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Design and analysis of trials with a
partially nested design and a binary
outcome measure
Chris Roberts,*† Evridiki Batistatou and Stephen A. Roberts

Where treatments are administered to groups of patients or delivered by therapists, outcomes for patients in the
same group or treated by the same therapist may be more similar, leading to clustering. Trials of such treatments
should take account of this effect. Where such a treatment is compared with an un-clustered treatment, the trial
has a partially nested design. This paper compares statistical methods for this design where the outcome is
binary.

Investigation of consistency reveals that a random coefficient model with a random effect for group or thera-
pist is not consistent with other methods for a null treatment effect, and so this model is not recommended for
this design. Small sample performance of a cluster-adjusted test of proportions, a summary measures test and
logistic generalised estimating equations and random intercept models are investigated through simulation.
The expected treatment effect is biased for the logistic models. Empirical test size of two-sided tests is raised only
slightly, but there are substantial biases for one-sided tests. Three formulae are proposed for calculating sample
size and power based on (i) the difference of proportions, (ii) the log-odds ratio or (iii) the arc-sine transforma-
tion of proportions. Calculated power from these formulae is compared with empirical power from a simulations
study.

Logistic models appeared to perform better than those based on proportions with the likelihood ratio test
performing best in the range of scenarios considered. For these analyses, the log-odds ratio method of calculation
of power gave an approximate lower limit for empirical power. © 2015 The Authors. Statistics in Medicine
published by John Wiley & Sons Ltd.
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1. Introduction

Methods of statistical analysis used to estimate treatment effects in clinical trials generally assume that
subjects are independent. The implications of violations of this assumption in cluster randomised trials
are widely recognised with the lack of independence among subjects in the same cluster, reducing
precision and causing loss of power. It is now acknowledged that clustering effects should also be
considered in the design and analysis of trials of group-administered treatments and care-provider
activities such as talking or physical therapies [1–5].

Examples of group-administered treatments could include classes or group therapy for weight
reduction, smoking cessation, alcohol treatment or anger management. While for some such treatments,
group administration is simply a matter of efficiency, for example, physical exercise classes involving
instruction, in others, synergy between patients can be an active component of the group treatment,
examples of which might be self-help and mutual support groups. Where there is interaction between
participants, there are strong theoretical reasons to expect clinical outcomes to be more similar for
patients in the same therapy group than for those in different groups. Even with more directive groups,
participation and engagement with treatment may depend on others members of the group. Design and
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analysis of trials of group therapies should therefore presume lack of independence of subjects within
therapy groups. Likewise, it is realistic to expect outcomes for patients treated by the same therapist
to be more similar, where the outcome of care depends on skill, training, experience or empathy between
the patient and the care-provider. This suggests clustering of patients within care-provider is also
plausible, even where treatments are administered individually.

While there are similarities between statistical methods used where clustering is due to randomisation
and where it arises from treatment, there are important differences. Hoover [6], considering methods for
group-administered treatment trial, noted that the methods generally applied to cluster randomised trials
may not be entirely applicable as they assume homogeneity of the clustering effect between treatment
arms. For cluster randomised trials, it can been shown that estimation is robust to heteroscedasticity
for continuous outcome measures, both theoretically [3] and empirically [7], due to the expected distri-
butions of cluster sizes being the same in each arm. In contrast, both cluster sizes and intra-cluster
correlation may differ systematically between arms in trials of group-administered treatments or health
professional activities, due to differences in the organisation and delivery of care between treatment
arms, with a result in a loss of robustness for some estimation methods [3].

This paper is concerned with trials where a treatment with clustering is compared with a treatment
without. This could be where a group-administered treatment is compared with an un-clustered
treatment, such as drug treatment, treatment as usual or patient information. This trial design has been
called a partially nested [4, 8], contrasting with a fully nested design of cluster randomised trials or trials
comparing only clustered treatments. To simplify discourse, we will assume that the un-nested arm is the
control.

