C (c). (Note: Exp, experimental spectrum. Sim,
simulation of the EPR spectrum. •OOR, simulation of the DMPO/•OOR spectrum. •OR, simulation
of the DMPO/•OR spectrum. •R, simulation of the DMPO/•R spectrum. •Mix, simulation of the
DMPO likely adducts. PO, palm oil. RO, rapeseed oil. SO, sunflower oil. LO, linseed oil).
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2.2. EPR Analysis of Oxidation Behavior

Figure 2 also exhibits the signal intensities of the oils heated at 120 ◦C, 150 ◦C, and 180
◦C. In general, the intensities of the EPR signals in LO and SO were high, while PO and RO
exhibited low signal intensities. The signal intensities of the four oils at 0 h in the decreasing
order were as follows: LO, SO, RO, and PO. The sequence was in accordance with the PVs
(Table 2) of these oils. However, the thermal oxidation of oils is more likely to depend on
the fatty acid composition. For instance, the signal intensities of LO were the highest in the
first 12 h (Figure 2a,b), owing to the highest linolenic acid content (18:3). Interestingly, the
overall signal intensities of LO and SO (high group) at different temperatures were in the
following order: 120 ◦C > 150 ◦C > 180 ◦C. This sequence can be a result of the instability
of lipid radicals at high temperature. Additionally, the signal intensities of RO and PO (low
group) at 150 ◦C were lower than those at 180 ◦C. This strongly indicated that the oils with
high saturated fatty acid contents could result in relatively low levels of the lipid radicals.
It is obvious that oil containing more proportion of saturated fatty acid is more capable
of antioxidation. These results were consistent with the previous findings for the kinetic
model described by Roman et al. [32].

The signal intensity in LO was the highest in the first 4 h (Figure 2c). As listed in
Table 2, linolenic acid was the predominant fatty acid in LO, and was easily transformed
into lipid radicals by the free radicals. As previously reported, a high concentration of
radicals can increase the destruction rate of the spin adducts [33]. High concentrations of
free radicals are unstable at high temperatures, which exacerbate the chain reaction to the
termination. This can explain the changes in the signal intensities at 180 ◦C, where the
hydroperoxides degraded rapidly. When heated at 120 ◦C, the formation rate of the spin
adducts was very high in the first 30 min. However, the signal intensities reached a plateau
after 30 min, and the fresh radical spin traps added in the samples can react with the stable
poly-adducts formed by the carbon chains of the fatty acids [34]. The signals of the spin
adduct maintained a constant increase rate after several hours of stabilization (Figure 2c),
where the consecutive synthesis and degradation reactions occur simultaneously.

The signal intensity of SO heated at 180 ◦C was the second highest among four oils
and showed a slight increase with the increased heating time, indicating that a balance
occurred between the synthesis and degradation reactions of the radical adducts. The
saturation of PO was the highest among the four oils, and more energy was required for
the thermal cracking of the saturated chains than that for the unsaturated chains. In other
words, saturated chains can resist free radical attack and delay the formation of oxidation
products. From an electronic perspective, the electron cloud density of the double bond
region was low, so it was vulnerable to nucleophilic attack by free radical inducer and free
radicals. These unique features of different fatty acids were analyzed by EPR during the
radical propagation, which corresponding to the increases of signal intensity in thermal
degradation of vegetable oils. Similar results were observed in RO which had a relatively
low content of unsaturated fatty acids. The signal intensity of RO and PO was almost the
same when heated for 20 h, but after that the signal intensity of RO was higher than that
of PO. A possible reason for this may be the obvious difference of oxidation degree that
appeared between them.
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Table 2. AV, PV, p-AV and main fatty acid composition of four vegetable oils heated for 36 h.

Oil Type Heating Temperature (◦C)
AV

(mg/g) PV (mmol/kg) p-AV
Main Fatty Acids (mg/100 mg)

C16:0 C18:0 C18:1 C18:2 C18:3(n−3)

PO

Unheated 0.33 ± 0.03 0.50 ± 0.18 3.15 ± 0.12 29.29 ± 0.68 3.59 ± 0.12 33.56 ± 1.02 8.12 ± 0.11 0.11 ± 0.001
120 3.36 ± 0.15 53.28 ± 2.36 54.84 ± 2.11 24.71 ± 0.07 3.22 ± 0.10 30.15 ± 0.03 6.42 ± 0.00 0.09 ± 0.001
150 4.89 ± 0.13 5.13 ± 0.02 76.26 ± 1.81 26.33 ± 0.06 3.20 ± 0.03 29.92 ± 0.06 6.02 ± 0.01 0.08 ± 0.001
180 7.21 ± 0.13 5.87 ± 0.22 126.14 ± 1.01 27.02 ± 0.04 3.27 ± 0.03 28.75 ± 0.08 5.29 ± 0.03 0.04 ± 0.001

RO

Unheated 0.26 ± 0.01 0.75 ± 0.05 4.07 ± 0.16 2.69 ± 0.01 1.51 ± 0.01 46.29 ± 1.21 16.22 ± 0.41 5.15 ± 0.62
120 4.21 ± 0.23 62.86 ± 0.12 109.16 ± 3.51 2.72 ± 0.09 1.32 ± 0.01 40.82 ± 0.10 13.31 ± 0.02 4.89 ± 0.34
150 5.98 ± 0.18 3.36 ± 0.06 125.70 ± 3.51 2.57 ± 0.12 1.45 ± 0.10 40.74 ± 0.08 13.01 ± 0.08 4.26 ± 0.41
180 8.35 ± 0.25 2.54 ± 0.01 230.70 ± 3.84 2.71 ± 0.14 1.46 ± 0.06 41.99 ± 0.11 12.10 ± 0.02 3.32 ± 0.33

