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Abstract

The parasitic flagellate Trypanosoma vivax is a cause of animal trypanosomiasis across
Africa and South America. The parasite has a digenetic life cycle, passing between mam-
malian hosts and insect vectors, and a series of developmental forms adapted to each life
cycle stage. Each point in the life cycle presents radically different challenges to parasite
metabolism and physiology and distinct host interactions requiring remodeling of the para-
site cell surface. Transcriptomic and proteomic studies of the related parasites T. brucei
and T. congolense have shown how gene expression is regulated during their development.
New methods for in vitro culture of the T. vivax insect stages have allowed us to describe
global gene expression throughout the complete T. vivax life cycle for the first time. We com-
bined transcriptomic and proteomic analysis of each life stage using RNA-seq and mass
spectrometry respectively, to identify genes with patterns of preferential transcription or
expression. While T. vivax conforms to a pattern of highly conserved gene expression found
in other African trypanosomes, (e.g. developmental regulation of energy metabolism,
restricted expression of a dominant variant antigen, and expression of ‘Fam50’ proteins in
the insect mouthparts), we identified significant differences in gene expression affecting
metabolism in the fly and a suite of T. vivax-specific genes with predicted cell-surface
expression that are preferentially expressed in the mammal (‘Fam29, 30, 42’) or the vector
(‘Fam34, 35, 43'). T. vivax differs significantly from other African trypanosomes in the devel-
opmentally-regulated proteins likely to be expressed on its cell surface and thus, in the
structure of the host-parasite interface. These unique features may yet explain the species
differences in life cycle and could, in the form of bloodstream-stage proteins that do not
undergo antigenic variation, provide targets for therapy.
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Author Summary

Trypanosoma vivax is a single-celled parasite that infects cattle and non-domesticated ani-
mals through the bite of the tsetse fly. The parasite causes animal trypanosomiasis, a
chronic condition resulting in severe anemia, muscle wastage and ultimately death if
untreated. This disease is endemic across sub-Saharan Africa but has also spread to South
America and causes considerable losses in animal productivity, impeding economic devel-
opment in the world’s poorest nations. To develop new ways of preventing and treating
animal trypanosomiasis, we need an accurate understanding of how the parasite causes
disease. In this study, we present an analysis of gene expression throughout the T. vivax
life cycle that compares the abundance of gene transcripts (mRNA) and proteins in the
mammalian and insect hosts. We have identified genes that are preferentially expressed in
each life stage, including many that are unique to T. vivax and probably expressed on its
cell surface. Our findings provide a comprehensive understanding of how gene expression
is regulated in T. vivax and further refine a pool of T. vivax-specific genes that could be
exploited to prevent and treat animal trypanosomiasis.

Introduction

African trypanosomes are unicellular vector-borne hemoparasites of humans, domestic live-
stock and wild animals. They cause African trypanosomiasis, an endemic disease of sub-Saha-
ran Africa otherwise known as sleeping sickness in humans and nagana in animals, and are
transmitted between vertebrate hosts by the bite of tsetse flies (Glossina spp.). This endemic
disease causes considerable morbidity in livestock herds and associated losses in animal pro-
ductivity. The threat of Animal African trypanosomiasis in tsetse-infested areas also prevents
effective exploitation of available pasture, thereby impeding economic development in the
world’s poorest nations.

There are several species of African trypanosome that vary in life cycle, host range and
pathology. Trypanosoma brucei is predominantly an animal pathogen that has evolved the abil-
ity to infect humans on multiple occasions [1], while T. congolense and T. vivax are exclusively
animal pathogens. During their life cycles, T. brucei and T. congolense exist as procyclic forms
in the mid-gut of the tsetse fly before migrating into the salivary glands and proventriculus
respectively, where they develop into epimastigotes and then metacyclic trypomastigotes that
are able to infect vertebrates (see Fig 1). In contrast, T. vivax lacks a procyclic stage in the insect
mid-gut and has no complex migration within the insect; rather, T. vivax develops directly into
epimastigote forms within the insect proboscis [2] (Fig 1). This difference might explain why
T. vivax can be transmitted by other kinds of biting insect [3-4] and has therefore spread
beyond the sub-Saharan distribution of the tsetse fly into northern Africa and South America
[5-6].

In recent years our understanding of trypanosome biology has progressed substantially
through the determination of genome sequences for T. brucei [7-10] and for T. congolense and
T. vivax [11], as well as numerous analyses of gene expression, (largely confined to T. brucei,
except for three studies [12-14]), using transcriptomic [15-20] and proteomic [21-23]
approaches. Consequently, we now know that the complex life cycle of African trypanosomes
is facilitated by considerable developmental regulation of gene expression. Developmental reg-
ulation in T. brucei is particularly apparent in the expression of major surface glycoproteins
belonging to the procyclic, epimastigote and bloodstream forms respectively, i.e. procyclin
[24], Brucei Alanine-Rich Protein (BARP; [25]) and the Variant Surface Glycoprotein (VSG).
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Fig 1. Life cycle variation among African trypanosomes. The passage and development of African trypanosomes through the fly vector varies by
species. The figure shows the route taken by each species through the vector and position of each developmental stage. Insect anatomy is abbreviated thus:
proboscis (P), mid-gut (MG), salivary gland (SG) and proventriculus (PV). The life cycle within the fly is defined here by four stages: (1) Ingestion of
bloodstream-form parasites; (2) migration of parasites to the insect mid-gut with differentiation into procyclic forms (T. vivax lacks this stage); (3) migration
anteriorly to the proboscis (T. vivax), proventriculus (T. congolense) or salivary gland (T. brucei) and differentiation into epimastigote forms; and (4)
differentiation into metacyclic forms and inoculation into the vertebrate host upon insect feeding.

doi:10.1371/journal.pntd.0003975.9001

There are compelling reasons for supposing that gene expression in T. vivax will be different
to T. brucei in important ways, not least due to differences in life cycle development (Fig 1),
but also because the T. vivax genome contains substantially different repertoires of VSG and
BARP-like genes (and no procyclin at all), as well as numerous gene families that appear to
be unique [26]. As in vitro cultivation of insect stages has not previously been possible, gene
expression in T. vivax has only been analyzed in the bloodstream form, and then only through
transcriptomic analysis [14]. Moreover, given that gene regulation is achieved largely through
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post-transcriptional modifications in trypanosomes (reviewed in [27]), differences between
transcript and peptide abundances across the life cycle are expected. We recently established in
vitro cultures of the insect stages of T. vivax [28], and so a comparison of gene expression
across African trypanosome species is now possible.

Using transcriptome sequencing and proteomics, we have analyzed differences in gene
expression between T. vivax epimastigote, metacyclic and bloodstream forms. Our results
show that the numerous T. vivax-specific genes predicted to function on the parasite cell sur-
face are transcribed and often developmentally regulated. Genome-wide patterns of develop-
mental regulation are conserved across African trypanosome species, with some notable
exceptions concerning pyruvate metabolism in T. vivax, which might indicate an important
species difference in energy metabolism. Comparative genomics suggests that T. vivax differs
quite considerably from the model T. brucei; by illuminating the expression of distinctive fea-
tures in the T. vivax genome, this study moves us closer to understanding their phenotypic
effects.

Methods
Ethics statement

All mice were housed in the Institut Pasteur animal care facilities in compliance with European
animal welfare regulations (European Convention for the Protection of Vertebrate Animals
used for Experimental and other Scientific Purposes CETS No.: 123). Institut Pasteur is a mem-
ber of Committee #1 of the Comité Régional d’Ethique pour 'Expérimentation Animale
(CREEA), Ile de France. Animal housing conditions and the protocols used in the work
described herein were approved by the “Direction des Transports et de la Protection du Public,
Sous-Direction de la Protection Sanitaire et de 'Environnement, Police Sanitaire des Animaux”
(#B 75-15-28), in accordance with the Ethics Charter of animal experimentation that includes
appropriate procedures to minimize pain and animal suffering. Authorization (to PM) to per-
form experiments on vertebrate animals is granted by license #75-846 issued by the Paris
Department of Veterinary Services, DDSV.

Cell culture

Trypanosoma (Duttonella) vivax IL 1392 was originally derived from the Zaria Y486 Nigerian
isolate. Bloodstream form parasites were maintained in vivo by continuous passage in mice, as
previously described [29]. Once parasitemia reached at least 5x10° parasites per ml blood was
collected by cardiac puncture onto heparin (2500 IU/kg), and was then diluted 1: 10 (v/v) with
PBS 0.5% glucose to 5x10” parasites per ml. Parasites were separated from red blood cells by
differential centrifugation using a swing-out rotor (Jouan GR412, Fisher Bioblock Scientific,
Strasbourg, France). Diluted blood was processed by one round of centrifugation (5 min at 200
g) and the supernatant withdrawn with a pipette without disturbing the red blood cell layer
and the thin interface containing the white blood cells. Parasite enriched suspension was sub-
mitted to a second round of centrifugation (5 min at 200 g) to eliminate all residual cells. The
supernatant was then centrifuged for 10 min at 1800 g and bloodstream form-containing pel-
lets devoid of host cells were submitted to two further PBS washes under the same centrifuga-
tion conditions. Bloodstream form-containing pellets were further treated for RNA or protein
extractions.