Several papers have considered the design and analysis for partially nested designs [3, 8, 9] for
continuous outcome measures. The simplest of these methods is to compute summary measures for each
cluster in the nested arm. These summary measures are then compared with the individual patient
outcome data in the control arm. Because the variance of the summary measures will be smaller than
the variance of the individuals in the control, Roberts and Roberts [3] recommended that summary
measures analysis use the Satterthwaite test [10]. Sometimes referred to as the unequal variance t-test,
this corrects for unequal variance by modifying the degrees of freedom of the t-distribution. Where
adjustment for baseline covariates is required, Roberts and Roberts [3] and Moerbeek and Wong [8]
describe regression methods using a random effect for therapy group. Care needs to be taken when
applying general methods for clustering to partially nested data as between-arm heteroscedasticity
may bias inference if not correctly modelled [3].

This paper evaluates statistical methods for partially nested binary data. While this design can occur in
other settings, the motivation and focus of this paper are trials comparing group-administered treatments
with an un-nested control. Moerbeek and Wong [8] briefly consider this issue suggesting a method for
sample size calculation based on proportions and the design effect. In Section 2, we consider methods
that might be used for partially nested binary data. In Section 3, we evaluate these methods in a simu-
lation study considering consistency and small sample properties including bias and test size. Methods
to calculate sample size and power are presented in Section 4, before comparing these with empirical
power determined by simulation.

2. Methods for the analysis of partially nested data binary data

There is an extensive literature considering methods for the analysis of binary outcomes in cluster
randomised trials; see, for example, Donner and Klar [11], Hayes and Moulton [12] or Eldridge and
Kerry [13] with Donner et al. [14] discussing recent developments. A first group of methods considers
statistical analysis on the scale of proportions including a summary measures test and a test of propor-
tions with standard errors adjusted by a design effect term. A second group is based on logistic regres-
sion models including random effects models and generalised estimating equations. We will now
consider the adaption of these to the partially nested trial design.

2.1. Summary measures test for a partially nested design

Consider a partially nested trial comparing a group therapy (G) causing clustering and an un-nested con-
trol therapy (C) and let NG and NC be the total number of subjects in each treatment arm. Suppose yi is a
binary outcome for the ith subject. In the group intervention arm, suppose there are k groups indexed by j
with j being a function of i. Let πG and πC be the proportions of subjects with the event (yi=1). Let mj be
© 2015 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 1616–1636
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the number of subjects in the jth group so thatNG ¼
Xk
j¼1

mj. In the control arm, an unbiased estimator of

πC is pC= rC /NC, where the number of subjects with the event is rC. Considering the group treatment
arm, let πG,j be the proportion of subjects with the event in the jth therapy group. Define rj as the number
of subjects with the event in the jth group and qjas the sample proportion estimator of πG,j, given by

qj= rj/mj. A summary measures estimator of πG can be defined aspG ¼

Xk
j

qj

k and the treatment effect
estimated by pG�pC. Assuming pG and pC are normally distributed, a test can be based on the statistics

T ¼ pG � pC
SE pG � pC½ � ¼

pG � pCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SE pG½ �2 þ SE pC½ �2

q (1)

with confidence interval pG�pC± zα/2SE[pG+pC]. The term SE[pG] can be estimated by the standard
error of the sample mean of the summary measures. Defining

sG ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
j¼1

qj � psumG

� �2
k � 1ð Þ

vuuuut
; (2)

then

SE pG½ � ¼
ffiffiffiffiffi
s2G
k

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
k

j¼1
qj � psumG

� �2
k � 1ð Þk

vuuuut
; (3)

which is a moment estimator. A commonly used estimator of SE[pC] is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pC 1�pCð Þ

NC

q
, but this is a maximum

likelihood estimate. To keep estimation methods consistent between arms, the sample standard deviation
of the control arm observation could be used, which is

sC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNc

i¼1

Y2
i � NCp2C

NC � 1ð Þ

vuuuut ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NCpC � NCp2C

NC � 1ð Þ

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pC 1� pCð ÞNC

NC � 1ð Þ

s
: (4)

The moment-based estimator of the control arm standard error is therefore

SE pC½ � ¼
ffiffiffiffiffiffiffi
s2C
NC

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pC 1� pCð Þ
NC � 1ð Þ

s
(5)

If the standard errors of pC and pG defined by (3) and (5) are used, Equation (1) is simply the test sta-
tistic of an unequal variance test of means applied to the binary observations in the control arm and the
summary measures in the group arm.