SO

Unheated 0.22 ± 0.00 2.03 ± 0.01 5.61 ± 0.28 3.89 ± 0.02 3.25 ± 0.02 13.62 ± 0.34 51.87 ± 1.52 0.22 ± 0.03
120 4.56 ± 0.15 59.14 ± 0.16 101.37 ± 1.98 3.87 ± 0.11 3.18 ± 0.03 13.25 ± 0.01 49.14 ± 0.05 0.09 ± 0.001
150 6.56 ± 0.19 6.45 ± 0.01 153.60 ± 10.73 3.89 ± 0.04 3.30 ± 0.05 13.08 ± 0.01 47.77 ± 0.03 0.06 ± 0.001
180 8.79 ± 0.20 2.69 ± 0.15 207.26 ± 2.07 3.76 ± 0.01 3.26 ± 0.01 12.75 ± 0.01 45.53 ± 0.03 0.05 ± 0.001

LO

Unheated 0.27 ± 0.02 2.78 ± 0.03 3.65 ± 0.01 3.12 ± 0.01 2.76 ± 0.02 13.15 ± 0.28 11.96 ± 0.38 41.02 ± 1.18
120 5.75 ± 0.16 20.62 ± 0.05 109.16 ± 9.67 2.97 ± 0.03 2.61 ± 0.01 12.53 ± 0.02 11.24 ± 0.01 37.85 ± 0.05
150 8.42 ± 0.21 5.23 ± 0.14 211.90 ± 0.07 3.03 ± 0.03 2.55 ± 0.01 11.93 ± 0.01 10.66 ± 0.01 33.33 ± 0.08
180 10.45 ± 0.20 6.70 ± 0.04 363.47 ± 11.18 3.08 ± 0.09 2.51 ± 0.05 11.49 ± 0.09 10.03 ± 0.02 28.79 ± 0.11
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2.3. Analysis of Chemical Properties and Fatty Acid Composition

Table 2 shows the chemical parameters of vegetable oil heated for 36 h. Acid value
(AV) reflects the content of free fatty acids in oil and increases when oil appears rancid.
AV of all samples increased with the heating temperature. Among four oils, the AV of
LO was the highest, followed by SO, RO, and PO, and the AV of LO heated at 180 ◦C
for 36 h reached 10.45 mg/g. The change of AV with temperature was obvious, which
could be considered one of the main parameters for reflecting the quality and safety
of oil. Peroxide value (PV) reflects the content of hydroperoxides in oil, and both AV
and PV can reflect the degree of rancidity of oil. PV is an important basic physical and
chemical index in the quality evaluation of vegetable oil. PV of four kinds of vegetable
oils varied with heating temperature. PV of all oil samples heated at 120 ◦C was much
higher than that of being heated at 150 ◦C and 180 ◦C, indicating that hydroperoxides
were accumulated and oxidation reaction occurred slowly at this temperature. For oil
samples heated at above 150 ◦C, the decomposition rate of hydroperoxides in the oil was
significantly accelerated, and thus the PV declined. The hydroperoxide produced at the
initial stage of heating is a reaction intermediate, and its formation rate depends on the
availability of oxygen and temperature, which is relatively stable at room temperature [35].
At this time, the carbon chain of fatty acids in vegetable oil is not broken. However, it is
easy to decompose into alkoxy groups once hydroperoxide is formed. Then, in the presence
of metal or at high temperature, the bonds on both sides of the carbon atom connected
with “-OOH” are further broken to form aldehydes, ketones, acids, esters, alcohols, and
short chain hydrocarbons. When the content of hydroperoxide reaches a certain level,
the decomposition rate would be greater than the formation rate, Thus, the content of
hydroperoxide decreased or fluctuated [36]. Therefore, PV is not suitable to characterize the
oxidation degree of oil at high temperature. p-Anisidine value (p-AV) reflects the secondary
oxidation products of aldehydes of oil oxidation. The increase of aldehyde content in the
heated vegetable oil system could be attributed to two aspects including secondary lipid
oxidation formed by the degradation of hydroperoxides and thermal oxidation of saturated
fatty acid under high temperature [37]. It can be seen from Table 2 that the p-AV in four
oils increased with the heating temperature due to the fact that the oxidation rate of
unsaturated fat increases at high temperature, and the oxidation of saturated oil molecules
produces more aldehydes. Compared with different vegetable oils, the p-AV of LO was
the highest and the p-AV of LO heated at 180 ◦C for 36 h reached 363.47, while p-AV of
PO was the lowest, which was consistent with the conclusion that unsaturated esters were
more easily oxidized. The change of p-AV with temperature was obvious, which could
better characterize the oxidation degree of different vegetable oils during heating.