T. vivax epimastigote cultures have been previously described [28]. Briefly, bloodstream
forms purified as described above from infected mice differentiated into epimastigotes in TV3
media: IMDM 50%, DMEM (without glucose) 10% heat-inactivated fetal calf serum (FBS, MP
Biomedicals or Invitrogen) and/or 10% heat-inactivated goat serum (GS, Invitrogen), 0.03 mM
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bathocuproinedisulfonic acid, 0.45 mM L-cysteine, 0.2 mM hypoxanthine, 0.14 mM f3-mercap-
toethanol, 4mM L-proline, 0.05 mM thymidine, and 25 mM HEPES pH7.4. All supplements
were obtained from Sigma Aldrich except HEPES (Invitrogen, Cergy Pontoise). Epimastigote
growth cultures were maintained in vitro by serial passages. Epimastigotes attached to the sur-
face of the culture flask formed micro-colonies and covered the entire surface after two weeks;
the number of cells in the supernatant increased proportionally to the density of the adherent
cell layer. Adherent epimastigotes were recovered from the flask by scraping and washed three
times with PBS. As previously described, metacyclic forms are produced during in vitro growth
and are found in the cell culture supernatant [28]. Metacyclic forms were isolated from the cell
culture using an approach derived from “bovine plasma aggregation method” [30]. Superna-
tant from a dense culture (14 days) was remove from the flask, 30% non-inactivated goat
serum was added to the cells and incubated at 27°C for 30 min. During the incubation period,
epimastigotes aggregate into cell clumps, while metacyclic forms continue to swim freely. The
metacyclic forms were then separated from the epimastigote clumps by passing the trypano-
some suspension through a 5 um pore size filter (Millipore Cat. Bedford, MS, USA). The meta-
cyclic forms were then concentrated and washed by centrifugation at 750g for 15 min in 14 ml
conical centrifuge tubes and RNA or protein prepared from the resultant cells pellets.

Sample preparation for RNA-seq

Total RNA was isolated using an RNeasy Mini Kit (Qiagen, Courtaboeuf, France) in accor-
dance with the manufacturer's instructions. RNA purity and concentration were evaluated by
spectrophotometry using NanoDrop ND-2000 (ThermoFisher). RNA quality and the relative
contributions of total and small RNA were assessed by the Agilent 2100 Bioanalyzer microflui-
dics-based platform (Agilent Technologies, Santa Clara, USA). Four biological replicates were
prepared for bloodstream form and metacyclic cells each. Five replicates were produced for epi-
mastigote cells.

RNA sequencing

For each replicate, poly-adenylated RNA (mRNA) was purified from total RNA using an
oligo-dT magnetic bead pull-down, using TruSeq RNA Sample Prep v2 kits (Illumina). The
mRNA was then fragmented using metal ion-catalyzed hydrolysis. A random-primed cDNA
library was synthesized and double-strand cDNA was used as the input to a standard Illumina
library preparation, with a fragment size of 400bp. The libraries were amplified with 10 cycles
of PCR using KAPA Hifi Polymerase. Samples were quantified and pooled based on a post-
PCR Agilent Bioanalyzer, followed by size-selection using the LabChip XT Caliper. The multi-
plexed library was sequenced on the Illumina HiSeq 2000 with forward and reverse primers,
according to the manufacturers standard protocol, resulting in 100-nucleotide paired-end
reads. Sequenced data was analyzed and quality controlled and individual indexed library
BAM files created.

Transcriptomic data analysis

Paired-end RNA-seq data were mapped to the T. vivax Y486 reference strain [11] (downloaded
from TritrypDB release 6.0) using Bowtie2 [31] under the default parameters and within the
Galaxy bioinformatics platform [32]. Transcript abundance for each replicate was estimated
across the genome using Cufflinks [33] and measured in Fragments Per Kilobase Mapped
(FPKM). The option for quartile normalization within Galaxy was applied to maximize our
ability to detect preferential expression of low abundance transcripts against the background of
highly abundant species. The option for bias detection and correction was enforced. The option
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for multi-read correction was applied because some of our genes of interest are multi-copy and
may map to multiple locations. Fold change in transcript abundance, and significance of differ-
ential expression, was estimated using Cuffdiff [33] for three pairwise comparisons of T. vivax
life stages, combining all replicates in each case. Cuffdiff applies the Benjamini-Hochberg cor-
rection for multiple testing when assessing the significance of fold changes. To ensure accurate
assessment of differential expression, transcript abundance was corroborated using a second
method, edgeR [34]. Correlations for fold change in transcript abundance returned by Cuf-
flinks and edgeR displayed high congruence when comparing life stages (r* = 0.89-0.91). Sig-
nificant differences in transcript expression were defined as at least 2-fold enrichment between
conditions and q < 0.05, where q is the p value corrected for false discovery rate (FDR).

Sample preparation for proteomics

Protein from cell lysates was dispensed into low protein-binding microcentrifuge tubes (Sar-
stedt, Leicester, UK) and made up to 160 ul by addition of 25 mM ammonium bicarbonate.
The proteins were denatured using 10 pl of 1% (w/v) RapiGest (Waters MS Technologies,
Manchester, UK) in 25 mM ammonium bicarbonate followed by three cycles of freeze-thaw,
and two cycles of 10 min sonication in a water bath. The sample was then incubated at 80°C
for 10 min and reduced with 3 mM dithiothreitol (Sigma-Aldrich, Dorset, UK) at 60°C for 10
min then alkylated with 9 mM iodoacetamide (Sigma-Aldrich, Dorset, UK) at room tempera-
ture for 30 min in the dark. Proteomic grade trypsin (Sigma-Aldrich, Dorset, UK) was added at
a protein:trypsin ratio of 50:1 and samples incubated at 37°C overnight. Three biological repli-
cates were prepared for each cell type.

LC-MS/MS analysis

Peptide mixtures were analyzed by on-line nanoflow liquid chromatography using the
nanoACQUITY-nLC system (Waters MS technologies, Manchester, UK) coupled to an
LTQ-Orbitrap Velos (ThermoFisher Scientific, Bremen, Germany) mass spectrometer
equipped with the manufacturer’s nanospray ion source. The analytical column (nanoAC-
QUITY UPLCT BEH130 C18 15 cm x 75 pum, 1.7 um capillary column) was maintained at
35°C and a flow-rate of 300nl/min. The gradient consisted of 3-40% acetonitrile in 0.1% formic
acid for 90 min then a ramp of 40-85% acetonitrile in 0.1% formic acid for 3 min. Full scan MS
spectra (m/z range 300-2000) were acquired by the Orbitrap at a resolution of 30,000. Analysis
was performed in data-dependent mode. The top 20 most intense ions from MS1 scan (full
MS) were selected for tandem MS by collision induced dissociation (CID) and all product spec-
tra were acquired in the LTQ ion trap. Ion trap and Orbitrap maximal injection times were set
to 50 ms and 500 ms, respectively.

Proteomic data analysis

Thermo RAW files were imported into Progenesis LC-MS (version 4.1, Nonlinear Dynamics,
UK). Runs were time aligned using default settings and using an auto selected run as reference.
Peaks were picked by the software and filtered to include only peaks with a charge state of
between +2 and +6. Peptide intensities were normalized against the reference run by Progen-
esis LC-MS and these intensities are used to highlight differences in protein expression between
control and treated samples with supporting statistical analysis (ANOVA and q-values) calcu-
lated by the Progenesis LC-MS software. Spectral data were transformed to mgf files with
Progenesis LC-MS and exported for peptide identification using the Mascot (version 2.3.02,
Matrix Science) search engine. Tandem MS data were searched against a custom database

that contained the common contamination and protein sequences predicted for the T. vivax
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reference genome (downloaded from TriTrypDB v-6.0). Search parameters were as follows;
precursor mass tolerance set to 10ppm and fragment mass tolerance set to 0.5 Da. One missed
tryptic cleavage was permitted. Carbamidomethylation (cysteine) was set as a fixed modifica-
tion and oxidation (methionine) set as a variable modification. Mascot search results were fur-
ther processed using the machine learning algorithm Percolator. The false discovery rates were
set at 1% and at least two unique peptides were required for reporting protein identifications.
Protein abundance (iBAQ) was calculated as the sum of all the peak intensities (from Progen-
esis output) divided by the number of theoretically observable tryptic peptides [35]. Protein
abundance was normalized by dividing the protein iBAQ value by the summed iBAQ values
for that sample. The reported abundance is the mean of the biological replicates.

Data accessibility

All cDNA sequence data are available from the European Nucleotide Archive (http://www.ebi.
ac.uk/ena), accession number ERP001753. Details of the transcriptomic experiments are also
available from the Array Express website (https://www.ebi.ac.uk/arrayexpress/), accession
number E-ERAD-100. The mass spectrometry proteomics data have been deposited with the
ProteomeXchange Consortium via the PRIDE partner repository (http://www.ebi.ac.uk/pride/
archive/) with the dataset identifier PXD001617.

Results
Estimation of transcript and peptide abundance

By exploiting new protocols for the in vitro cultivation of T. vivax epimastigote and metacyclic
forms, we have produced comparative transcriptomic and proteomic data for the whole T.
vivax life cycle using RNAseq and LC-MS/MS approaches respectively. Transcripts were
detected for 10116 T. vivax Y486 genes (85.1% of all genes); 8994 of these transcripts (88.9%)
were observed with at least 10 FPKM. The abundance of each transcript, as estimated using
Cufflinks [33], is described in S1 Table. The most abundant transcripts in the bloodstream
form were derived from tubulins, diverse ribosomal proteins and VSG-like sequences
TvY486_0009580 (17331 FPKM) and TvY486_0018880 (9669 FPKM), which are assumed to
have been the active VSG at the time of sequencing. Besides these, abundant transcripts encod-
ing named proteins concern glyceraldehyde 3-phosphate dehydrogenase (TvY486_0603710;
1512 FPKM), a receptor-type adenylate cyclase (TvY486_0029610; 1210 FPKM), cathepsin B-
like cysteine peptidase (TvY486_0600060; 794 FPKM), and an uncharacterized gene specific
to T. vivax (TvY486_0900440; 1646 FPKM). The most abundant transcripts in the epimasti-
gote and metacyclic cells encoded the same set of highly abundant tubulins and ribosomal
proteins, but not the putative VSG, displaying instead an abundance of BARP-like proteins
TvY486_0012620 (975 FPKM) and TvY486_1114940 (847 FPKM). Abundance estimates
across our independent replicates were consistent, with strong positive correlations of repli-
cates (ranging from 0.94 to 0.99) across all life stages (S1 Fig); and when fold change in tran-
script abundance is compared between life stages using edgeR, replicates cluster by stage
illustrating their consistency (52 Fig).