2.2. Satterthwaite test

With a large sample of both groups in the clustered arm and subjects in the un-clustered control, a nor-
mal approximation can be justified for a summary measures test, but where the numbers of groups is
small, this is less tenable. BecauseE s2G

� �
will generally be smaller than pC, this suggests a summary mea-

sures analysis based on the Satterthwaite test [10] using Equation (1) but assuming a t-distribution with
degrees of freedom defined by
© 2015 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 1616–1636
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υ ¼
s2G
k þ s2C

NC

� �2
s2
G
k

� �2

k�1 þ
s2
C

NC

� �2

NC�1

(6)

with E s2G
� �

and s2C defined by Equations (2) and (4).

2.3. Adjusted test of proportions

The two-sample z-test of proportions without clustering has a null standard error

SEnull pG � pC½ � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 1� pð Þ 1

NG
þ 1
NC

� �s
;

which was used for hypothesis testing where p is the pooled proportion, and a non-null standard error

SE pG � pC½ � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pG 1� pGð Þ

NG
þ pC 1� pCð Þ

NC

s
;

used for confidence interval construction. Assuming normality, this gives a test statistic T ¼ pG�pC
SEnull pG�pC½ �

and a (1�α) confidence interval given by pG�pC± zα/2SE[pG�pC].
Considering now a partially nested design, one can define a weighted estimator of the treatment effect as

pG � pC ¼

X
j

wjqjX
j

wj

� pC:

The standard choices are (i) to weight each cluster equally (wj=1) giving the summary measures es-
timate, (ii) to weight according to the cluster size (wj=mj) or (iii) to use a minimum variance weighting

wj ¼ mj

1þ mj�1ð Þρ
� �� �

where ρ is an estimate of the intra-cluster correlation of the clustering effect,

which can be estimated using analysis of variance (see, for example, Donner [11] (page 84)).

The variance of pC is Var pC½ � ¼ πC 1�πCð Þ
NC

. From Jung et al. [15], Var pG½ � ¼ πG 1�πGð Þ
NG

Dwith D depend-

ing on the choice of weights. Where clusters are weighted equally, D ¼ m ρþ 1�ρð Þ
k

X
j

1
mj

 !
with m

being the mean cluster size

X
j

mj

k .

Where clusters are weighted by cluster size (mj), D ¼ 1þ

X
j

m2
jX

j

mj
� 1

0
BB@

1
CCAρ.

If minimum variance weights are applied, D ¼ NGX
j

mj

1þ mj � 1
	 


ρ

.

Replacing πC and πG by their estimators pC and pG, one obtains the standard error estimates

SEnull pG � pC½ � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 1� pð Þ D

NG
þ 1

NC

� �r
and SE pG � pC½ � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pG 1�pGð Þ

NG
Dþ pC 1�pCð Þ

NC

q
.

A normal based test statistic is therefore given by T ¼ pG�pC
SEnull pG�pC½ � with a (1�α) confidence interval:

pG�pC± zα/2SE[pG�pC]. One should note that the uncertainty in the estimation SE[pG�pC] has been
ignored, in contrast to the summary measures procedure based on the Satterthwaite test.