Table 2 also shows the change of main fatty acid content of four kinds of vegetable oils
at different temperatures after being heated for 36 h. On the whole, the content of unsatu-
rated fatty acids in four kinds of vegetable oils decreased with heating temperature. The
reason for this may be that during thermal oxidation, a variety of chemical reactions take
place in vegetable oil, including the decomposition of triacylglycerol into diacylglycerol,
monoacylglycerol, free fatty acid, and glycerol, the formation of unsaponifiable substances
by triacylglycerol polymer, and oxidation to produce volatile compounds, such as alde-
hydes, alcohols, ketones, and hydrocarbons, leading to the decrease of absolute content
of saturated fatty acids and unsaturated fatty acids [38]. It can be seen from Table 2 that
heating has an effect on different types of fatty acids. The higher the temperature was, the
faster the content of fatty acids decreased. The initial fatty acid contents of PO, RO, SO, and
LO were 76.58 mg/100 mg, 80.90 mg/100 mg, 74.74 mg/100 mg, and 73.87 mg/100 mg,
respectively. The corresponding values of samples heated at 180 ◦C for 36 h decreased to
66.23 mg/100 mg, 69.80 mg/100 mg, 67.23 mg/100 mg, and 58.81 mg/100 mg, respectively.
Obviously, LO was the most unstable among four vegetable oils. This was because the
bond dissociation energy of allyl hydrogen is about 10 kca/mol higher than that of diallyl
hydrogen [39]. After being heated for 36 h at 180 ◦C, the contents of palmitic acid (c16:0),
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oleic acid (C18:1), linoleic acid (C18:2), and α-linolenic acid (C18:3) decreased. During the
heating process of the same oil, the degradation rate of unsaturated fatty acids was faster
than that of saturated fatty acids, and that of polyunsaturated fatty acids was faster than
that of monounsaturated fatty acids. Therefore, for different types of vegetable oils, the
higher content of unsaturated fatty acids was accompanied by worse thermal oxidation
stability and a greater tendency towards being oxidized.

2.4. Analysis of Degradation Products

Volatile compounds in thermally oxidized oil, such as aldehydes, alcohols, acids, ke-
tones, and hydrocarbons, are the break down products of the secondary oxidation products.
The main alcohols, aldehydes, and alkanes in the four heated oils are listed in Table 3.
Among these, (E)-2-decenal, 2-undecenal, and (E,E)-2,4-decadienal were the major volatile
compounds and considered to be the main degraded products, followed by acids, alcohols,
and alkanes. The formation mechanism includes the reaction of the radicals with the
carbon chains to produce a mixture of conjugated diene hydroperoxides, and the cleavage
of hydroperoxides produces the aldehydes mentioned above [40]. The volatiles in the same
oil at different temperatures were similar, while those in different oils were significantly dif-
ferent. After the beginning of the chain reactions, 2-undecenal, nonanal, and octanal
are produced via the hemolytic cleavages of 8-hydroperoxide, 9-hydroperoxide, and
11-hydroperoxide, respectively [36]. The volatile components, such as hexanal, 2-pentenal,
(E,E)-2,4-heptadienal, and (E,E)-2,4-decadienal, in LO mainly resulted from the degrada-
tion of linolenic acid. Similar studies describing the formation of 1-pentanal, hexanal, and
2,4-decadienal from linoleic acid have been previously reported in the literature [18].

The main oxidative volatiles were 1-octen-3-ol, (E)-2-heptenal, (E,E)-2,4-Heptadienal,
(E)-2-decenal, 2-undecenal, (E,E)-2,4-decadienal, and nonanal, and these products in-
creased sharply with increased heating temperature. (E,E)-2,4-decadienal was the main
volatile compound (1518.29 mg/kg) in SO when heated at 180 ◦C, and is formed by
the degradation of linoleic acid 11-hydroperoxide between the 10th and 11th carbons.
(E)-2-decenal generates from the same breaking sites of oleic acid 11-hydroperoxide, while
(E,E)-2,4-heptadienal is the degradation product of linolenic acid 8-hydroperoxide between
7th and 8th carbons. Moreover, the aldehydes in RO or SO were higher than those in PO,
revealing that the high amounts of oleic acid and linoleic acid with double bonds were
more likely to be oxidized to aldehydes. The alkanes obtained from RO were more complex
than those obtained from SO, indicating that the acute homolytic cleavage of C-C linkage
occurs during the heating process. Among these volatile hydrocarbons, tetradecane and
pentane were the major components.
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Table 3. Volatile compounds of four vegetable oils heated for 36 h.

N Compounds (mg/kg)
PO RO

120 ◦C 150 ◦C 180 ◦C 120 ◦C 150 ◦C 180 ◦C

Alc1 1-Penten-3-ol 4.13 ± 0.28 5.23 ± 0.38 6.00 ± 0.48 10.70 ± 1.01 19.11 ± 1.08 27.32 ± 1.56
Alc2 1-Pentanol 47.92 ± 3.84 15.58 ± 1.24 9.94 ± 0.83 4.93 ± 0.38 14.59 ± 1.02 28.52 ± 1.84
Alc3 1-Octen-3-ol 68.99 ± 5.70 37.74 ± 3.25 42.94 ± 3.38 18.23 ± 1.06 36.64 ± 3.12 65.32 ± 5.32
Alc4 1-Heptanol 23.68 ± 1.98 11.43 ± 1.01 10.57 ± 1.02 2.68 ± 0.15 8.59 ± 0.38 11.97 ± 1.01
Alc5 1-Octanol 44.14 ± 4.02 59.30 ± 5.08 39.58 ± 3.06 13.84 ± 1.03 17.71 ± 1.24 23.45 ± 1.98
Ald1 (E)-2-Butenal 7.98 ± 0.81 3.07 ± 0.18 5.09 ± 0.34 17.28 ± 1.56 18.74 ± 1.66 20.81 ± 1.78
Ald2 Hexanal 69.69 ± 5.70 36.50 ± 3.45 36.68 ± 3.28 14.40 ± 1.03 36.46 ± 3.17 38.98 ± 3.76
Ald3 (E)-2-Pentenal 5.12 ± 0.43 1.96 ± 0.13 1.93 ± 0.12 9.78 ± 0.65 10.38 ± 0.93 14.32 ± 0.98
Ald4 Heptanal 21.26 ± 1.58 11.67 ± 1.42 12.99 ± 1.14 3.73 ± 0.27 11.97 ± 1.08 25.40 ± 2.30
Ald5 (E)-2-Hexenal 26.87 ± 2.35 7.33 ± 0.62 5.56 ± 0.38 5.44 ± 0.39 8.93 ± 0.74 10.52 ± 0.88
Ald6 Octanal 26.91 ± 2.36 15.60 ± 1.32 16.73 ± 1.48 4.91 ± 0.39 15.61 ± 1.38 17.48 ± 1.53
Ald7 (E)-2-Heptenal 171.83 ± 15.22 42.00 ± 4.08 38.86 ± 3.52 31.33 ± 3.06 44.89 ± 4.28 67.51 ± 6.07
Ald8 Nonanal 63.48 ± 5.34 69.06 ± 5.39 89.04 ± 7.36 34.80 ± 2.72 46.02 ± 4.30 61.66 ± 5.37
Ald9 (E)-2-Octenal 110.04 ± 9.47 34.31 ± 3.04 55.90 ± 4.28 13.40 ± 1.22 29.31 ± 2.46 34.90 ± 3.05