Peptide abundance, as defined by quantitative analysis with MASCOT, is described in S2
Table. 11099 peptides were counted corresponding to 1952 proteins (16.3% of predicted pro-
teome). Of these, 1245 were sufficiently abundant to be quantified by iBAQ (i.e. two unique
peptides were observed with a FDR of 0.01). Of these, 798 had a q value < 0.05, meaning that
differential expression can be reliably inferred. The most abundant peptides in the blood-
stream form were alpha and beta tubulin, various histones, putative VSG (TvY486_0009580/
TvY486_0018880; i.e. coinciding with the most abundant VSG-like transcripts), and metabolic
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enzymes such as fructose-bisphosphate aldolase, enolase, glutamate dehydrogenase, arginine
kinase, phosphoglycerate mutase, succinyl-coA:3-ketoacid-coenzyme A transferase and glyc-
erol-3-phosphate dehydrogenase. The most abundant peptides in the epimastigote and meta-
cyclic stages largely belonged to the same set of proteins, except that VSG were not observed
and glycolytic enzymes were less abundant. As with transcript abundance, the proteome was
consistent between independent replicates for each life stage, as illustrated in a principle compo-
nent analysis in which replicates cluster tightly by stage (S3 Fig).

The degree to which relative abundance of transcripts and peptides concur throughout the
life cycle is an important question with implications for regulation of gene expression, espe-
cially in trypanosomatids in which regulation is thought to be mostly post-transcriptional [27].
Correlations of transcript and peptide abundance across the genome (a-c) and for differentially
expressed genes in each life stage (d-f) are shown in 54 Fig. These graphs show that the correla-
tion is poor for all genes (r* between 0.22 and 0.36) but improved for genes with evidence of
developmental regulation (r* between 0.38 and 0.65).

Developmental regulation of transcripts

Differential expression is defined as significant where transcript abundance displays at least
two-fold enrichment and where q < 0.05. We found that 11.2% (1137) of transcripts showed
significant differential expression in one or more stage comparison; we refer to these as ‘devel-
opmentally regulated’ and they are listed in S3 Table. In bloodstream forms, 518 transcripts
were significantly more abundant relative to epimastigotes, and 382 transcripts were signifi-
cantly more abundant in bloodstream forms relative to metacyclics. The greatest enrichment in
favor of bloodstream forms concerned the putative active VSG (TvY486_0018880; fold-change
(FC) = 110.9); other large fold-changes that implicated named sequences concerned three
receptor-type adenylate cyclases (TvY486_0026190, TvY486_0003180 and TvY486_0029610;
FC =49.8,18.9 and 10.8 respectively), a glycerol-3-phosphate dehydrogenase (TvY486_0802930;
FC =9.4) and a phospholipase A1 (TvY486_0102170; FC = 15.6). Besides these instances, the
majority of transcripts (83%) preferentially expressed in bloodstream forms encode hypothetical
proteins. Among these are hypothetical proteins belonging to T. vivax-specific families that are
included in a Cell-Surface Phylome (CSP) that we published previously [26] for gene families
predicted to be expressed on the cell surfaces of the three principal African trypanosome species;
i.e. Fam30 (e.g. TvY486_0003670; FC = 29.4), Fam28 (e.g. TvY486_0030920; FC = 27.5), Fam34
(e.g. TvY486_0009950; FC = 26.5) and Fam31 (e.g. TvY486_0000210; FC = 23.4). Yet another
family of uncharacterized genes, unique to T. vivax but not included in the CSP presently, show
greater differential expression in bloodstream forms than any other family except for VSG. This
gene family occurs 25 times among transcripts up-regulated in bloodstream forms relative to epi-
mastigotes (S3 Table) and provides four of the 20 largest fold-changes in favor of bloodstream
forms (e.g. TvY486_0033680, FC = 38.1). A BLASTp analysis shows that this family has at least
44 members across the T. vivax genome but none of these paralogs were observed to be preferen-
tially expressed in either epimastigote or metacyclic form.

In epimastigotes, we identified 393 transcripts that were developmentally regulated, 387 of
which are significantly more abundant in epimastigotes relative to bloodstream forms, while 8
transcripts are significantly more abundant in epimastigotes relative to metacyclic forms (see
S3 Table). The dearth of preferential expression in epimastigotes relative to metacyclics was
only slightly relieved by analysis with edgeR, which reported 23 cases. Since it was necessary to
grow epimastigote cultures to high density in order to achieve a high proportion of metacyclic
cells, it is possible that the lack of significant differences between these cell types is due to the
effects of high density on growth. As with bloodstream forms, most developmentally regulated
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transcripts encode hypothetical proteins (65.1%), including those with the greatest fold
changes in expression, i.e. TvY486_1110640 (FC = 73.1). Transcripts preferentially expressed
in epimastigotes also concern further T. vivax-specific, CSP gene families, namely Fam35 (11
paralogs; FC = 5.4-43.7) and Fam43 (three paralogs; FC = 35.0-53.8). However, these gene
families were more abundant still in metacyclic forms (see below), indicating that their main
focus of expression was not the epimastigote. Aside from these uncharacterized gene families,
transcripts implicated in cellular respiration were also seen, for example, components of the
electron transfer chain such as cytochrome c1 (TvY486_0801280; FC = 13.0), cytochrome ¢
(TvY486_0804690; FC = 13.2) and cytochrome c oxidase subunits (FC between 4.3-20.9). Also
transcripts for multiple cation transporters (FC between 3.8-24.7) and a meiotic recombina-
tion protein DMC1 (TvY486_0904120; FC = 10.5).

In the final, metacyclic life stage, 357 transcripts were significantly more abundant relative
to bloodstream forms, and these gave a very similar picture to the enriched transcripts in epi-
mastigotes. A further 136 transcripts were significantly more abundant relative to epimasti-
gotes (see S3 Table) including the T. vivax-specific, CSP families 34, 35 and 43 (see above), and
other transcripts encoding DNA polymerase kappa (TvY486_1109280; FC = 2.8), an adenylate
cyclase (TvY486_0029610; FC = 2.5), and various reverse transcriptases derived from SLACS
elements (average FC = 6.8).

With respect to these observations, it should be noted that further analysis using edgeR pro-
duced very similar results to Cufflinks, with only 8.6% of the gene set displaying significant dif-
ferential expression. Also, there was substantial overlap in the identities of developmentally
regulated transcripts between comparisons; thus, of 518 transcripts significantly enriched in
bloodstream forms relative to epimastigotes, 372 of these were also enriched relative to meta-
cyclics; similarly, of 387 transcripts significantly enriched in epimastigotes relative to blood-
stream forms, 285 of these were also enriched in metacyclics relative to the latter. From this it
should be clear that, of the three life stages, the epimastigotes and metacyclic transcriptomes
were most alike.

We examined the developmental regulated transcripts for Gene Ontology (GO) terms that
were significantly enriched using a Fishers Exact test in BLAST2GO [36]. This confirmed that
transcripts preferentially expressed in bloodstream forms are enriched for terms associated
with glycolysis (GO:0006096; q = 3.38¢ **) and glycosome (GO:0020015; p = 1.83¢ *), while
those preferentially expressed in epimastigotes are enriched for cytochrome-c oxidase activity
(GO:0004129; p = 2.01e™") and ATP synthesis coupled proton transport (GO:0015986;

p = 1.43¢’*). While suggestive of consistent differences in energy metabolism between life
stages, differences in transcript abundance do not guarantee disparity in protein expression;
thus, we sought to corroborate these observations with our proteomic data.

Developmental regulation of proteins

A protein shows significant differential expression if a constitutive peptide displays at least 2-fold
enrichment and q < 0.05. Under these criteria, 595 or 30.5% of observed proteins (74.6% of
quantifiable peptides) were developmentally regulated and these are listed in S4 Table. In the
bloodstream form, 131 proteins were significantly more abundant relative to epimastigotes, while
63 proteins were significantly more abundant relative to metacyclics. Compared to differentially
expressed transcripts, there is a smaller proportion of hypothetical proteins (29%), suggesting
that our proteomic analysis has captured the most abundant components of cellular physiology
that are relatively well understood. Accordingly, various structural proteins and diverse enzymes
are listed, most notably components of the glycolytic pathway such as phosphoglycerate mutase
(TvY486_0302920; FC = 6.6), fructose-bisphosphate aldolase (TvY486_1005670; FC = 3.5) and
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glycerol-3-phosphate dehydrogenase (TvY486_0802930; FC = 5.5). Analysis of functional terms
associated with peptides preferentially expressed in bloodstream forms shows that glucose metab-
olism is significantly enriched (GO:0006006; FDR = 5.6¢ *°) relative to epimastigotes, while the
citric acid cycle is significantly enriched (KEGG; FDR = 4.6 **) relative to metacyclics.

The multi-copy, T. vivax-specific transcripts described above as being the most highly abun-
dant family in bloodstream forms were also identified among our peptides. Four members of
this family are preferentially expressed in bloodstream forms, one relative to epimastigotes
(TvY486_0008730; FC = 15.9) and three more relative to metacyclics. None were expressed in
either insect stage, further indicating that this is a novel and very prominent feature of blood-
stream forms.

In the epimastigote form, 147 and 104 proteins were significantly more abundant relative to
bloodstream forms and metacyclics respectively. GO terms associated with oxidation-reduction
processes (GO:0055114; FDR = 1.1 %) and amino acid metabolism (GO:0006520; FDR = 2.3¢™%?)
were found to be significantly enriched. Peptides suggestive of oxidative phosphorylation,
although no other elements of mitochondrial energy metabolism, were also significantly more
abundant relative to metacyclics.

In the metacyclic stage, 62 peptides were significantly more abundant relative to bloodstream
forms, and 89 peptides were significantly more abundant relative to epimastigotes. In both cases,
the greatest fold changes pertain to hypothetical proteins encoded by members of CSP gene fami-
lies (see below). Among the 88 peptides, various proteins with roles in intracellular trafficking
were implicated, for example, the vesicle formation protein Sec24C (TvY486_0300580; FC =
11.5; [37]) and signal recognition particle receptor (TvY486_1110560; FC = 4.9), as well as sev-
eral dynein heavy chains (FC between 2.2 and 7.1). A Fishers Exact test shows that functions
associated with intracellular transport (GO:0046907; FDR = 2.0e °%) are significantly enriched.
The same test shows that purine ribonucleotide catabolism (GO:0009154; FDR = 2.1e™%), (which
refers here to the ATP-binding requirements of the same intracellular transport processes), is
also significantly enriched.