2.4. Logistic random effect models

Consider now a logistic random effects model with a random effect uj to model the between-cluster var-
iation in the group intervention arm. The distribution of the random effect is generally taken to be
© 2015 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 1616–1636
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N 0; σ2U
� �

. Withyi ~Bernouli[πi], two parameterizations might be considered, a logistic random intercept
(LRI) given by

logit πi½ � ¼ αþ βxi þ Iiδ
i þ uj (7)

and a logistic random coefficient (LRC) model

logit πi½ � ¼ αþ βxi þ Iiδ
i þ Iiuj

i (8)

In either model, Ii is an indicator variable for the group-administered treatment arm and δ is the treat-
ment effect on the log-odds scale. Inference on δ can be based on a Wald test or a likelihood ratio test. It
should be noted also that the log-likelihoods of models based on Equations (7) and (8) are equal for this
design, but this does not hold for the null model in which δ=0. For both models, the intra-class corre-

lation on the log-odds scale is defined as ρL ¼ σ2U
σ2Uþπ2

3

[16], where for this formula, π is the mathematical

constant. Where clusters vary in size, random effects models apply minimum variance weighting.
In general, for a logistic-normal model, the marginal probability of positive outcome, say π1, for a

given value of the linear predictor η, is

π1 ¼ Pr yi ¼ 1½ � ¼
Z þ∞

�∞

exp ηþ zσUð Þ
1þ exp ηþ zσUð Þϕ zð Þdz;

where ϕ(z) is the standard normal density. The joint probability of two positive outcomes in the same
cluster, sayπ11, is defined as

π11 ¼ Pr yij ¼ 1; yi′j ¼ 1
h i

¼
Z þ∞

�∞

exp ηþ zσUð Þ
1þ exp ηþ zσUð Þ
� �2

ϕ zð Þdz ; for i≠i′:

Both π1 and π11 can be determined from model estimates using numerical integration (see Rodriguez
and Elo [17] for a STATA [18] algorithm (xtrhoi) for this purpose). The intra-cluster correlation on the

manifest scale is then given by ρ ¼ π11�π21
π1 1�π1ð Þ.

For both models (7) and (8), the marginal probability of positive outcome πG is

πG ¼ Pr yi ¼ 1ð Þ ¼
Z þ∞

�∞

exp αþ δþ zσUð Þ
1þ exp αþ δþ zσUð Þϕ zð Þdz

in the intervention arm. Under model equations (7) and (8),

πC ¼ Pr yi ¼ 1ð Þ ¼
Z þ∞

�∞

exp αþ zσUð Þ
1þ exp αþ zσUð Þϕ zð Þdz

Hence, for model (7),

πG � πC ¼
Z þ∞

�∞

exp αþ δþ zσUð Þ
1þ exp αþ δþ zσUð Þϕ zð Þdz�

Z þ∞

�∞

exp αþ zσUð Þ
1þ exp αþ zσUð Þϕ zð Þdz

so δ=0 implies πG equals πC. A null treatment effect in the random intercept model equates to a null
effect on the scale of proportions. In model (8),

πC ¼ Pr yi ¼ 1ð Þ ¼ exp αð Þ
1þ exp αð Þ :

When δ=0,

πG � πC ¼
Z þ∞

�∞

exp αþ zσUð Þ
1þ exp αþ zσUð Þϕ zð Þdz� exp αð Þ

1þ exp αð Þ ; (9)

which is non-zero, unless α=0 which corresponds to πG=πC=0.5 or if trivially σ2u ¼ 0. Hence, a null
effect in model (8), that is, δ=0, does not imply πG equals πC. The magnitude of (9) will increase as
the value σ2u increases. Thus, a random coefficient model will not be consistent with a null effect on
the scale of proportions. It can also be seen from Equation (9) that this effect does not depend on cluster
© 2015 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 1616–1636
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size. We can summarise this as follows: the random intercept model estimates a cluster-specific effect in
both arms whereas the random coefficient model estimates a cluster-specific effect in the clustered arm
and a marginal effect in the comparator. This suggests that the random coefficient model (LRC) defined
by Equation (8) may have a substantial bias for a null treatment effect on the scale of proportions, a
hypothesis that will be considered in the succeeding text in Section 3.2.