Ald10 (E,E)-2,4-Heptadienal 17.82 ± 1.45 19.00 ± 1.92 34.22 ± 3.02 59.47 ± 5.27 70.24 ± 6.83 86.73 ± 8.26
Ald11 (E)-2-Nonenal 51.22 ± 5.32 62.36 ± 5.87 78.69 ± 7.45 25.16 ± 1.98 23.89 ± 1.87 40.16 ± 3.45
Ald12 Undecanal 2.39 ± 0.13 7.53 ± 0.68 28.54 ± 2.24 ND ND ND
Ald13 (E)-2-Decenal 233.11 ± 20.42 314.38 ± 26.53 486.37 ± 35.45 237.38 ± 19.52 267.66 ± 21.67 360.42 ± 31.48
Ald14 Dodecanal ND ND 14.48 ± 1.38 ND ND ND
Ald15 2-Undecenal 299.72 ± 24.64 650.97 ± 54.73 568.85 ± 52.14 273.41 ± 20.57 264.31 ± 20.38 434.26 ± 38.42
Ald16 (E,E)-2,4-Decadienal 200.64 ± 16.53 331.49 ± 28.32 424.10 ± 38.44 414.68 ± 36.56 529.92 ± 45.33 684.06 ± 49.85
Ald17 Tridecanal 14.12 ± 1.24 20.12 ± 1.92 30.06 ± 2.88 ND ND ND
Alk1 Pentane 57.02 ± 4.95 76.09 ± 7.62 98.66 ± 7.85 10.02 ± 0.93 19.76 ± 1.15 43.68 ± 3.82
Alk2 Heptane 52.28 ± 4.16 14.85 ± 1.05 23.37 ± 1.82 20.53 ± 1.93 25.60 ± 2.04 28.72 ± 1.52
Alk3 Octane 18.66 ± 1.56 23.13 ± 1.96 29.80 ± 2.15 10.31 ± 0.92 26.32 ± 2.03 32.08 ± 2.17
Alk4 Dodecane 1.64 ± 0.10 2.80 ± 0.12 4.84 ± 0.24 ND ND ND
Alk5 Tridecane 3.25 ± 0.19 6.49 ± 0.43 8.74 ± 0.75 ND ND ND
Alk6 Tetradecane 25.62 ± 2.56 32.63 ± 2.89 45.42 ± 3.40 ND ND ND
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Table 3. Cont.

N Compounds (mg/kg)
SO LO

120 ◦C 150 ◦C 180 ◦C 120 ◦C 150 ◦C 180 ◦C

Alc1 1-Penten-3-ol ND ND ND 66.68 ± 5.63 69.64 ± 5.88 74.93 ± 5.90
Alc2 1-Pentanol 12.81 ± 1.08 49.70 ± 4.74 76.42 ± 6.58 2.44 ± 0.18 3.13 ± 0.15 3.36 ± 0.23
Alc3 1-Octen-3-ol 88.26 ± 6.85 106.21 ± 9.68 173.40 ± 15.08 ND ND ND
Alc4 1-Heptanol 0.66 ± 0.08 5.00 ± 0.42 11.23 ± 1.01 ND ND ND
Alc5 1-Octanol ND ND ND 18.08 ± 1.28 13.25 ± 1.23 15.25 ± 1.26
Ald1 (E)-2-Butenal 0.43 ± 0.03 2.00 ± 0.18 8.72 ± 0.57 32.96 ± 3.02 26.28 ± 1.96 34.52 ± 2.78
Ald2 Hexanal 78.54 ± 5.94 160.77 ± 15.74 180.78 ± 16.70 21.44 ± 1.98 13.49 ± 1.75 12.14 ± 1.10
Ald3 (E)-2-Pentenal 11.07 ± 0.94 16.88 ± 1.42 21.47 ± 1.93 18.94 ± 1.46 20.70 ± 2.01 22.98 ± 2.14
Ald4 Heptanal 6.00 ± 0.48 17.94 ± 1.58 24.50 ± 1.95 ND ND ND
Ald5 (E)-2-Hexenal 11.00 ± 0.89 23.06 ± 2.14 45.67 ± 4.33 4.33 ± 0.32 7.58 ± 0.60 9.55 ± 0.76
Ald6 Octanal 1.67 ± 0.17 11.38 ± 1.05 15.32 ± 1.30 2.62 ± 0.22 2.72 ± 0.34 2.70 ± 0.29
Ald7 (E)-2-Heptenal 82.21 ± 7.33 155.68 ± 12.75 186.42 ± 17.08 15.43 ± 1.24 13.66 ± 1.09 12.03 ± 1.03
Ald8 Nonanal 3.38 ± 0.22 63.69 ± 5.36 75.62 ± 6.32 12.16 ± 1.02 10.03 ± 0.85 11.90 ± 1.02
Ald9 (E)-2-Octenal 26.33 ± 2.92 85.46 ± 7.66 89.40 ± 7.89 6.48 ± 0.42 7.77 ± 0.62 8.02 ± 0.62