It should be noted that, unlike the cohorts of stage-specific transcripts, there was no overlap
in the membership of these various stage-specific peptide groups, i.e. there were no peptides
significantly enriched in both epimastigotes and metacyclics relative to bloodstream forms.

Interspecies comparison of developmental regulation

Transcriptomic and proteomic data from diverse African trypanosomes indicate consistently
that life stages differ with respect to primary energy metabolism. Previous studies of global
gene expression T. brucei and T. congolense have shown developmental regulation of such
genes, as well as those encoding the principal cell surface glycoproteins [12-13, 16-19, 21-22].
We would like to know how conserved such developmental regulation is through evolutionary
time, and thus, how regulatory evolution might have contributed to phenotypic differences
between species. Comparative genomics predicts that T. vivax lacks certain enigmatic compo-
nents of T. brucei and T. congolense cell surfaces, such as the VSG-related transferrin receptor
of bloodstream forms and procyclin, as well as some elements of Fam50 (see below) [26]. To
relate global gene expression across the African trypanosomes, we compared our proteome
with existing data sets for T. brucei [21-22] and T. congolense [13], calculating the fold change
in abundance from the non-infective insect stage (i.e. epimastigote for T. vivax and procyclic
form for T. brucei and T. congolense) to the bloodstream form, for each protein observed in all
species (N = 128). Fig 2 compares relative peptide abundance across four proteomic datasets
from three species.
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Fig 2. Fold changes in peptide abundance for 128 proteins when comparing insect stage (i.e. epimastigote (EPI) or procyclic form (PCF) and
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ehydrogenase
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bloodstream forms (BSF), across three species. The phylogram shown at the top describes the overall similarity of the four datasets. The dendrogram at
the left describes how the proteins cluster by expression profile. Blue shades indicate insect-stage expression; yellow shades indicate vertebrate-stage
expression. Subset ‘a’ are preferentially expressed in insect stages of all species. Subset ‘b’ are enriched during the vertebrate stage of all species. Subset

‘c’ is preferentially expressed in insect stages of T. vivax only.

doi:10.1371/journal.pntd.0003975.9002
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Subset a contains proteins that are preferentially expressed in the bloodstream form in all
species; the GO term for glycolysis (GO: 0006096; FDR = 6.4e *°) is enriched among these pro-
teins. This indicates that the use of substrate-level phosphorylation as the dominant process for
ATP generation in the bloodstream form is a consistent feature of African trypanosomes. Sub-
set b contains proteins with the opposite expression profile, i.e. preferentially expressed in the
non-infective insect stage in all species. Analysis of GO terms associated with these proteins
shows that proton-transporting ATP synthase activity (GO:0046933; FDR = 1.8¢"*), ATP syn-
thesis coupled proton transport (GO:0015986; FDR = 1.8¢"**) and oxidation-reduction process
(GO:0055114; FDR = 3.1¢™*) are enriched. This is consistent with the widespread use oxidative
phosphorylation in the low-glucose environment of the insect vector to generate ATP via a
proton-motive force across the mitochondrial membrane. Hence, at the broadest level, devel-
opmental regulation is conserved across all species, as their shared insect host will have pre-
dicted. However, there are obvious differences also.

Against this background of conserved developmental regulation, we are interested in genes
that are regulated differently in T. vivax, and which might contribute to its unique phenotypes.
Subset ¢ contains proteins that are significantly more abundant in the insect stages of T. brucei
and T. congolense than the vertebrate stage, but preferentially expressed in T. vivax blood-
stream forms. In the larger dataset of Fig 3, this cohort is expanded to 714 proteins by exclud-
ing T. congolense (for which proteome coverage is lowest); the number of proteins falling into
subset ¢ is increased to 27 and these are listed in Table 1. The expression profile of these pro-
teins in T. vivax is not simply a lack of regulation or low expression generally, since many are
highly abundant. Ten of the proteins in Table 1 appear in the top 10% of our proteome when
ranked by abundance. Analysis of the GO terms associated with these proteins shows enrich-
ment for succinate-CoA ligase (GDP-forming) activity (GO:0004776; FDR = 1.8¢™*), pyruvate
dehydrogenase (acetyl-transferring) activity (GO:0004739; FDR = 1.8e °%) and glucose metabolic
process (GO:0006006; FDR = 2.8e °%). Hence, comparison of differentially expressed genes
across African trypanosomes shows that much is conserved at the regulatory level but that
important differences exist, even in the most essential physiology.

Expression of T. vivax-specific, cell surface-expressed gene families

We have previously identified several gene families, known as Fam27-45, that are predicted to
encode cell surface proteins and which, being unique to T. vivax, might distinguish the parasite
from T. brucei and T. congolense [26]. Fam27-45 are among the most highly expressed genes
and these data are extracted in Table 2. Many of the CSP families unique to T. vivax also appear
to be developmentally regulated at the transcript level. For example, Fam27 (five paralogs),
Fam35 (11 paralogs) and Fam 43 (five paralogs) are preferentially transcribed in insect stages.
Conversely, Fam29 (13 paralogs), Fam30 (38 paralogs) and Fam32 (seven paralogs) are prefer-
entially transcribed in bloodstream forms. Indeed, rarely are transcripts belonging to one of the
families found throughout the lifecycle; Fam34 (25 paralogs) being one such case. Fig 4 sum-
marizes the evidence for differential expression of Fam27-45 at the transcript and peptide level.
In four cases, (Fams 33, 40, 41 and 45), both transcriptomic or proteomic evidence for expres-
sion is lacking and we conclude that these sequence families do not encode protein-coding
genes (and so should be removed from the CSP). As expected, proteomic evidence for gene
expression is not as prevalent as transcriptomic data, although it generally corroborates the lat-
ter when it is available.

The best supported cases for developmental regulation concern the metacyclic-specific
expression of Fam34, 35 and 43. We observed 34 distinct Fam34 transcripts and 24 of these
were differentially expressed; 12 in the metacyclic and another 12 in the bloodstream form.
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Fig 3. Fold changes in peptide abundance for 714 proteins when comparing insect stage (i.e.
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epimastigote (EPI) or procyclic form (PCF) and bloodstream forms (BSF), in T. brucei and T. vivax. The
asterisk denotes an expanded cohort of insect-specific proteins in T. vivax, corresponding to subset c in Fig 2.

doi:10.1371/journal.pntd.0003975.9003
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Table 1. Fold change in peptide abundance for 27 loci that show preferential expression in the bloodstream form of T. vivax and in the insect (pro-
cyclic) stage of T. brucei.

Gene ID Product T. vivax T. brucei 1* T. brucei 2**
TvY486_0902340 ABC transporter, putative -2.44 2.66 2.85
TvY486_1007540 ABC transporter, putative -1.20 2.75 3.11
TvY486_0904230 BRCT domain-containing hypothetical protein, conserved -3.44 1.64 2.02
TvY486_0907550 CHAT domain-containing hypothetical protein, conserved -0.68 3.15 0.81
TvY486_1007360 dihydrolipoamide acetyltransferase precursor, putative -0.20 1.16 1.81
TvY486_0806870 dihydrolipoamide dehydrogenase, putative -0.17 ND 1.37
TvY486_0604120 dynein heavy chain-containing protein, putative -2.06 2.49 2.07
TvY486_1002790 eukaryotic translation initiation factor 5, putative -3.66 1.56 1.06
TvY486_1014790 glycosomal malate dehydrogenase, putative -1.28 4.09 6.07
TvY486_0039220 glycosomal phosphoenolpyruvate carboxykinase, putative -1.31 1.84 3.63
TvY486_0101860 hypothetical protein, conserved -0.57 2.63 ND
TvY486_0300460 hypothetical protein, conserved -1.04 ND 1.31
TvY486_0303060 hypothetical protein, conserved -0.68 2.06 2.02
TvY486_1011060 hypothetical protein, conserved -1.74 2.67 2.15
TvY486_1111980 hypothetical protein, conserved -0.96 1.51 1.80
TvY486_1114040 hypothetical protein, conserved (fragment) -0.07 1.10 1.24
TvY486_0907650 kinesin, putative -3.61 1.88 1.89
TvY486_1111670 kinesin-like protein, putative -0.20 0.95 ND
TvY486_0901260 mitochondrial pyruvate carrier protein, putative -0.74 1.02 2.43
TvY486_0702860 nitroreductase 4-like protein, putative -0.93 2.32 3.11
TvY486_0100140 phosphoglycerate kinase, putative -1.01 3.76 ND
TvY486_0604100 phosphoglycerate kinase, putative -1.28 3.76 ND
TvY486_0301070 pyruvate dehydrogenase E1 beta subunit, putative -0.77 1.00 1.70
TvY486_1012350 pyruvate dehydrogenase E1 component alpha subunit, putative -0.65 0.95 1.89
TvY486_0902590 RNA binding protein, putative -3.39 1.09 1.52
TvY486_1007240 succinyl-CoA ligase [GDP-forming] beta-chain, putative -0.96 1.80 1.76
TvY486_0301600 succinyl-CoA synthetase alpha subunit, putative -1.01 1.49 1.74

Note: Fold change in peptide abundance is calculated as log2(epimastigote/bloodstream form) for T. vivax and log2(procyclic/bloodstream form) for T.

brucei.

* Urbaniak et al. 2012
** Butter et al. 2013.

ND: no data.

doi:10.1371/journal.pntd.0003975.t001

However, the proteomic evidence indicates more selective developmental regulation; of 11
Fam34 proteins that were observed, five were preferentially expressed and all in the metacyclic

stage (FC between 2.2-10.8).

Of 17 distinct Fam35 transcripts, 11 were differentially expressed; all were significantly
more abundant in the metacyclic stage (FC between 13.2-92.0). Proteomic data support this
view; of the six Fam35 peptides observed, all were most abundant in the metacyclic stage and
two significantly so (TvY486_0041300 (FC = 6.55) and TvY486_0039920 (FC = 22.19)).

