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Abstract

A NaCl-modified zeolite was used to simultaneously remove nitrogen and phosphate from

biogas slurry. The effect of pH, contact time and dosage of absorbants on the removal effi-

ciency of nitrogen and phosphate were studied. The results showed that the highest removal

efficiency of NH4
+-N (92.13%) and PO4

3−-P (90.3%) were achieved at pH 8. While the zeo-

lite doses ranged from 0.5 to 5 g/100 ml, NH4
+-N and PO4

3−-P removal efficiencies ranged

from 5.19% to 94.94% and 72.16% to 91.63% respectively. The adsorption isotherms of N

and P removal with NaCl-modified zeolite were well described by Langmuir models, sug-

gesting the homogeneous sorption mechanisms. While through intra-particle diffusion

model to analyze the influence of contact time, it showed that the adsorption process of

NH4
+-N and PO4

3−-P followed the second step of intra-particle diffusion model. The surface

diffusion adsorption step was very fast which was finished in a short time.

Introduction

Piggery wastewater is well known for its high concentration of organic matters(OM), nitrogen

(N) and phosphorus (P)[1,2]. Because of low biomass production and low treatment cost,

Anaerobic digestion had been widely used as an efficiency treatment. While biogas slurry are

still rich in nitrogen (NH4
+-N > 400 mg/L) and phosphorus (PO4

3−-P>100 mg/L)[3,4]. Usu-

ally biogas slurry are directly used to irrigate the land filed directly to improve soil fertility and

consequently be bebeficial to crop growth [5]. Meanwhile, excessive land application will lead

nutrient loss from soil to water through runoff and leaching which could cause adverse conse-

quences to groundwater[6,7]. Therefore, an effective and economical method to removal of N

and P from biogas slurry is necessary.

Instead land application, adsorption is considered to be a simple and effective technique for

the removal of nutrients from the wastewater. To remove organic contaminations from
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wastewater, some commonly used adsorbents are activated carbon[8,9], clay minerals [10,11],

chemical amendment[12,13], biochar[14,15], and zeolites[16–18]. Among those adsorbents,

zeolites are widely applied for the purpose of reusing the effluent water, reducing pollution of

water resources, reducing gas emissions through modifying the physiochemical properties of

manure and decreasing water consumption[19–21]. An Australian zeolite with iron-coating

and without iron-coating were used to remove Pb, Cu, Cd, Cr and Zn from aqueous solutions

in batch and column experiments. Results showed that with pH 6.5, the Langmuir adsorption

capacities of those five heavy metals ranged from 5.0–11.2 mg/g for single metal, while 3.7–7.6

mg/g for mixed metals solution [22]. Similar results were obseved by Egashira et al. They used

Mongolian natural zeolites to adsorb Cu, Zn and Mn from model aqueous wastewater (pH

3–5), and found out that the adsorption capacities of 8.32–10.24 mg/g for Cu, 9.1–54.6 mg/g

for Zn, 6.05–11.05 mg/g respectively for Mn [23]. Lin et al studied the effect of natural zeolite

on the removal of P and NH4
+-N from orthophosphate and ammonium-nitrogen laden waste-

waters at pH 3–11 in batch and continuous tests. The results showed that the highest removal

rate (98.9% for P and 68.9% for NH4
+-N) was reached at pH 9.3[24]. Chen et al.used nano-zeo-

lites synthesized from fly ash (ZFA) was used to simultaneously remove ammonium (N) and

phosphate(P) in anaerobically digested swine wastewater [25]. N and P removal efficiencies

ranged from 41% to 95% and 75% to 98%, respectively with a range of ZFA doses from 0.25 to

8 g/100 mL. The adsorption capacity is related to the wastewater properties as well as the col-

loidal properties and negatively-charged layers of zeoloties.

By evaluation parameters such as pH, adsorbent dosage and initial concentration of zeolite,

the aim of this work was to investigate the impact of NaCl-modified zeolite on the removal of

nitrogen and phosphorus from biogas slurry. The adsorption isotherms were adjusted to the

models of Langmuir and Freundlich. Kinetic models of adsorption were used to analyze the

kinetics and the zeolite adsorption mechanisms on the adsorbents.