2.5. Logistic generalised estimating equation models

An alternative model-based analysis is the method of generalised estimating equations [19]. This can be
applied with a logistic link function [13]. For partially nested binary data, the model is given by

logit πi½ � ¼ αþ βxi þ Iiδ
i;

where a logistic link function is used. The treatment effect estimate δ is the marginal or population-
averaged log-odds. Inference on the treatment effect controlling for the clustering effect can be carried
using robust standard errors [20]. The choice of working correlation matrix affects the weighting of
subjects. Use of an identity matrix weights subjects equally, whereas an exchangeable working
correlation matrix applies minimum variance weights. Provided there is a clustering effect σ2u > 0

	 

,

the population-averaged log-odds ratio will be smaller in magnitude than the cluster-specific estimate
of the log-odds ratio derived from the random effects models in the previous text.

3. Consistency and small sample bias

In clinical trials without clustering, tests of proportions and analyses based on logistic regression models
are consistent for a null treatment effect, even where baseline covariates are included in the logistic
model (Robinson and Jewel [21]). The same property is desirable when selecting methods of analysis
for partially nested trials, as without this, one could have a treatment effect on one scale of estimation
or method of analysis but not on another. In Section 2.4, we saw that treatment effect estimates from
the LRC model was not consistent for a null effect on the scale of proportions. We therefore begin
the evaluation of methods by checking consistency for a null effect. We then considered small sample
properties including bias for estimates of the intra-cluster correlation and the treatment effect for the null
and non-null cases, and for test size. In doing this, the objective was to check the effect of cluster size,
intra-cluster correlation and the event rate on the performance of the analysis methods.

3.1. Simulating partially nested binary data

Simulation studies examining the performance of methods for clustered binary data often use the beta-
binomial model (see, for example, Jung et al. [15], Bellamy et al. [22] Lee [23], Ukoumunne et al. [24],
Austen [25] and Ma et al. [26]), which is convenient because the beta-binomial distribution can be
parameterized in terms of π and the manifest intra-cluster correlation coefficient (ρ). We chose instead
to use the logistic-normal distribution to avoid possible artefacts due to differences between the random
effect distributions of data generation and method of analysis. Unlike the beta-binomial, data generation
using a logistic-normal distribution allows covariates to be added to the linear predictor, although inves-
tigation of covariate adjustment is beyond the scope of this paper. For this data generation model, one
option is to base simulation scenarios on values of random effects variance, σU [27–30]. We consider
this to have disadvantages as it is the proportions πG and πC, and the manifest intra-cluster correlation
(ρ), which are usually considered when designing such a study. Thus, for specified values of πG and
ρ, we determined the values ηG and σU such that

πG ¼
Z þ∞

�∞

exp ηG þ zσUð Þ
1þ exp ηG þ zσUð Þϕ zð Þdz (10)

and ρ ¼

Z þ∞

�∞

exp ηG þ zσUð Þ
1þ exp ηG þ zσUð Þ
� �2

ϕ zð Þdz� π2G

πG 1� πGð Þ : (11)
© 2015 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 1616–1636
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For each cluster j, a value ηj was sampled from a normal distribution N ηG; σ
2
U

� �
. We then generated

the binary outcome using a Bernoulli distribution with parameter πj=exp(ηj)/(1 + exp(ηj)) for the jth
cluster in the group arm and πC in the control arm. All simulation work was carried out using STATA [18].

Treatment therapy groups used in healthcare are generally quite small. The desirable group size is
often specified in the treatment manual, and so one would expect the coefficient of variation (c.v.) of
the distribution of group sizes to be quite small. For example, in a trial of a group-based cognitive
behavioural intervention for persistent lower back pain, the mean group size was 5.0 (standard deviation
(s.d.) = 1.5, c.v. = 0.3) [31]. A class-based programme for treatment of knee osteoarthritis had groups
with mean size 10.1 (s.d. = 2.59, c.v. = 0.26) [32]. In a trial of group cognitive behavioral therapy for pa-
tients with schizophrenia, the mean group size was 5.7 (s.d. = 0.48, c.v. = 0.09) [33]. We have therefore
focused on the situation were cluster sizes are between 5 and 10.