Ald10 (E,E)-2,4-Heptadienal 1.06 ± 0.12 5.00 ± 0.47 12.64 ± 1.65 64.86 ± 6.22 119.23 ± 10.54 134.72 ± 10.22
Ald11 (E)-2-Nonenal 7.47 ± 0.64 57.72 ± 5.46 72.14 ± 6.83 5.11 ± 0.41 5.75 ± 0.45 15.80 ± 1.41
Ald12 Undecanal ND ND ND ND ND ND
Ald13 (E)-2-Decenal 147.68 ± 12.05 320.37 ± 26.53 479.60 ± 43.88 ND ND ND
Ald14 Dodecanal ND ND ND ND ND ND
Ald15 2-Undecenal 74.86 ± 6.62 432.10 ± 39.77 626.70 ± 53.59 ND ND ND
Ald16 (E,E)-2,4-Decadienal 579.06 ± 48.74 1490.46 ± 78.56 1518.29 ± 79.82 54.72 ± 4.37 16.81 ± 1.12 44.63 ± 4.05
Ald17 Tridecanal ND ND ND ND ND ND
Alk1 Pentane 49.62 ± 4.19 97.63 ± 7.62 157.69 ± 10.18 ND ND ND
Alk2 Heptane ND ND ND ND ND ND
Alk3 Octane ND ND ND ND ND ND
Alk4 Dodecane ND ND ND ND ND ND
Alk5 Tridecane ND ND ND ND ND ND
Alk6 Tetradecane ND ND ND ND ND ND

ND: not detected.
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The volatiles detected in the PO samples contained three unique alkanes, including
dodecane, tridecane, and tetradecane, and two long chain aldehydes of undecanal and
tridecanal. Another notable variation in the heated PO was that the short chain volatiles
such as 1-pentanol, hexanal, and (E)-2-heptenal significantly decreased at 150 ◦C and
180 ◦C. A similar situation was also observed in the case of LO. The oxidized PO contained
the highest content of volatiles among the four vegetable oils, while LO contained the
lowest. These significant differences in the components and concentrations were owing
to the varying fatty acid profiles of PO and LO. As shown in Table 2, the main fatty
acids in PO were palmitic acid and oleic acid, while linolenic acid was the main fatty
acid in LO. Typically, the greater the number of double bonds, the easier the occurrence
of fatty acid oxidation. Hence, the oxidation rates of the three main fatty acids were as
follows: linolenic acid > oleic acid > palmitic acid. After 36 h of heating, the LO samples
were completely oxidized. Linolenic acid was rapidly converted into hydroperoxides,
and then degraded into volatiles. However, prolonged heating resulted in the continuous
formation of long chain polymers and cyclic structures. Therefore, compared with LO, the
volatiles detected in PO exhibited more diverse and complicated features. The information
obtained from the volatile component profile highlighted the complexity of the degraded
products. The main volatile compounds, such as (E,E)-2,4-decadienal, 2-undecenal, and
(E)-2-decenal, clearly showed the breakage sites. Based on the structures of the volatile
components, the corresponding fatty acid chains were determined, and the degradation
behavior was revealed.

Hierarchy clustering analysis (HCA) is a basic method for investigating the data in
which the natural groupings of samples were characterized by the values of measured
features. In present study, HCA was applied for specifying the differences of volatile com-
pounds among oxidized vegetable oils with different heating temperature and selecting the
representative indicators for oil oxidation. Figure 3 shows the HCA resulting dendrogram
of volatiles during frying of four vegetable oils by characterization of the values of mea-
sured volatile data for specifying the differences of volatile profiles among them and signal
intensity based on volatile values. As shown in Figure 3, two clusters were identified in
four vegetable oils, indicating that there were noteworthy differences among oil samples
of different frying temperatures. The first cluster was the PO, RO, and LO samples fried
at 120 ◦C. The frying PO, RO, and LO samples fried at 160 ◦C and 180 ◦C were located
in the second cluster. While SO samples fried at 120 ◦C and 150 ◦C were detected as the
first cluster, samples fried at 180 ◦C were assigned to the second cluster, indicating that
SO samples fried at 120 ◦C and 150 ◦C possessed lower contents of volatile indicators for
oil oxidation than those fried at 180 ◦C, which could explain why the area of the second
cluster was much brighter than that of the first cluster. Besides, the brighter section could
be observed at the bottom right corner of the figure. The brighter area corresponded to
the much higher contents of volatiles possessed by frying oils. According to Figure 3, PO,
RO fried at 150 ◦C and 180 ◦C and SO fried at 180 ◦C contained higher amounts of Ald13
((E)-2-decenal), Ald15 (2-undecenal), and Ald16 ((E,E)-2,4-decadienal). However, PO, RO,
and SO fried at 120 ◦C and SO fried at 150 ◦C contained lower amounts of these typical
volatile compounds as the indicators of oil oxidation because the area of this cluster was
darker compared with another cluster. The relatively higher contents of Ald13, Ald16, and
Ald15 were clustered into one group and these three volatiles increased with the oxidation
degree of oil, which indicated that they were representative indicator for lipid oxidation.
Regarding LO, the volatiles could be divided into two groups, among which group I
contained the samples fried at 120 ◦C and group II contained samples fried at 150 ◦C and
180 ◦C which were rich in Ald16 ((E,E)-2,4-decadienal), Ald10 ((E,E)-2,4-heptadienal), and
Alc1 (1-penten-3-ol), and the amount of these three volatiles increased with the oxidation
degree of LO. The area of the first cluster (LO fried at 120 ◦C) was much darker, indicating
the lower level of flavor components in oxidized LO. Therefore, flavor indicators for oil
oxidation of PO, RO, and SO were (E)-2-decenal, 2-undecenal, and (E,E)-2,4-decadienal,
and those of LO were (E,E)-2,4-decadienal, (E,E)-2,4-heptadienal, and 1-penten-3-ol. The
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main volatile indicators of oil oxidation in PO, RO, and SO selected by HAC were the same
because the high content of oleic and linoleic acid in these three vegetable oils induced the
high content of degradation products of oils. Among the three selected oxidation indicator
of lipid oxidation, (E)-2-decenal and 2-undecenal were produced by homolytic cleavages
on the alkoxyl intermediate group of oleate hydroperoxides, while (E,E)-2, 4-decadienal
is reported to be formed by a classical free radical reaction of the decomposition product
of oleic and linoleic 9-hydroperoxide [23,41]. As for LO, due to the high proportion of
linoleic and linolenic acid, correspondingly high contents of volatile compounds, such as
(E,E)-2,4-heptadienal and 1-penten-3-ol, produced by the oxidation of linolenic acid were
formed [42].
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2.5. Model Establishment and Verification by ANN