We observed seven distinct Fam43 transcripts and of these five were differentially expressed,
all most abundant in the metacyclic (FC between 19.7-86.3). All three Fam43 peptides that
were observed were preferentially expressed in the metacyclic stage (FC between 19.8-30.9).
Hence, these results indicate that the putative T. vivax-specific gene families are (mostly)
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Table 2. Preferential expression of T. vivax-specific Cell Surface Phylome (CSP) gene families based on fold change (FC) in transcript (a) and pep-

tide (b) abundance across three life cycle stages.

a) Gene ID CSPID Value 1 Stage Value 2 Stage FC Max. stage
TvY486_0019430 Fam27 97.6 BSF 2488.1 EPI 21.83 EPI
TvY486_0038280 Fam27 74.4 BSF 325.6 MET 4.54 MET
TvY486_0038300 Fam27 137.6 BSF 606.6 MET 4.58 MET
TvY486_0043530 Fam27 71.0 BSF 317.2 MET 4.66 MET
TvY486_0044810 Fam27 126.3 BSF 701.7 MET 6.12 MET
TvY486_0001150 Fam28 43.3 MET 10.5 EPI 4.19 MET
TvY486_0005050 Fam28 310.0 BSF 17.7 EPI 17.09 BSF
TvY486_0017990 Fam28 274.6 BSF 12.5 EPI 19.89 BSF
TvY486_0019710 Fam28 60.5 MET 14.2 EPI 4.38 MET
TvY486_0030920 Fam28 203.3 BSF 4.7 MET 29.40 BSF
TvY486_0040160 Fam28 488.7 BSF 28.5 EPI 16.82 BSF
TvY486_0010970 Fam29 3.4 BSF 0.7 EPI 4.88 BSF
TvY486_0011750 Fam29 72.4 BSF 13.5 MET 5.88 BSF
TvY486_0013730 Fam29 65.3 BSF 17.0 MET 3.76 BSF
TvY486_0014410 Fam29 37.6 BSF 9.2 EPI 412 BSF
TvY486_0014700 Fam29 85.2 BSF 23.3 EPI 3.50 BSF
TvY486_0015070 Fam29 122.2 BSF 41.5 MET 2.42 BSF
TvY486_0015280 Fam29 70.0 BSF 16.5 MET 4.33 BSF
TvY486_0030720 Fam29 126.5 BSF 26.5 MET 5.09 BSF
TvY486_0033210 Fam29 33.0 BSF 9.7 MET 3.10 BSF
TvY486_0036530 Fam29 42.2 BSF 11.4 MET 3.57 BSF
TvY486_0040000 Fam29 124.6 BSF 29.8 MET 4.26 BSF
TvY486_0040440 Fam29 45.6 BSF 15.1 MET 2.53 BSF
TvY486_0000090 Fam30 63.0 BSF 8.8 EPI 8.08 BSF
TvY486_0001730 Fam30 62.8 BSF 13.1 EPI 5.13 BSF
TvY486_0001740 Fam30 191.8 BSF 33.7 EPI 6.29 BSF
TvY486_0003600 Fam30 301.9 BSF 9.1 EPI 25.58 BSF
TvY486_0003670 Fam30 2334 BSF 5.5 EPI 29.35 BSF
TvY486_0004540 Fam30 25.7 BSF 8.2 EPI 2.71 BSF
TvY486_0005120 Fam30 20.6 BSF 5.1 EPI 4.07 BSF
TvY486_0005240 Fam30 165.2 BSF 7.5 EPI 19.95 BSF
TvY486_0005910 Fam30 266.6 BSF 6.6 EPI 28.49 BSF
TvY486_0006060 Fam30 127.5 BSF 11.4 EPI 12.14 BSF
TvY486_0006100 Fam30 101.4 BSF 14.9 EPI 7.67 BSF
TvY486_0007350 Fam30 33.6 BSF 11.0 MET 2.58 BSF
TvY486_0007870 Fam30 354.5 BSF 10.2 EPI 26.25 BSF
TvY486_0008460 Fam30 156.8 BSF 11.3 MET 14.43 BSF
TvY486_0011830 Fam30 129.1 BSF 30.0 EPI 4.44 BSF
TvY486_0014950 Fam30 372.6 BSF 34.0 EPI 11.94 BSF
TvY486_0016140 Fam30 531.7 BSF 40.6 MET 13.77 BSF
TvY486_0016150 Fam30 474.4 BSF 43.0 EPI 12.00 BSF
TvY486_0020240 Fam30 682.5 BSF 29.7 EPI 20.43 BSF
TvY486_0020730 Fam30 95.4 BSF 9.1 EPI 11.48 BSF
TvY486_0021030 Fam30 162.7 BSF 141 EPI 12.45 BSF
TvY486_0022710 Fam30 195.4 BSF 18.6 EPI 11.54 BSF
TvY486_0023840 Fam30 42.9 BSF 11.5 MET 3.60 BSF

(Continued)
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Table 2. (Continued)

TvY486_0027870 Fam30 107.7 BSF 21.5 EPI 5.39 BSF
TvY486_0029560 Fam30 248.4 BSF 235 EPI 11.56 BSF
TvY486_0029680 Fam30 36.8 BSF 3.6 EPI 11.32 BSF
TvY486_0029750 Fam30 156.6 BSF 215 EPI 8.19 BSF
TvY486_0031200 Fam30 22.8 BSF 5.6 EPI 413 BSF
TvY486_0031450 Fam30 211.0 BSF 51.4 EPI 4.15 BSF
TvY486_0032170 Fam30 169.2 BSF 19.3 EPI 9.80 BSF
TvY486_0032760 Fam30 234.1 BSF 445 EPI 5.74 BSF
TvY486_0033670 Fam30 200.1 BSF 16.0 EPI 13.27 BSF
TvY486_0036500 Fam30 71.8 BSF 9.2 EPI 8.83 BSF
TvY486_0037590 Fam30 347.9 BSF 19.3 EPI 17.39 BSF
TvY486_0037600 Fam30 120.6 BSF 18.9 EPI 7.16 BSF
TvY486_0038800 Fam30 254.9 BSF 14.6 EPI 16.98 BSF
TvY486_0041770 Fam30 71.6 BSF 11.9 EPI 6.72 BSF
TvY486_0043800 Fam30 167.5 BSF 7.0 EPI 21.02 BSF
TvY486_0044700 Fam30 91.2 BSF 11.0 EPI 9.32 BSF
TvY486_0000210 Fam31 510.7 BSF 16.8 MET 24.29 BSF
TvY486_0007400 Fam31 186.1 BSF 15.1 EPI 13.11 BSF
TvY486_0008000 Fam31 168.5 BSF 9.2 EPI 17.61 BSF
TvY486_0010510 Fam31 62.2 BSF 23.2 EPI 2.03 BSF
TvY486_0011600 Fam31 80.1 MET 30.1 EPI 1.99 MET
TvY486_0014260 Fam31 202.0 BSF 24.6 MET 9.22 BSF
TvY486_0017860 Fam31 148.6 MET 34.8 EPI 4.39 MET
TvY486_0020480 Fam31 174.0 BSF 9.8 EPI 17.24 BSF
TvY486_0023090 Fam31 949.0 BSF 34.7 MET 22.78 BSF
TvY486_0023590 Fam31 2275 BSF 24.3 MET 10.42 BSF
TvY486_0026820 Fam31 25.4 BSF 8.7 EPI 2.40 BSF
TvY486_0027490 Fam31 168.7 BSF 12.0 EPI 14.58 BSF
TvY486_0029930 Fam31 54.4 MET 14.5 EPI 3.64 MET
TvY486_0034320 Fam31 27.2 BSF 8.9 MET 2.59 BSF
TvY486_0038020 Fam31 72.6 MET 18.4 EPI 3.91 MET
TvY486_0040710 Fam31 941 BSF 27.6 EPI 3.13 BSF
TvY486_0042250 Fam31 102.9 BSF 31.7 EPI 2.89 BSF
TvY486_0042880 Fam31 118.3 BSF 9.6 EPI 13.10 BSF
TvY486_0044520 Fam31 114.5 MET 31.7 EPI 3.44 MET
TvY486_0045910 Fam31 120.3 BSF 10.3 EPI 12.56 BSF
TvY486_0002120 Fam32 377.9 BSF 40.8 EPI 10.31 BSF
TvY486_0004160 Fam32 503.7 BSF 53.8 EPI 10.41 BSF
TvY486_0010310 Fam32 155.8 BSF 29.3 EPI 5.82 BSF
TvY486_0025570 Fam32 193.1 BSF 5.3 MET 26.77 BSF
TvY486_0027130 Fam32 285.5 BSF 32.7 EPI 9.78 BSF
TvY486_0042890 Fam32 225.2 BSF 69.7 EPI 2.86 BSF
TvY486_0043780 Fam32 421.4 BSF 43.9 EPI 10.64 BSF
TvY486_0001120 Fam34 24.7 BSF 154.1 MET 6.96 MET
TvY486_0004310 Fam34 177.4 BSF 61.9 EPI 2.31 BSF
TvY486_0004790 Fam34 4215 BSF 2256.7 MET 5.86 MET/EPI
TvY486_0007010 Fam34 380.0 BSF 90.4 EPI 4.29 BSF
TvY486_0008750 Fam34 84.4 BSF 25.6 EPI 2.95 BSF
(Continued)
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Table 2. (Continued)