The cluster randomised trial literature demonstrates that the impact of cluster size variation depends
on the weighting of subjects by the analysis method [34]. Where the analysis methods weight subjects
equally, the design effect is a linear function of the square of the c.v. [35]. Where the analysis applies
minimum variance weights, the situation is more complex with the design effect being dependent on
the distribution of cluster sizes [36]. Perhaps for this reason, studies evaluating the effects of cluster size
variation have generally considered just a single method of analysis. Given that different methods of
analyses weight subjects in different ways, it would be quite complex to incorporate cluster size varia-
tion into a comparison of the methods of analyses weighting subjects in different ways. For clarity of
exposition, we have therefore chosen to assume equal cluster sizes. The implications of cluster size
variation for power of this study design are discussed in Section 4.3 in the succeeding text.

Estimated intra-cluster correlation coefficients obtained from trials are generally imprecise. For exam-
ple, Barrowclough et al. [33] report 30 estimates of the intra-cluster correlation coefficient for group
CBT with estimates ranging from 0 (95% CI 0 to 0.29) to a maximum of 0.26 (95% CI 0.02 to 0.67)
with a mean of 0.044. There is uncertainty regarding plausible population value of intra-cluster correla-
tion coefficient on which to base a simulation study. This can also be an issue when considering the
magnitude of the treatment effect when designing trials more generally. In the absence of reliable infor-
mation regarding the treatment effect, one approach is to use a Cohen effect size. By expressing the
treatment effect as a variance, it can be shown that medium (0.5) and large (0.8) Cohen effect sizes cor-
respond to 5.9% and 13.8% of the total variance. While this is related to intervention effects, it suggests
0.05 and 0.1 to be plausible population values of the manifest intra-cluster correlation coefficient, when
considering clustering due to treatment.

3.2. Consistency for a null treatment effect

To estimate the asymptotic value of a null treatment effect, a single dataset with a large sample size was
simulated using the methods described in the previous text. We considered π =πG=πC taking values
(0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95), the manifest intra-class correlation coefficient (ρ)
equal to 0, 0.05 or 0.1, and the cluster size (m) in the nested arm equal to 5, 10 and 20.

The combination of simulation parameters that would be expected to give the least precise estimate of
the log-odds ratio of the treatment effect were π equal to 0.05 or 0.95, intra-cluster correlation coefficient
ρ=0.1 and a cluster size (m) of 20. Based on pilot work, we estimated that a sample size of 400000 in
each arm would give a 95% confidence interval for a null treatment effect on the scale of the log-odds
ratio for this model of width 0.1. As equal size clusters have been used, the summary measures test
(SMT), the Satterthwaite test (SATT) and the adjusted test of proportions (ATP) have the same point
estimates.

Table I shows the 95% confidence interval for the null treatment effect for all methods for a cluster
size of 10. Values where the lower confidence limit is above zero or the upper confidence limit is below
zero have been emboldened. Where the data-generating ICC is non-zero, the confidence intervals for the
LRC model exclude zero unless πG=πC=0.5. For other methods of analysis, there are just two instances
where the confidence interval does not include zero that can be readily explained by sampling variation.

Figure 1 plots the estimate of treatment effect log-odds ratio against π for the LRC model for a cluster
size of 10. Corresponding values were obtained using numerical integration of Equation (9) for (ρ) equal
to 0, 0.05 or 0.1 with π =πG=πC over the range [0.05, 0.95] at 0.025 intervals shown as lines. It can be
seen that values obtained by simulation and by numerical integration are very close. As π departs from
0.5, the bias increases, and this become large when π approaches 0 or 1. We have confirmed empirically
that the bias suggested in Section 2.4 is present and can be substantial. For this reason, we do not
© 2015 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 1616–1636



Table I. Confidence interval for the null treatment effect (π = πG= πC) with a total sample size of 800 000 for
various methods of analysis (40 000 clusters of size 10 vs. 400 000 controls).