Materials and method

My study did not involve human participants, specimens or tissue samples, or vertebrate ani-

mals, embryos or tissues:

1. We state clearly that no specific permissions were required for these locations/activities,

and provide details on why this is the case;

2. We confirm that the field studies did not involve endangered or protected species.

3. We confirm that the authors had received approval from the COFCO Corporation to col-

lect samples from the pig treatment plant.

About the name and product number of the zeolite acquired from the Wuhan rhyme

siphon water treatment material limited company was the natural zeolite where there were no

specific product number. They sell the zeolite in bulk and we just obtained some from them to

do the research.

The natural zeolite used in this research was obtained from Wuhan rhyme siphon water

treatment material limited company in Wuhan, China. The chemical composition of the natu-

ral zeolite is given in Table 1. The particle size of the used zeolite was < 0.15 mm. The zeolite

Table 1. The chemical composition of zeolite (n = 3, SD).

Components SiO2 Al2O3 Fe2O3 K2O CaO MgO Na2O other

wt% 69.58±1.30 12.20±0.50 0.87±0.08 1.13±0.05 2.59±0.20 0.13±0.02 2.59±0.10 10.91±0.13

https://doi.org/10.1371/journal.pone.0176109.t001

Removal of nitrogen and phosphorus
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was fully washed several times with deionized water and dried for 24 h at 100˚C. Natural zeo-

lite was mixed with the NaCl solution in the ratio of 1:50 (g zeolite:mL NaCl). A magnetic stir-

rer was used to mix the sample mixture solution for 24 h at 150 rpm using a horizontal shaker

at 30˚C. Biogas slurry was collected from a pig treatment plant built by COFCO Corporation,

located in Xinzhou, Wuhan, China (114˚77´44.41"E, 30˚54´12.84"N). Table 2 presents the

chemical composition of the biogas slurry used in the experiment. The samples of biogas slurry

were stored at 4˚C until utilized.

The chemical composition of the zeolites was determined by energy dispersive X-ray spec-

tros-copy (EDS) (SEA1000A, Japan). The mineralogy of the zeolite was determined using a

XRD Shimadzu S6000 (Japan) diffractometer on powder samples of the zeolite. The X-ray dif-

fractometer was equipped with a Cu target operated at 40 kV and 30 mA with a setting of

0–80˚ (40 min), step time 2˚/min. Scanning electron microscopy (SEM), Fourier transform

infrared (FTIR) spectroscopy were also inspect the structure of zeolite. TS (total solid), NH4
+-

N, PO4
3−-P and total alkalinity (titrated to pH 4.3) were tested according the Standard Meth-

ods[26]. Batch experiments were carried out to obtain the adsorption data relative to contact

time, sorptive concentration, pH, and dose of zeolite. pH was adjusted by the addition drops of

strong HNO3/NaOH solution. Then kept constant during the whole adsorption experiments.

Experiments used to determine the equilibrium time were performed with the contact time

between adsorbent and adsorbate in the range from 10 min to 24 h, at pH 8.1, with an initial

concentration of NH4
+-N (708.4mg/L) and PO4

3−-P(21.62mg/L). The influences of adsorbent

dosage (0.5, 1.0, 1.5, 2.0, 3.0, 4.0 and 5.0 g of adsorbent) and of pH (6.0, 7.0, 8.0,9.0 and 10.0)

on the removal of nutrients by NaCl-zeolite were studied. All adsorption experiments were

performed in triplicate. The removal rate of nitrogen and phosphorus was calculated as Eq (1):

Z ¼
C0 � Ce

C0

� 100% ð1Þ

Where η is the removal rate (%),C0 is the initial concentration of nitrogen and phosphorus

(mg/L), Ce is the concentration of nitrogen and phosphorus at equilibrium (mg/L).

Adsorption isotherms model

Adsorption isotherms is neccesary to describe the equilibrium relationships between the

amounts of ion exchanged by zeolite and its equilibrium concentration in the solution which

could be helpful for the analysis and the design of the sorption systems. In this study, two

adsorption isotherms were developed by Langmuir model (Eq (2)) and Freundlich model

(Eq (3)).