In order to establish the prediction models for the free radical change of thermal
oxidized oils, the chemical data (AV, p-AV), main unsaturated fatty acids (C18:1, C18:2,
C18:3), and typical volatile indicators for oil oxidation were selected as the input layer
neurons and the free radical level of vegetable oils was used as the output layer neuron.
The parameters were randomly divided as training set, validation set, and testing set
with the proportion of 70%, 15%, and 15%, respectively. The Levenberg–Marquardt and
gradient descent momentum learning function were selected as the training algorithm.
The model tuning was achieved based on the number of neurons in the hidden layer. The
number of neurons in the hidden layer was adjusted continuously through the test of
practical training. When the number of neurons in the hidden layer of ANN was 10, the
comprehensive comparison results of R and MSE between the training set and the test
set was the best. Moreover, cross-validation on model training was included in the ANN
model, analyzed using MATLAB R2018b. ANN has been successfully applied in food
to assess aspects of a kinetic model, physicochemical properties, and to support quality
analysis and intelligent control design. Deep learning such as ANN has higher recognition
accuracy on large sample data sets compared to traditional machine learning [43]. As listed
in Figure 4, the predicted values of different oil samples obtained by the ANN method
were in high correlation with the measured values, and the R values of the training set were
above 0.99. The accuracy and stability of the prediction model was also verified by the
results of the high R of validation set with the values of 0.99, 0.99, 0.99, and 0.99 for PO, RO,
SO, and LO, respectively, indicating the good prediction ability of these models. Table 4
shows the mean square error (MSE) and coefficient of determination (R2) of the different
free radical prediction models for evaluating the performance of fitting and predicting. It
can be seen in Table 4 that the R2 values of different free radical models were all above 0.97
(the high R2 corresponding to low MSE) and no significant difference was found between
predictive values and true values among methods (p > 0.05), and the small predicted and
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measured values were observed, which indicated that ANN could be used as accurate
prediction model for free radical of vegetable oils during thermal oxidation. This is the
first time that the ANN was applied to predict the free radicals of vegetable oils. Previous
studies on the free radicals in fats and oils were usually determined by EPR, and results
showed that the amount of formed free radicals in oxidized fats and oils increased with the
increase of oxidized time [34,44], in agreement with our results. The application of ANN
in food focuses on the kinetic model, physicochemical properties, quality analysis, and
intelligent control design [24]. Sun et al. (2019) used ANN to establish a predictive model
for flavor changes in ginger during the drying process, and results showed the model fitted
well and a smaller mean square error was observed between the true value and predicted
values [27]. The correlation between the free radical and input layer neurons of ANN in
oils is shown in Table 5. It should be noted that there was a significant correlation between
the free radical amount and input layer neurons of ANN in SO (correlation coefficients
were above 0.9). As to LO, the free radical had a high correlation with input layer neurons
of ANN except for Ald16 ((E,E)-2,4-decadienal). The free radical was only highly correlated
with Ald15 (2-undecenal) and Ald16((E,E)-2,4-decadienal) in PO. As shown in Table 4, free
radical in RO was relatively correlated with AV, C18:3, and Ald16 ((E,E)-2,4-decadienal).
The same data were analyzed by a linear regression model (LRM), and results showed that
the R2 of LRM model applied in PO, RO, SO, and LO was 0.9634, 0.9564, 0.9521, and 0.9462,
respectively, which were lower than those of ANN models. The comparison between ANN
and LRM indicated that ANN had higher recognition accuracy on data sets compared
to the traditional machine learning methods such as LRM. Table 6 shows the values of
two factors which were used for quantifying the uncertainty of results. As indicated, the
values of p-factor for four ANN models were satisfactory and the predicted lake levels
were enclosed by the 95% prediction interval, and the values of d-factor were all less than 1,
which indicated that the four ANN models had less uncertainty.
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Figure 4. Establishment of prediction model by ANN for free radical of thermal oxidized PO (a),
RO (b), SO (c) and LO (d).

Table 4. Prediction performance of different models for free radicals in different vegetable oils.