TvY486_0009950 Fam34 981.2 BSF 27.7 EPI 26.48 BSF
TvY486_0013520 Fam34 46.6 BSF 233.9 MET 5.42 MET
TvY486_0017330 Fam34 15.9 BSF 380.9 MET 20.97 MET
TvY486_0018370 Fam34 317.9 BSF 81.8 MET 3.83 BSF
TvY486_0019090 Fam34 9.1 BSF 261.1 MET 23.52 MET
TvY486_0020950 Fam34 2447 BSF 26.4 MET 10.34 BSF
TvY486_0021420 Fam34 403.2 BSF 145.4 EPI 217 BSF
TvY486_0022140 Fam34 23.7 BSF 185.0 MET 8.77 MET
TvY486_0024340 Fam34 2178.6 BSF 96.6 EPI 20.21 BSF
TvY486_0029710 Fam34 41.0 BSF 174.2 MET 4.35 MET
TvY486_0029720 Fam34 50.6 BSF 667.5 MET 13.84 MET
TvY486_0030370 Fam34 333.3 BSF 737 EPI 4.74 BSF
TvY486_0032770 Fam34 52.9 BSF 617.6 MET 12.56 MET
TvY486_0034300 Fam34 26.2 BSF 143.1 MET 6.00 MET
TvY486_0035000 Fam34 131.5 BSF 41.0 EPI 2.82 BSF
TvY486_0035610 Fam34 2271 BSF 81.5 MET 2.18 BSF
TvY486_0035970 Fam34 285.4 BSF 31.5 EPI 10.10 BSF
TvY486_0039910 Fam34 465.4 BSF 2354.6 MET 5.47 MET/EPI
TvY486_0044510 Fam34 211 BSF 392.5 MET 17.81 MET
TvY486_0900430 Fam34 859.1 BSF 44.0 EPI 18.37 BSF
TvY486_0004880 Fam35 0.3 BSF 31.0 MET 43.79 MET
TvY486_0006390 Fam35 1.0 BSF 151.1 MET 51.87 MET
TvY486_0010560 Fam35 3.9 BSF 539.8 MET 50.36 MET
TvY486_0011320 Fam35 58.0 MET 8.0 EPI 8.12 MET
TvY486_0011480 Fam35 1.5 BSF 451.0 MET 67.73 MET
TvY486_0014750 Fam35 0.7 BSF 564.1 MET 92.02 MET
TvY486_0016780 Fam35 41 BSF 50.9 MET 13.22 MET
TvY486_0030340 Fam35 1.2 BSF 206.6 MET 55.65 MET
TvY486_0030570 Fam35 1.6 BSF 394.5 MET 63.36 MET
TvY486_0039920 Fam35 178.2 MET 25.3 EPI 7.93 MET
TvY486_0041300 Fam35 2.1 BSF 769.3 MET 72.56 MET
TvY486_0044010 Fam35 41 BSF 669.1 MET 53.79 MET
TvY486_0504020 Fam35 0.8 BSF 319.7 MET 75.03 MET
TvY486_0004900 Fam36 122.8 BSF 271 EPI 4.76 BSF
TvY486_0019680 Fam36 2457 BSF 26.9 EPI 10.19 BSF
TvY486_0034550 Fam36 48.4 BSF 139.7 MET 2.34 MET
TvY486_0039550 Fam36 136.2 BSF 21.4 EPI 7.11 BSF
TvY486_0008720 Fam37 63.7 BSF 16.8 EPI 3.68 BSF
TvY486_0010370 Fam37 112.0 BSF 31.3 MET 3.38 BSF
TvY486_0037640 Fam37 107.2 BSF 37.4 MET 2.31 BSF
TvY486_0044820 Fam37 86.5 BSF 15.0 MET 6.38 BSF
TvY486_0012580 Fam38 40.9 BSF 13.8 EPI 247 BSF
TvY486_0018310 Fam38 79.2 BSF 13.0 MET 6.79 BSF
TvY486_0019140 Fam38 106.4 BSF 19.3 MET 6.05 BSF
TvY486_0038940 Fam38 96.2 BSF 31.7 MET 2.56 BSF
TvY486_0045330 Fam38 234.9 BSF 36.6 MET 7.18 BSF
TvY486_0014250 Fam39 364.1 BSF 82.2 EPI 4.61 BSF
TvY486_0036690 Fam39 136.8 BSF 35.2 MET 3.84 BSF
(Continued)
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Table 2. (Continued)

TvY486_0041320 Fam39 22.0 BSF 6.7 EPI 2.95 BSF
TvY486_0044730 Fam39 59.8 BSF 19.5 EPI 2.61 BSF
TvY486_1101450 Fam39 53.8 BSF 183.7 MET 3.14 MET
TvY486_0012130 Fam42 85.4 BSF 28.7 EPI 2.48 BSF
TvY486_0012790 Fam42 90.8 BSF 10.1 EPI 10.03 BSF
TvY486_0017880 Fam42 130.3 BSF 26.3 EPI 5.32 BSF
TvY486_0019770 Fam42 17.8 BSF 1.8 EPI 10.99 BSF
TvY486_0027860 Fam42 2.0 BSF 0.2 EPI 11.25 BSF
TvY486_0028850 Fam42 146.1 BSF 16.4 MET 9.96 BSF
TvY486_0039500 Fam42 194.4 BSF 37.7 EPI 5.60 BSF
TvY486_1109320 Fam42 109.0 BSF 30.5 EPI 3.38 BSF
TvY486_0002350 Fam43 0.2 BSF 5.1 MET 19.71 MET
TvY486_0017520 Fam43 6.4 MET 0.8 EPI 8.51 MET
TvY486_0017890 Fam43 2.7 BSF 1245.9 MET 78.16 MET
TvY486_0021360 Fam43 0.5 BSF 129.6 MET 64.82 MET
TvY486_0027480 Fam43 9.6 BSF 5992.2 MET 86.31 MET
TvY486_0031050 Fam43 4.2 MET 0.5 EPI 9.41 MET
TvY486_0040930 Fam43 57.1 MET 8.3 EPI 7.79 MET
TvY486_0044590 Fam43 5.5 BSF 1708.8 MET 68.43 MET
TvY486_0005330 Fam44 116.6 BSF 505.9 MET 4.48 MET
TvY486_0012520 Fam44 62.3 BSF 266.6 MET 4.40 MET
TvY486_0027940 Fam44 59.5 BSF 277.7 MET 4.94 MET
TvY486_0042450 Fam44 40.3 BSF 162.7 MET 4.06 MET
(b) Gene ID CSPID Peptide iBAQ: FC Max.
count BSF EPI MET
TvY486_0013520 Fam34 5 3598.7 1887.8 20547.2 10.88 MET
TvY486_0032770 Fam34 19 2030.8 817.7 72441 8.86 MET
TvY486_0029720 Fam34 S 15149 10247.4 90551.7 8.84 MET
TvY486_0039910 Fam34 5 76451 293863.7 95768.8 3.84 MET
TvY486_0036040 Fam34 11 91.91 103.0 966.1 10.51 MET
TvY486_0034300 Fam34 17 534.44 840.1 1175.6 22 MET
TvY486_0041300 Fam35 4 5943 4140.9 27129.1 6.55 MET
TvY486_0039920 Fam35 3 275.32 783.5 6109.4 22.19 MET
TvY486_0017890 Fam43 4 1711.5 2652.5 52918.0 30.92 MET
TvY486_0027480 Fam43 6 16573 11934.9 237265.1 19.88 MET
TvY486_0044590 Fam43 5 41982 58347.1 1211175 28.85 MET
TvY486_0012520 Fam44 8 2370.2 2182.6 165.9 14.28 BSF

NB: For transcripts, significant differential expression is estimated from pairwise comparisons of life cycle stages using Cufflinks. For peptides, iBAQ
abundance is compared across all three stages simultaneously. q < 0.05 in all cases. Developmental stages are abbreviated with BSF (bloodstream
form), EPI (epimastigote), MET (metacyclic).

doi:10.1371/journal.pntd.0003975.t002

genuine protein-coding sequences, and are often developmentally regulated at the transcr
and (where observed) protein level.

Expression of ‘Fam50’ genes

Fam50 is a CSP gene family that includes the BARP genes of T. brucei and the GARP and
CESP genes of T. congolense, known to be preferentially expressed on their respective cell
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Fig 4. Differential expression of Trypanosoma vivax-specific genes belonging to Cell Surface
Phylome families 27-45. The maximum likelihood phylogenies of 19 CSP families unique to T. vivax are
shown at left. Node labels are omitted for clarity. Each terminal tip corresponds to a locus. Transcript
abundance and peptide abundance are shown adjacent to each tip by horizontal bars color-coded by stage.
Transcripts or peptides that also showed significant differential expression, (as defined in the text), are
indicated by bold bars.

doi:10.1371/journal.pntd.0003975.9004

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0003975 August 12,2015 19/29



@' PLOS NEGLECTED
2 : TROPICAL DISEASES Gene Expression in Trypanosoma vivax

surfaces during the insect stages [25, 38-40], as well as various, currently uncharacterized,
genes that may also be transcribed preferentially during insect stages [41]. The genomic com-
plement of Fam50 genes in T. vivax is smaller and less diverse than those of the other species,
which may reflect the simpler existence of T. vivax in the tsetse fly [26]. Our transcriptomic
data include all 17 T. vivax Fam50 genes, 13 of which are transcribed most abundantly in the
insect stages (see S1 Table). Six transcripts are significantly more abundant in the epimastigote
or metacyclic stage relative to bloodstream forms (Table 3a) and one of these was confirmed by
the proteomic data (i.e. TvY486_0012620). In total, five proteins were detected and all were dif-
ferentially expressed (Table 3b); four were most abundant in the insect (FC between 2.2 and
4.2). A single protein (corresponding to TvY486_0001140) was significantly more abundant in
the bloodstream form. Thus, while transcriptomic data seems to be a poor predictor of differ-
ential expression of Fam50 proteins, perhaps suggesting the highly dynamic promotion and
repression of Fam50 variants, there is good evidence for developmental regulation of both
Famb50 transcripts and peptides, largely in preference for the insect stages and so consistent
with observations in other species.

Expression of VSG-like genes

The bloodstream forms of African trypanosomes are defined partly by the expression of a VSG
coat on the cell surface. In our analysis, we observed 89 distinct VSG transcripts with q < 0.05
(S1 Table), of which 61 were most abundant in bloodstream forms; however, most of these were
observed at very low levels. There were 12 transcripts displaying significant preferential expres-
sion in the bloodstream stage (FC between 2.5-110.9; Table 4a). In our proteomic analysis we
recorded nine distinct VSG sequences, of which three are represented by a single peptide and so
unquantified (S2 Table). Of the remaining six (Table 4b), three were most abundant in blood-
stream forms, including the two putative active VSG and a third sequence (TvY486_0000810,
or identical paralog) that was expressed at a much lower level but still preferentially in blood-
stream forms (FC = 5.7). A fourth VSG was expressed preferentially in the metacyclic stage
(TvY486_0027560; FC = 2.8). Finally, two VSG were most abundant in the epimastigote; one
of these (TvY486_0001860; FC = 4.3) was differentially expressed and the second nearly so
(TvY486_0041140; FC = 2.1; q = 0.066). Notably, these low abundance VSG expressed in epi-
mastigotes belong to a T. vivax-specific VSG-like family (Fam25), which is not seen in other
African trypanosomes.