ICC π Adjusted test of
proportions/summary

measure test (ATP/SMT)

Logistic GEE
(LGEE)

Logistic random
intercept (LRI)

Logistic random
coefficient (LRC)

95% CI 95% CI 95% CI 95% CI

0 0.05 (�0.002, 0.000) (�0.037, 0.003) (�0.037, 0.003) (�0.048, 0.000)
0.1 (�0.002, 0.000) (�0.025, 0.004) (�0.025, 0.004) (�0.025, 0.004)
0.2 (�0.001, 0.002) (�0.006, 0.016) (�0.006, 0.016) (�0.006, 0.016)
0.3 (�0.002, 0.002) (�0.011, 0.008) (�0.011, 0.008) (�0.011, 0.008)
0.4 (0.000, 0.004) (�0.001, 0.017) (�0.001, 0.017) (�0.002, 0.016)
0.5 (�0.005, 0.000) (�0.018, �0.001) (�0.018, �0.001) (�0.018, �0.001)
0.6 (�0.002, 0.002) (�0.009, 0.008) (�0.009, 0.008) (�0.009, 0.008)
0.7 (�0.001, 0.003) (�0.005, 0.014) (�0.005, 0.014) (�0.005, 0.014)
0.8 (�0.001, 0.002) (�0.006, 0.015) (�0.006, 0.015) (�0.006, 0.015)
0.9 (�0.001, 0.002) (�0.010, 0.019) (�0.010, 0.019) (�0.010, 0.022)
0.95 (�0.001, 0.001) (�0.020, 0.020) (�0.020, 0.020) (�0.018, 0.030)

0.05 0.05 (�0.002, 0.000) (�0.035, 0.009) (�0.037, 0.010) (�0.419, �0.362)
0.1 (�0.002, 0.000) (�0.027, 0.005) (�0.028, 0.006) (�0.232, �0.194)
0.2 (�0.002, 0.002) (�0.012, 0.012) (�0.013, 0.013) (�0.105, �0.079)
0.3 (�0.002, 0.002) (�0.011, 0.010) (�0.011, 0.011) (�0.059, �0.037)
0.4 (�0.001, 0.004) (�0.004, 0.016) (�0.004, 0.017) (�0.025, �0.005)
0.5 (�0.002, 0.003) (�0.008, 0.011) (�0.009, 0.012) (�0.009, 0.011)
0.6 (�0.001, 0.003) (�0.006, 0.014) (�0.006, 0.015) (0.016, 0.036)
0.7 (�0.003, 0.002) (�0.013, 0.009) (�0.013, 0.009) (0.034, 0.056)
0.8 (�0.003, 0.001) (�0.016, 0.008) (�0.017, 0.008) (0.076, 0.102)
0.9 (�0.001, 0.002) (�0.014, 0.018) (�0.015, 0.019) (0.181, 0.218)
0.95 (�0.001, 0.001) (�0.023, 0.021) (�0.024, 0.023) (0.347, 0.404)