Model R2 MSE (10−2) True Value Predicted Value

PO 0.9995 0.0306

1.266 1.2461
1.225 1.2149
1.203 1.2142
1.215 1.1927

RO 0.9978 0.0360

1.802 1.8341
1.742 1.7394
1.654 1.6912
1.957 1.7256

SO 0.9970 0.0599

3.154 3.0071
3.228 2.984
3.045 2.9897
2.987 2.9459

LO 0.9799 0.1487

1.654 1.6884
1.678 1.6835
1.659 1.6369
1.754 1.7299

Table 5. Pearson correlation coefficient between free radical and input layer neurons of ANN in oils.

AV p-AV C18:1 C18:2 C18:3 Ald13 Ald15 Ald16

PO −0.731 −0.653 0.538 0.697 0.568 −0.67 −0.993 −0.86
RO −0.776 −0.543 −0.381 0.636 0.757 −0.634 −0.39 −0.776
SO −0.972 −0.997 0.925 0.941 0.997 −0.983 −0.999 −0.958

AV p-AV C18:1 C18:2 C18:3 Alcl Ald10 Ald16
LO −0.924 −0.979 0.92 0.958 0.951 −0.988 −0.811 −0.055
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Table 6. Uncertainty measuring parameters for different ANN models.

PO RO SO LO

d-factor 0.45 0.52 0.36 0.54
p-factor 0.95 0.96 0.96 0.98

3. Materials and Methods
3.1. Materials

PO, RO, SO, and LO were donated by Wilmar International Ltd. (Shanghai, China).
These raw materials were refined neatly, without the addition of antioxidants. DMPO
(99% purity) as a spin trap and 2,4,6-collidine (99% purity) as an internal standard were
purchased from J&K Chemical Ltd. (Shanghai, China). DMPO was refined using activated
carbon/benzene and then stored in toluene (2 M) at –80 ◦C (filled with nitrogen) until use.
Fatty acid methyl ester standards (37-component bulk mix) and fatty acid (C21:0) methyl
ester were obtained from Sigma-Aldrich Corporation (St. Louis, MO, USA).

3.2. Preparation of Purified Oils

The residual minor compounds in the vegetable oils were removed by silica column
purification. A mixture of silica gel/clay/activated carbon/diatomite (12:6:2:1 m/m) was
added to the column (100 × 8 cm). The oils were extracted with an equal volume of
n-hexane at a constant flow rate by the negative pressure generated by the peristaltic pump
from the top of the column. The residual n-hexane in the effluents was removed by rotary
evaporation and drying with nitrogen. The purified oils were stored at –20 ◦C until use.

3.3. Thermal Oxidation of Oils

The oil samples (400 mL) were individually heated in an oil bath (DF-101S, Jinnan
Instrument Manufacturing Co., Ltd., Jinnan, China) for 36 h at 120 ◦C, 150 ◦C, and 180 ◦C.
The temperature was periodically tested using a calibrated thermometer. Throughout the
heating process, no fresh oil was replenished, and the oil bath was stirred with a magnetic
rotor in the dark. The thermally treated oil (20 mL) was ladled out at time intervals of 4 h
for analysis. The oil samples were prepared in triplicate and refrigerated until analysis.

3.4. Detection of Fatty Acid Composition

The fatty acid profile was analyzed using a gas chromatography system (Shimadzu
GC-2010, Shimadzu Corporation, Kyoto, Japan), equipped with a flame ionization detector
and a column (60 mm × 0.32 mm × 2.5 µm, TR-FAME 260M154P, Thermo Fisher Scientific,
Waltham, MA, USA). An internal standard, fatty acid (C21:0) methyl ester, was dissolved
in n-hexane (5 mg/mL) and 100 µL of this solution was added into the weighed oil.
The temperature of the injection port was maintained at 250 ◦C. The program used was
as follows: 60 ◦C for 4 min, 60–170 ◦C at a heating rate of 5 ◦C/min, 170 ◦C for 15 min,
170–220 ◦C at 2 ◦C/min, and 220 ◦C for 15 min. High purity nitrogen at a rate of 20 mL/min
was used as a carrier gas. The individual fatty acids were identified by comparison with
the retention times of the constituents of the 37-component fatty acid methyl ester standard
mixture. Each fatty acid peak was quantified using the internal standard. The experiments
were performed in triplicate.

3.5. Analysis of the Chemical Properties and Fatty Acid Composition of Oils

Acid value (AV), peroxide value (PV), and p-anisidine value (p-AV) of the oil samples
(in Section 2.2) were measured according to the AOCS method Cd 3d-63, Cd 8-53, and
Cd 18-90, respectively [45].

3.6. Oils Analysis by EPR

The EPR signals of the spin adducts were detected at 120 ◦C using a Bruker EMXplus-10/12
spectrometer (Bruker Corporation, Billerica, MA, Germany) at 9.85 GHz, equipped with a
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temperature control unit (Bruker ER 4141 VT-I). The experiment was performed following
the procedure described by Chen et al. with slight modifications [23]. A portion of the
sample (100 µL) degassed by nitrogen was mixed with 200 µL of 100 mM DMPO in a quartz
tube with a diameter of 4 mm, and the tube was inserted into the resonant cavity. The EPR
signal intensities of the mixtures were recorded to analyze the fluctuations of the signal
intensities. Thereafter, the EPR spectra of the heated oils were recorded immediately after
stabilization under dark every 8 h. The parameters were set as follows: center field: 3354 G;
sweep width: 100 G; sweep time: 60 s; resolution: 1024 points; microwave power: 20 mW;
modulation amplitude: 1.0 G; conversion time: 1.28 ms; modulation frequency: 100 kHz;
time constant: 20.48 ms. The radical spin adduct content was determined instantly after
the heated oil was ladled out from the beaker at definite intervals. The experiments were
performed in triplicate to prevent the difference between free radical distribution and avoid
hindering the continuation of the degradation process.