Discussion

We have produced transcriptomes and proteomes for three different developmental forms of
T. vivax, and identified the transcripts and peptides that are significantly enriched in each.
These data provide the first profile of global gene expression and developmental regulation
throughout the complete T. vivax life cycle. The profile suggests a situation broadly similar to
that already observed in T. brucei and T. congolense, though with significant distinctions, not
least further evidence for developmental regulation of species-specific cell surface glycoproteins
in both the vertebrate and insect stages of T. vivax.

Such are their sensitivities, transcriptomic methods typically provide much greater coverage
of the genome than do proteomic methods. This might be more pronounced for trypanosoma-
tids since they constitutively express all genes within polycistronic transcripts and regulate pro-
tein expression post-transcriptionally [27]. Thus, 85.1% of T. vivax genes are represented in
our transcriptome, but few transcripts are unique to a particular life stage and the proportion
of differentially expressed transcripts is only 11.2%. By contrast, the proteome represents only
16.3% of all genes, but in 798 cases where differential expression could be assessed, 74.6% of
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Table 3. Preferential expression of (a) transcripts and (b) peptides belonging to Fam50 (BARP-like genes) in specific life cycle stages.

a) Gene ID FPKM: FC Max. stage
BSF EPI MET
TvY486_0000390 383.5 2159.8 1826.9 6.22 EPI
TvY486_0012620 481.9 2456.5 2497.4 5.52 EPI/MET
TvY486_0044170 381.3 2190.3 1869.5 6.36 EPI
TvY486_1000710 2991 1777.0 1465.8 6.61 EPI
TvY486_1001160 439.7 1936.2 2077.4 4.57 EPI/MET
TvY486_1114940 347.6 2018.1 2138.0 6.44 EPI/MET
b) Gene ID iBAQ: FC Max. stage
BSF EPI MET
TvY486_0001140 693301.4 163534.9 100466.4 6.90 BSF
TvY486_0012620 135508.0 265088.1 292408.3 2.16 EPI/MET
TvY486_0016400 71617.0 159017.0 98083.8 2.22 EPI
TvY486_0016530* 179679.6 584272.8 139906.5 4.18 EPI
TvY486_1114940 11074.5 40556.9 17551.1 3.66 EPI

NB: Developmental stages are abbreviated with BSF (bloodstream form), EPI (epimastigote), MET (metacyclic). Differential expression is described by
fold change (FC) in epimastigotes relative to bloodstream forms. q < 0.05 in all cases. * Note that these two coding sequences are near-identical and so
cross-mapping of reads could affect their FPKM values. * Note that peptides mapping to this gene could equally map to two other gene models
(TvY486_1001150/TvY486_1001160) that are identical at this position.

doi:10.1371/journal.pntd.0003975.t003

peptides show significant differential expression and these are unique to one life stage. It may
be that developmentally regulated proteins are also particularly abundant, certainly this is true
for the components of stage-specific cell surface coats, and this would cause differentially
expressed peptides to be overrepresented within the proteome. Previous proteomic studies for
T. brucei have reported more proteins than we have found here for T. vivax (i.e. 3553 [21] and
3458 [22]) but a smaller proportion with significant differential expression, i.e. 24.8%/39.2%
respectively. A proteomic analysis of T. congolense identified 1291 proteins, of which 21.5% dis-
played significant differential expression [13]. Hence, it may be that greater sensitivity would
reduce the proportion of cases showing differential expression if low abundance proteins are
more likely to be constitutively expressed.

Previously, comparison of the T. vivax genome sequence with those of T. brucei and T. con-
golense demonstrated that there are more than 2000 genes that are only present in T. vivax
[11]. Their specificity, and typically the absence of any recognizable protein domains, make
these genes obscure. Nonetheless, they appear to be genuine, since we found a lack of protein-
coding evidence in only a few cases. One defining feature is that they comprise multi-copy
gene families (Fam27-45 of the CSP) that are thought to be expressed on the cell surface based
on the presence of a putative signal peptide, transmembrane domain and/or glycerophosphosi-
nositol anchor in their predicted protein sequence [26]. Comparative genomics also showed
that T. vivax lacked procyclin, the canonical cell surface glycoprotein of T. brucei and T. congo-
lense insect stages [42]. This is consistent with T. vivax lacking a procyclic stage in the insect
mid-gut and raises the question of what coats the T. vivax surface if not procyclin. Clearly, the
abundant T. vivax-specific gene families offer plausible candidates for the role, but it could also
be filled by Fam50; which has been shown to include various surface glycoproteins expressed
during the insect stages of T. brucei and T. congolense [26].

Certainly, our data indicate that multiple Fam50 proteins are expressed in T. vivax and pref-
erentially expressed in the epimastigote, while several transcripts (belonging to different loci)
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Table 4. Preferential expression of (a) transcripts and (b) peptides belonging to variant surface glycoprotein-like genes.

a)

b)

Gene ID

TvY486_0009580
TvY486_0018880
TvY486_0002880
TvY486_0027380
TvY486_0028170
TvY486_0025310
TvY486_0019720
TvY486_0006330
TvY486_0039540
TvY486_0010070
TvY486_0011440
TvY486_0043550
TvY486_0040490
Gene ID

TvY486_0018880
TvY486_0009580
TvY486_0000810*
TvY486_0001860
TvY486_00275604#
TvY486_0041140

CSPID
Fam24
Fam24
Fam23
Fam23
Fam23
Fam23
Fam23
Fam23
Fam23
Fam23
Fam23
Fam23
Fam23
CSPID

Fam24
Fam24
Fam23
Fam25
Fam24
Fam25

BSF EPI MET FC Max. stage
34180.1 245.0 301 109.2 BSF
26001.7 20.1 20.8 106.7 BSF
22.7 25 3.20 10.0 BSF
201.1 30.1 37.3 7.5 BSF
212.4 32.3 40.0 7.3 BSF
188.6 36.4 - 5.6 BSF
107.2 23.9 38.0 4.6 BSF
147.1 33.9 421 4.4 BSF
848.1 203.8 - 4.2 BSF
69.3 18.2 21.2 37 BSF
54.0 16.6 16.2 2.9 BSF
97.3 30.1 - 2.8 BSF
111.9 36.9 36.7 25 BSF
Peptide iBAQ: FC Max. stage
count BSF EPI MET
15 22283050 817644.1 454910.3 48.9 BSF
22 217715149 2295147 1824989 119.3 BSF
2 51810.2 21467.7 9041.9 5.7 BSF
1 44940.7 113671.8 26300.0 4.3 EPI
1 44757.3 54295.2 124747.7 2.7 MET
1 49076.9 117452 61305.4 2.3 EPI

NB: For transcript abundance, details are provided for pairwise comparisons that resulted in significant differences (in some cases involving a single gene
in two comparisons). Developmental stages are abbreviated with BSF (bloodstream form), EPI (epimastigote), MET (metacyclic). Differential expression is
described by fold change (FC). g < 0.05 in all cases. Peptide count refers to the total number of unique peptides observed for a given protein. Note that
peptides mapping to * could equally map to other, identical gene models: TvY486_0000330; TvY486_0028900; TvY486_0002800; TvY486_0003200;
TvY486_0005340; TvY486_0005830; TvY486_0008280; TvY486_0031250; TvY486_0031440; TvY486_0039630; TvY486_0042400. Also peptides
mapping to # could equally map to these other, identical gene models: TvY486_0009200; TvY486_0015630; TvY486_0016270; TvY486_0031530;
TvY486_0031920; TvY486_0031980; TvY486_0042360

doi:10.1371/journal.pntd.0003975.t004

were significantly enriched in both epimastigotes and metacyclics. The fact that the transcripts
and peptides are not derived from the same loci may suggest that different Fam50 genes
became activated in the period between our preparation of RNA and protein. This is not the
situation we observe for VSG, for which the identity of enriched transcripts and peptides
largely match, suggesting that regulation of Fam50 gene expression is highly dynamic with
multiple isoforms being promoted and repressed over short intervals. The presence of tran-
scripts in the metacyclic stage at levels comparable to the epimastigote levels may be an artefact
(i.e. residual epimastigotes in the metacyclic preparation), since Fam50 peptides in metacyclics
are sparse and comparable in abundance to bloodstream forms. In short, the expression of
multiple Fam50 proteins in the T. vivax epimastigote supports the view derived from T. brucei
and T. congolense that this is a conserved family of glycoproteins performing diverse roles in
the insect stages of the life cycle. Given that BARP in T. brucei and CESP in T. congolense are
cell-surface glycoproteins [25, 40], Fam50 homologs are therefore probably a prominent com-
ponent of the epimastigote cell surface in T. vivax.

Although Famb50 is preferentially expressed in epimastigotes, other multi-copy families,
including the various T. vivax-specific cases, seldom are. This study has confirmed that most T.
vivax-specific gene families are expressed. In the cases of Fam33, 40, 41 and 45, which should
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now be discounted from the CSP, the apparent lack of transcription raises the question of what
function these repetitive non-coding sequences might perform. Three T. vivax-specific gene
families (Fam34, 35 and 43) are very strongly enriched in the metacyclic stage, which is intrigu-
ing because in T. brucei and T. congolense the metacyclic coat is characterized by VSG. While
metacyclic VSG are replaced by other VSG upon differentiation into bloodstream forms, and
so are temporally distinct, there is no metacyclic-specific cohort of VSG sequences [8, 11]. VSG
may also be present on T. vivax metacyclics, since we observed a low abundance VSG protein
preferentially expressed in metacyclics (TvY486_0027560). However, assuming that Fam34, 35
and 43 are expressed on the cell surface as predicted, it is clear that the infective form of T.
vivax has a qualitatively different surface architecture to the other species, with a considerable
non-VSG component.