Ce

qe
¼

1

qmaxkL
þ

Ce

qmax
ð2Þ

logqe ¼ logkF þ
1

n
logCe ð3Þ

Where kL is the Langmuir isotherm constant (L/mg), qmax represent the maximum

Table 2. The charateristic of biogas slurry (n = 3, SD).

Item pH CODCr

(mg/L)

NH3-N

(mg/L)

PO4
3−-P

(mg/L)

VFA

(mg/L)

EC

(μs/cm)

Mean-value 8.09±0.30 2113.33±12.25 708.43±8.35 21.62±1.50 218.95±5.21 8607±15.31

https://doi.org/10.1371/journal.pone.0176109.t002

Removal of nitrogen and phosphorus
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ammonium ion-exchange capacity of zeolite (mg/g). kF is the Freundlich isotherm constant

that indicates the maximum adsorption capacity(mg/g), 1/n is the Freundlich isotherm con-

stant which is dimensionless. The n value indicates the degree of nonlinearity between solution

concentration and adsorption; when n = 1, n< 1 and n> 1 is adsorption linear, chemical and

physical process, respectively. The n values of within the range of 1–10 represent good adsorp-

tion. Ce is the equilibrium concentration of the adsorbed substance in the liquid phase (mg/L)

and qe is the constant that indicates the maximum adsorbate quantity of the adsorbent (mg/g).

Statistical analysis

The data was analysed by SPSS 15.0 using regression analysis. The goodness of correlation was

evaluated with the correlation coefficient R2.

Results and discussion

Zeolite characterization

The characteristics of the nature zeolite (NZ) and modified zeolite (MZ) were displayed based

on the results of XRD and XRF analyses. The XRD patterns and the elemental analysis of the

NZ and MZ were shown in Fig 1 and Table 3, respectively. The XRD spectra indicated that the

main mineral species of the zeolite before and after modification remained unchanged. The

main composition of NZ and MZ were clinoptilolite, quartz and ferrosilite, illustrating the

absence of structural degradation during modification. The content of cations like Na+, K+,

and Ca2+ in zeolites determines the exchange ability and adsorption. The more cations Na+,

K+, and Ca2+, the stronger the ion-exchange ability. While Si/Al ratio influences the thermal

and physical stability. Zeolites with higher Si/Al exhibits a very high physico-chemical

Fig 1. XRD patterns of the natural and NaCl-modified zeolites.

https://doi.org/10.1371/journal.pone.0176109.g001

Removal of nitrogen and phosphorus
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durability. The improvements of chemical compositions through modification of zeolites such

as substitution of some (Si) and aluminium (Al) (or other metals) with cations Na+, K+, and

Ca2+ lead to a negative charge on the framework which will increase the ion exchange ability

of zeolites, especially for Na+ to the ion-exchange with NH4
+. The XRF results showed that

after NaCl modification, the contents of the exchangeable cations such as Al3+, Ca2+, and K+

decreased, while the Si4+, Na+ amount increased significantly. It demonstrated that Al3+, K+,

and Ca2+ were replaced by Na+ which was benefit for the removal of the other cations espe-

cially NH4
+ [27]. Fig 2 showed the FTIR spectra of NZ and MZ in the range of 500–4000 cm-1.

The typical FTIR spectra for zeolite bands was observed at the region below 1700 cm−1. In this

region, the bands from the zeolites backbones (Si–O–Si and Si–O–Al) which was composed

of bending and stretching of Si–O–Si, Si–O and Al could be observed. Adsorption bands

occurred at 3500 cm−1 and 1639 cm−1 were associated with–OH stretching and bending

Table 3. Chemical composition of NZ and MZ byXRF (wt%).