The identification of radical species was carried out by computer simulation of the
experimental EPR spectrum based on the calculation of g value and hyperfine coupling
constants. Hyperfine splitting constants of experimental spectra were calculated by Bruker
Xenon software 4.2 after optimizing signal-to-noise ratios.

The calculation of the number of spins generated in samples was obtained by Bruker
Xenon software based on the correction of Baseline Correction and the application of
quadratic integral.

3.7. Volatile Compounds Analysis by Head Space Solid Phase Microextraction GC-MS

The automatic headspace solid-phase microextraction fibers coated with 50/30 µm
divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) were inserted into
the top of a 20 mL headspace vial and retained for 30 min. Each vial contained 0.8 g of the
heated oil samples (36 h) and the stirring temperature was set at 50 ◦C. In addition, 5 µL of
2,4,6-collidine (2.0095 mg/mL in hexane) was added to the samples as an internal standard.
Before the analysis, the fiber was desorbed in the injector port of the GC system for 30 min
at 250 ◦C under a stream of helium. After the head space extraction, the desorption was
again carried out in the injector port at 250 ◦C for 5 min without split.

The volatile compounds induced from thermally oxidized oils were detected using
a GC-MS/MS instrument (TSQ Quantum XLS, Thermo Fisher Scientific, Waltham, MA,
USA) employing a DB-Wax column (30 m × 0.25 mm × 0.25 µm, J&W Scientific, Folsom,
CA, USA). The program for the column temperature was set as follows: initial hold at
45 ◦C for 2 min, 45–180 ◦C at 3 ◦C/min, 180–240 ◦C at 10 ◦C/min, and 240 ◦C for 7 min.
Further operating parameters of the MS included the electron impact mode (70 eV), ion
source temperature of 240 ◦C, quadrupole filter temperature of 150 ◦C, and MS range of
33–400 amu. The identification of these compounds was performed by matching the data
with the reference mass spectra available in the MS libraries (NIST 14 & WILEY 8.0). The
experiments were performed in triplicate.

3.8. Uncertainty Measurement of ANN Model

In order to measure and compare the uncertainty related to the results of ANN and
ANFIS models, some objective criteria are needed. In present study, we used d-factor and
p-factor to evaluate the uncertainty related to the results of ANN models based on the
method of Abbaspour et al. [46].

3.9. Statistical Analysis

The results were presented as mean values ± standard deviation (SD). Significant
differences among samples were assessed statistically by one-way analysis of variance
(ANOVA) with Duncan’s t-test using the SPSS (Version 19.0, SPSS Inc., Chicago, IL, USA)
at a significance level of 5%. HCA was conducted using PermutMatrix (Version 1.9.3) by
dissimilarity analysis of Euclidean distance based on McQuitty’s method. The ANN model
was established using MATLAB R2018b (MathWorks, Natick, MA, USA).
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4. Conclusions

The thermal process accelerated lipid free radical reaction in four vegetable oils. Lipid
free radical reactions were more prone to be triggered in LO and SO than PO and RO and
further resulted in different initial increase rates of EPR signal intensity. The initiation
and propagation stages of the lipid free radicals depended largely on the unsaturation
of the main fatty acid in four oils. The thermal process caused a significant increase of
EPR signals. Meanwhile, the high temperature limited the excessive increase of lipid free
radicals to a certain extent since the high concentrations of free radicals were unstable and
highly reactive at high temperature. Consequently, the thermal process accelerated the
radical chain reaction and promoted the formation of volatile compounds. GC-MS results
showed that (E)-2-decenal, (E,E)-2,4-decadienal, and 2-undecenal were the main volatile
compounds in the four oxidized oils. These unsaturated aldehydes were the degradation
products from 8- and 11-hydroperoxides of oleic acid, linoleic acid, and linolenic acid.
Meanwhile, three long-chain alkanes, dodecane, tridecane, and tetradecane, were found
in PO, which were formed by the degradation of palmitic acid and stearic acid reacted with
free radicals at random sites. Besides, the oxidized PO and LO contained the highest and
lowest contents of volatiles, respectively.

HCA analysis illustrated that (E)-2-decenal, 2-undecenal, and (E,E)-2,4-decadienal were
the main indicators for the thermal oxidation of PO, RO, and SO, while (E,E)-2,4-decadienal,
(E,E)-2,4-heptadienal, and 1-penten-3-ol were the potential markers for the thermal oxidation
of LO. Quantitative prediction models of free radicals in vegetable oils during thermal
oxidation were established by ANN based on the variables of oil properties. The high
coefficients R2 of free radical values obtained by models (more than 0.97) support the
excellent prediction accuracy of ANN. In general, the R2 and MSE of the calibration and
prediction sets as well as the small difference between the true and predicted free radicals
indicated that the established ANN models based on traditional chemical parameters and
volatile profiles could be used to monitor the free radical content of thermal oxidized
vegetable oil.

Author Contributions: Conceptualization, methodology, visualization, writing—original draft, S.H.
and Y.L.; data curation, formal analysis, S.H. and Y.L.; software, validation, resources, Y.L. and X.S.;
supervision; reviewing and editing, X.S. and J.L. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the Natural Science Foundation of China (32001736).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors are thankful to the National Engineering Research Center for
Functional Food, Wuxi, China for providing GC–MS and EPR data and other financial support to
publish this article.

Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: Samples of the compounds are not available.

References
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