The same could be claimed for bloodstream forms also. Three families show exclusive
enrichment in bloodstream forms at the transcript level (Fam28-30), though without proteo-
mic support. This could indicate that our analysis lacked the sensitivity to detect them, perhaps
because in bloodstream forms the superabundant VSG dominates the sequencing effort, mak-
ing the detection of lower abundance proteins less effective than for either metacyclic or epi-
mastigote. The presence of numerous non-VSG surface proteins might account for the
observation that the T. vivax VSG coat is less dense than that of T. brucei [43], and VSG com-
prise a smaller proportion of cell surface-expressed T. vivax transcripts [14]. Assuming that
their surface role is correct and they are confirmed as having preferential expression in blood-
stream forms, these families are particularly interesting they have properties as surface antigens
that could be targeted for vaccine development. Immune responses to the VSG do not provide
lasting and comprehensive protection because of antigenic variation and the considerable
structural diversity of the VSG repertoire. By contrast, Fam28-30 number not more than 30
paralogs, are less structurally diverse, and multiple transcripts are expressed at relatively high
abundance, indicating that these families are not subject to antigenic variation, if monoallelic
expression is a diagnostic feature of that process.

The VSG genes themselves present an expression profile typical of other African trypano-
somes. VSG expression is regulated to produce a succession of structural variants that can
evade specific immune responses but also prevent exposure of the total VSG structural reper-
toire to the host immune system, which would lead to a comprehensive immune response.
Thus, VSG genes are expressed in a monoallelic fashion from the highly regulated context of a
dedicated VSG expression site [44]. In their analysis of expressed sequence tags (EST) from dif-
ferent T. congolense life stages, Helm et al. (2009) recorded 13 distinct VSG transcripts in meta-
cyclic cells, with the most abundant comprising 24% of the total number, and 26 distinct VSG
transcripts in bloodstream forms, with the most abundant contributing 62% of the total [12].
This supports the established experimental model in which most individuals of a T. congolense
population express the same active VSG, while a few individuals express a range of low abun-
dance alternatives. In fact, when combined, the 12 least abundant VSG EST were only 0.5% of
all VSG transcripts in bloodstream forms [12]. Similarly in T. brucei, Jensen et al. (2009) identi-
fied in a microarray-based study cohorts of less abundant transcripts in addition to the known,
active VSG, some of which were expressed most abundantly in the insect stages [16]. In con-
trast, a previous analysis of VSG transcripts in T. vivax using 454 sequencing technology con-
cluded that only one VSG was expressed [14].

Proteomic analyses have presented a similar picture. In T. congolense, 11 different VSGs
were identified across all life stages [13]. Four were confidently associated with the metacyclic
stage while two others were significantly enriched in bloodstream forms (including the known,
active VSG). In proteomic comparisons of procyclic and bloodstream forms of T. brucei, one
proteome identified 10 canonical VSGs [22], while another only two [21], although different
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T. brucei strains were used. These did not include the active VSG because neither study used
the reference strain (927), and so the active VSG did not map to a VSG gene in the reference
genome. Consequently, the 10 VSGs identified by Butter et al. (2013) are all low abundance
alternatives, represented by few peptides (< 7) and achieving poor coverage (< 9%) [22].
Three of these low abundance VSGs were preferentially expressed in procyclic forms [22]. Tak-
ing these previous data together, their obvious methodological variations notwithstanding, low
abundance alternatives to the dominant VSG are observed at both the transcript and protein
levels in both T. brucei and T. congolense. The role, if any, of these ‘accessory’ VSGs is unclear;
some are very likely metacyclic VSGs and it is known that expression of these can continue sev-
eral days after transmission [45] and so could be present in bloodstream forms. Alternatively,
‘accessory’ VSGs may simply be rare antigens expressed by low frequency subpopulations, or
produced by inefficiency in the mechanism silencing inactive VSG expression sites.

In contrast to the previous result [14], we observed several low abundance VSGs in T. vivax
consistent with the expression profiles of VSG observed in T. brucei and T. congolense. The two
dominant VSG sequences were superabundant at both transcript and peptide levels. Therefore
the identity of the active VSG remained constant in the period between RNA and protein prep-
aration, meaning that this is unlikely to represent a transition between two VSGs and that T.
vivax strain IL1392 probably a mixture of parasites expressing one of two different VSGs. Both
of these active VSG belong to Fam24, the subtype homologous to canonical b-type VSGin T.
brucei and T. congolense [11]. In a similar fashion to T. congolense, the less abundant VSG in T.
vivax may represent metacyclic VSGs. One VSG, TvY486_0027560, may be a metacyclic VSG
in this strain as it was preferentially expressed in the metacyclic form (its transcript was not
recorded). Finally, two VSG-like sequences belonging to Fam25, a T. vivax-specific subtype
[11], are preferentially expressed at low levels in epimastigotes. The roles of Fam25 and 26
genes remain mysterious, and there is no definitive evidence that they encode variant antigens.

Beyond the differences in genetic repertoire that are evident from comparative genomics, it
is presumed that differences in the regulation of conserved genes will contribute to phenotypic
differences between African trypanosomes. The cohort of conserved genes identified in Figs 2
and 3 that are regulated conversely in T. vivax relative to T. brucei (and probably T. congolense)
indicate that this is so. In the bloodstream stage, African trypanosomes exclusively employ gly-
colysis to exploit abundant glucose in host plasma to generate ATP via substrate-level phos-
phorylation in the glycosome [46]. In the tsetse fly, where glucose is limited but amino acids
such as proline are present in the host hemolymph, the parasites generate ATP through gluco-
neogenesis and oxidative phosphorylation in the mitochondrion [46]. In this regard, T. vivax is
consistent; all glycolytic enzymes are preferentially expressed in the bloodstream form, where
they are among the most abundant transcripts and peptides, and all components of the electron
transfer chain are preferentially expressed in the epimastigote (S3 and S4 Tables). The species
differences highlighted in Fig 3 concern the metabolic steps linking glycolysis and events in the
mitochondrion, i.e. pyruvate metabolism (Fig 5).

Experimental evidence indicates that T. brucei produces ATP during its insect stage by fur-
ther substrate-level phosphorylation in the glycosome, by catabolizing phosphoenolpyruvate
(PEP), and in the mitochondrion by catabolizing pyruvate. This results in insect forms excret-
ing succinate and acetate, while bloodstream forms excrete pyruvate [47]. Accordingly, the
enzymes for converting PEP into succinate and pyruvate into acetate are preferentially
expressed in the procyclic form of T. brucei [21, 22]. Fig 5 describes the points in this pathway
where differential expression is reversed in T. vivax. We see that enzymes for the catabolism of
PEP, such as glycosomal malate dehydrogenase and glycosomal phosphoenolpyruvate carbox-
ykinase, and for the conversion of pyruvate to acetate, i.e. multiple components of the pyruvate
dehydrogenase complex and of the succinyl-CoA synthetase complex, are significantly more
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phosphoenolpyruvate ultimately to succinate in the glycosome, and through the conversion of pyruvate into acetate in the mitochondrion. Points marked with
red dots and labels shaded red refer to proteins that are preferentially expressed during the vertebrate stage of T. vivax but in the insect stages of T. brucei
(after Besteiro et al. 2005). Note that we could not differentiate between cytosolic and glycosomal phosophoglycerate kinase isoforms using our proteomic
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fructose 1,6-bisphosphate; G-3-P, glyceraldehyde 3-phosphate; G-6-P, glucose 6-phosphate; GLU, glutamate; Gly-3-P, glycerol 3-phosphate; Oxac,
oxaloacetate; PEP,phosphoenolpyruvate; 3-PGA, 3-phosphoglycerate; SucCoA, succinyl-CoA. Enzymes are: 1) hexokinase: 2) glucose-6-phosphate
isomerase; 3) phosphofructokinase; 4) aldolase; 5) triose-phosphate isomerase; 6) glycerol-3-phosphate dehydrogenase; 7) glycerol kinase; 8)
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glycosomal fumarase; 14) NADH-dependent fumarate reductase; 15) acetate:succinate CoA-transferase; 16) possibly acetyl-CoA synthetase.

doi:10.1371/journal.pntd.0003975.9005

active in the bloodstream form than in the epimastigote. Additionally, the fumarase responsible
for reaction 13 in Fig 5, while upregulated in procyclic form T. brucei, is constitutively expressed
in T. vivax (TvY486_1105200; FC = 0.04). However, the final enzyme in the pathway (NADH-
dependent fumarate reductase; reaction 14) is preferentially expressed in the insect stages in
both species. We speculate that some other genes in Table 1 support this function; for example,
TvY486_0901260, which possesses a mitochondrial pyruvate carrier protein domain homolo-
gous to mtl in Humans, which is required to import pyruvate across the inner mitochondrial
membrane [48], and TvY486_0702860, which encodes a bacterial-type nitro-FMN oxidoreduc-
tase that might serve to regenerate NAD+ [49].
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Thus, we would predict that T. vivax excretes fumarate, acetate and perhaps succinate in its
bloodstream stage rather than in the insect. It is not clear why T. vivax would benefit from
pyruvate metabolism in the bloodstream when substrate-level phosphorylation using glucose
should suffice. However, in the insect stage, when the parasite remains in the proboscis and
without access to the hemolymph, it could be that such metabolism serves little purpose.
Therefore, this may reflect a lack of upregulation in the epimastigote rather than adaptive upre-
gulation in the bloodstream form, illustrating how life cycle variation has affected the regula-
tion of energy metabolism in these organisms.

The first global perspective on gene expression in T. vivax has confirmed that a broadly sim-
ilar process of developmental regulation occurs in all African trypanosome species. However,
subtle differences, for instance in energy metabolism and putative cell surface molecules, offer
new insights into the molecular basis for the life cycle differences that exist between species.
Beyond the background of conservation, this study has confirmed the presence of numerous T.
vivax-specific gene families and shown that these are developmentally regulated, indicating
that the surface of T. vivax differs quite substantially from the model derived from other Afri-
can trypanosomes.
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