Oxide NZ MZ

Al2O3 15.14 12.75

SiO2 72.85 77.58

K2O 1.71 1.09

CaO 2.55 0.88

TiO2 0.13 0.09

Na2O 3.53 6.04

MnO 0.05 0.04

Fe2O3 0.56 0.58

others 3.48 1.13

https://doi.org/10.1371/journal.pone.0176109.t003

Fig 2. FI-IR spectra obtained for natural zeolite and NaCl-modified zeolite.

https://doi.org/10.1371/journal.pone.0176109.g002

Removal of nitrogen and phosphorus
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frequencies, respectively. A peak obtained from 2852 and 2918 cm−1 was significantly

increased after modification with NaCl. These results appeared that the successful grafting of

Na+ onto the surface hydroxyl groups of zeolite which was verfied by the results of XRD.

Scanning Electron Microscope (SEM) images of natural zeolite and NaCl-modified zeolite

were shown in Fig 3(a) and 3(b). Before modification, natural zeolite had an small pore size.

After modification, the structure of the zeolite was looser than that of the natural zeolite. There

were obvious changes in its original size, shape, crumb structure, and pore structure after

NaCl modified which would improve adsorption capacity.

Optimal conditions for NH4
+-N and PO4

3−-P removal by modified zeolite

pH is an important parameter in the batch adsorption study which will make influence on the

adsorption process by changing the surface charge distribution of adsorbents used. While the

dosage of zeolites can make influence on the adsorption process through changing unsatura-

tion of the ion-exchange sites. A high adsorbent dosage can effectively decrease the unsatura-

tion of the ion-exchange sites resulting in a lower ion exchange capacity[28].

Effect of pH. To determine the optimal pH for NH4
+-N and PO4

3−-P removal, the ion-

exchange performance of the MZ were investigated at different pH(from 6 to 10, (Fig 4(a)).

Result showed that MZ had the best removal efficiencies of NH4
+-N(92.13%) and PO4

3−-P

(90.3%) were both occurred at pH 8. A higher or lower pH both would lead to negative results.

The results were similar to Thornton and Marañón [29,30]. They proved an optimal range of

pH 6–7 for NH4
+-N remove by zeolite. However, Saltalı et al reported that the optimum

NH4
+-N remove efficiency was achieved at pH 8[31]. A favourable range of pH 4–8 for PO4

3

−-P remove by La/Al-modified zeolite was observed by Meng, while the PO4
3−-P remove effi-

ciency incresed with the decrease of pH varied from 3.0–10.0[32,33]. The inconsistency in the

Fig 3. Scanning electron microscope (SEM) images of natural zeolite(a) and NaCl-zeolite (b).

https://doi.org/10.1371/journal.pone.0176109.g003

Removal of nitrogen and phosphorus
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optimal pH may be attributed to the differences in the chemical compositions of the zeolites

tested.

In the ion-exchange process, dissociated NH4
+ will make the ion exchanged with Na+ in the

zeolite. While the amount of NH4
+ in the solution was depended on the pH of the solution.

When pH is below 8, NH4
+ ion concentration in solution rose with decrease of pH value,

while H+ concentration increased with the drop in the pH which would had a negative influece

on the NH4
+ exchange [31]. When pH is over 8, NH4

+ was converted into NH3 which not be

exchanged on the zeolites [34]. The same as PO4
3−-P remove efficiency, at relatively high pH

values, OH− concentration increased and competed with PO4
3−-P on the adsorbent, leading to

a lower phosphorous adsorption rate.

Effect of reaction time. Fig 4(b) showed the effect of the contact time on the removal effi-

ciency of NH4
+-N and PO4

3−-P in biogas slurry at the dosage of 1 g zeolite/100 ml. It could be

seen that both the NH4
+-N and PO4

3−-P removal efficiency increased with the contact time.

The concentration of NH4
+-N and PO4

3−P decreased rapidly during the first 0.5 h. The

removal efficiency was 83.88% for NH4
+-N and 71.49% for PO4

3−P. Then in the following 5.5

h, corresponding NH4
+-N and PO4

3−-P removal efficiencies increased to 91.24% and 87.33%,

respectively. Within 24 h, the concentration of NH4
+-N decreased from 708.43 to 68.24 mg/L

(92.58%) while the concentration of PO4
3−-P decreased from 21.62 to1.81 mg/L (87.33%

removal). However, with a further increase in the contact time from 30 min to 360 min, the

NH4
+-N removal efficiency increased slightly and then reached equilibrium after 360 min.

This behavior could be attributed to the quick utilization of the most readily available

Fig 4. Optimal conditions for nutrients removal. (A)Effect of pH. (B) Effect of reaction time on removal

efficiency of NH4
+-N and PO4

3−-P by NaCl-modified zeolite (1 g/100 ml). (C) Effect of dosage on removal

efficiency of NH4
+-N and PO4

3−-P by NaCl-modified zeolite (1 g/100 ml).

https://doi.org/10.1371/journal.pone.0176109.g004

Removal of nitrogen and phosphorus
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adsorbing sites of the zeolites, leading to a fast diffusion and rapid attainment of equilibrium

[35]. The increasing trend on nutrient sequestration over time (mainly within the first 6 h) is

mainly related to the combined effect of dissociated Na2O and exchangeable ion on the zeolite

surface (Table 3).

In order to analyze the adsorption performance of NH4
+-N and PO4

3−-P removal by zeolite,

intra-particle diffusion model with three-linear regions was used according Eq (4):

qt ¼ kdt
1=2 þ C ð4Þ

where kd is the coefficient of intra-particle diffusion (mg g-1 h-1/2), t is the contact time(h).

Table 4 showed the results of kinetic parameters for ammonium and phosphate removal

using the MZ. It indicated that the process of adsorption was more than one-step which could

be validated by the prior experiments. It also conclued that surface diffusion adsorption pro-

cess was very fast which was finished in a short time. The adsorption process of NH4
+-N and

PO4
3−-P followed the second step of intra-particle diffusion model: surface diffusion adsorp-

tion process and particle diffusion adsorption process. Meanwhile the kd1value for NH4
+-N

was higher than kd2 and kd3 values which indicated that ammonium removal by zeolite was

proposed as monolayer molecular adsorption with zeolite[36]. The kd1 and kd2 values for

PO4
3−-P was higher than kd3 value which indicated that PO4

3−-P removal with zeolite was

claimed as the electron exchange between phosphorus and the zeolite surface[37]. Moreover

the kd values for NH4
+-N were both much higher than those for PO4

3−-P, indicating that

adsorption phase of P was very poor in the present zeolite, PO4
3−-P and removal occurred

most probably in the external boundary layer film of liquor surrounding the zeolite particles

[38].

Effect of zeolite dosages. Fig 4(c) showed the effect of adsorbent dosage on the NH4
+-N

and PO4
3−-P removal. Both NH4

+-N and PO4
3−-P removal efficiency increased with the

increase of the adsorbent dosage. The removal rates of NH4
+-N increased from 5% to 95%

with the increase of zeolite doses from 0.1 to 5.0 g/100 ml. The PO4
3−-P removal rates also

increased from 72% to 91% with zeolite doses ranging from 0.1 to 5.0 g/100 ml. Meanwhile

when the dosage of zeolite increased from 0.1 to 3.0 g/100 ml, the NH4
+-N removal efficiencies

increased quickly from 5% to 90.37% compared with the PO4
3−-P removal rates increasing

from 72% to 91.63%. That was because the increasing amount of the adsorbent increased the

surface area and the number of ion-exchange sites on zeolite. A negligible increase of NH4
+-N

and PO4
3−-P removal efficiency occurred when the dosage was higher than 3.0 g/100 ml. This

could be due to the fact that a high-adsorbent dosage can effectively decrease the unsaturation

of the ion-exchange sites of the zeolites, and consequently, the number of such sites per unit

mass gets reduced, resulting in comparatively lesser ion exchange at higher adsorbent

amounts. Considerring the nutrient removal efficiency and economic cost, the optimum zeo-

lites dose was 3.0 g/100 ml for the kind of zeolite on the removal of NH4
+-N and PO4

3−-P.

Table 4. Kinetic parameters for ammonium and phosphate removal using MZ.

Adsorption stage Parameters Intra-particle diffusion model

Ci kip (mg g-1 h-1/2) Ri
2

first step NH3-N 0.2157 1.0968 0.8734

PO4
3−-P 0.0067 0.0350 0.8807

second step NH3-N 4.4353 0.0452 0.9250

PO4
3−-P 0.1422 0.0010 0.9114

third step NH3-N 5.2200 0.0031 0.3440

PO4
3−-P 0.1583 0.0002 0.8915

https://doi.org/10.1371/journal.pone.0176109.t004

Removal of nitrogen and phosphorus
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Adsorption isotherms and kinetic modelling. The parameters of two models calculated

from the slope and the intercept of the plots are given in Table 5. Both two models could well

described the adsorption isotherms process while the Langmuir model provided a slightly

more consistent t to the data (R2:0.999 of NH4
+-N and 0.992 of PO4

3−-P) as compared with the

Freundlich model (R2:0.905 of NH4
+-N and 0.990 of PO4

3−-P).

In the present study, n values obtained between 2.78 and 3.23 which indicates a adsorption

of NH4
+-N, and PO4

3−-P onto MZ. Langmuir adsorption capacity of NH4
+-N, and PO4

3−-P by

MZ were compared with those of various low cost adsorbents as shown in Table 6. The maxi-

mum ion-exchange capacities of MZ at equilibrium (qmax) were 11.25 and 6.67 mg/g respec-

tively for NH4
+-N and PO4

3−-P. The differences of sorption capacity between various sorbents

were caused by the difference in physico-chemical properties of adsorbents and experimental

factors including the concentration range of NH4
+-N, and PO4

3−-P, pH, temperature, etc.

Higher value of Langmuir constant and Freundlich adsorption capacity further reflect the

improved strength and affinity of MZ for NH4
+-N, and PO4

3−-P.

Adsorption for nutrients removal is a simple and the most economical method for wastewa-

ter treatment. The price and regeneration method are the main points when chosen as adsor-

bent. Modified NaCl-zeolite has serval traits that can be an ideal adsorbent.1) in comparison

to the conventional adsorbent, it is very efficient. 2) it can be regenerated by chlorination

regeneration easily. 3) the material is inexpensive, reducing the cost of wastewater treatment.

4) it does not contaminate the wastewater.

Conclusion

In this research, simultaneous removal of NH4
+-N and PO4

3−-P from the effluents of biogas

plants was investigated using NaCl-modified zeolite as an adsorbent material. The NaCl-modi-

fied zeolite showed a good absoprtion capacity to the NH4
+-N and PO4

3−-P which indicated

that the proposed process for the treatment of digested swine wastewater is feasible. The condi-

tion of adsorption of NH4
+-N and PO4

3−-P onto NaCl-modified zeolite was pH 8.0, 3.0 g/100

ml and 6 h contact time.The adsorption isotherm of NH4
+-N and PO4

3−-P onto the adsorbent

was well fitted to the Langmuir model and the maximum adsorption capacity (Qm) was 11.25

mg/g and 6.67 mg/g respectively.

Table 5. Isotherms parameters of the Langmuir and Freundlich models.

Object Langmuir parameter Freundlich parameter

qmax (mg/g) kL (L/mg) R2 kF (mg/g) 1/n R2

NH4
+-N 11.25 0.035 0.999 1.26 0.36 0.905

PO4
3−-P 6.67 0.79 0.992 3.1 0.31 0.990

https://doi.org/10.1371/journal.pone.0176109.t005

Table 6. Comparison of Langmuir sorption capacity for NH4
+-N and PO4

3−-P with various adsorbents.

Adsorbent Adsorption capacity (mg/g) Conditions Reference

NH4
+-N PO4

3−-P

Bismuth impregnated biochar - - - 1.48 pH 3.0, 318 k [39]

Thermal activated sepiolite 2.93 - - - pH 8.0, 303k [40]

Raw fly ash 2.23 4.1 pH 7–8, 293k [41]

Natural zeolite 3.45 - - - pH 7, 298k [42]

Chinese clinoptilolite 2.7–3.2 - - - pH 6.0, 293k [43]

NaCl- zeolite 11.25 6.67 pH 8.0, 298k Present study

https://doi.org/10.1371/journal.pone.0176109.t006
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