0.1 0.05 (�0.001, 0.001) (�0.031, 0.018) (�0.034, 0.020) (�0.728, �0.660)
0.1 (�0.003, 0.000) (�0.032, 0.003) (�0.036, 0.003) (�0.430, �0.387)
0.2 (�0.002, 0.002) (�0.012, 0.014) (�0.014, 0.016) (�0.209, �0.179)
0.3 (�0.004, 0.001) (�0.019, 0.004) (�0.021, 0.005) (�0.124, �0.099)
0.4 (�0.006, 0.000) (�0.023, �0.002) (�0.026, �0.002) (�0.071, �0.048)
0.5 (�0.002, 0.003) (�0.008, 0.013) (�0.009, 0.014) (�0.009, 0.014)
0.6 (0.000, 0.005) (�0.002, 0.020) (�0.002, 0.022) (0.043, 0.066)
0.7 (�0.004, 0.001) (�0.019, 0.004) (�0.021, 0.005) (0.084, 0.109)
0.8 (�0.003, 0.001) (�0.021, 0.006) (�0.023, 0.006) (0.175, 0.205)
0.9 (�0.002, 0.001) (�0.019, 0.016) (�0.022, 0.018) (0.380, 0.423)
0.95 (�0.001, 0.001) (�0.025, 0.023) (�0.028, 0.026) (0.635, 0.702)

P is the proportion.
GEE, generalised estimating equations.

Figure 1. Bias in partially nested random coefficient model for the null case as a function of the proportion
πG> πC> 0.5. Line constructed by numerical integration. Points by simulation using 40 000 clusters of size 10

and 400 000 controls. OR, odds ratio.
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recommend the use of model (8). Almost identical tables and figures were obtained for cluster sizes of 5
and 20 and so these are not presented.

The ATP, the logistic random effect models (LRI and LRC) and the logistic generalised estimation
equations (LGEE) model all give estimates of the intra-cluster correlation coefficient, ρ. In the very
large samples considered here, estimates had minimal bias for ρ for all the estimation methods. The
largest absolute deviation from the data-generating value was 0.0065 for the ATP methods occurring
when π =0.05,m=5, ρ=0.1 (data not shown), suggesting all methods were consistent.

3.3. Small sample properties

A second simulation study investigated the small sample properties of estimators. The objective was to
assess possible biases in the estimation of the intra-cluster correlation coefficient of the clustered arm,
the treatment effect and the test size. Five methods of analysis were compared, namely the ATP estima-
tor, the summary measures estimator (SMT), the SATT, the LGEE model and the random intercept
model (LRI). To simplify interpretation, the design was balanced in terms of cluster size, study size
and intra-cluster correlation coefficient. We considered the following partially nested designs with the
same number of controls subjects as in the clustered arm: (i) 20 clusters of 5, (ii) 10 clusters of 10
subjects, (iii) 40 clusters of 5, (iv) 20 clusters of 10, (v) 80 clusters of 5 and (vi) 40 clusters of 10.
For each of these, we considered combinations of πG,πC∈ {0.1, 0.2,.., 0.9} and the manifest intra-cluster
correlation coefficient ρ equal to 0, 0.05 or 0.1. To restrict the size of the simulation study and simplify
presentation of results, pairs of πC and πG where chosen that gave a log-odds ratio for the treatment
effect of magnitude less than 1.5, as performance in situations where it is larger is of less concern. This
reduced the number of simulation scenarios from a possible 1458 (3×2×3×81) to 846 (3×2×3×47).
For each scenario, 20 000 simulations were carried out as this would give 95% confidence intervals of
the test size of width less than ±0.005 where the empirical test size is below 0.07.

There were 210 failures in the 16920000 simulations (0.0013%). Of these failures, 162 occurred
when the sample size in each arm was 100. Ninety-eight of these failures related to logistic models
occurring when the observed event rate was 0 or 1 in either the control or group arm.

Figure 2 displays the mean values of estimates of the intra-cluster correlation coefficients against
prevalence, obtained from the ATP, the generalised estimating equations model (LGEE) and the LRI
model methods, for the null case (πC=πG). The analysis of variance-based estimate, used in the adjusted
test of proportions, is closest to the data-generating values of ρ when the event rate was 0.5. The LGEE
method underestimated for all three data-generating values of ρ, but this bias is much smaller for larger
sample sizes. The LRI model overestimates the zero value. This effect is greater for the smaller cluster
size of 5 and can be explained by the random effect variance being constrained to be non-negative.
As the data-generating values of ρ increased, this positive bias for LRI reduced in all sample sizes. When
ρ was 0.1, there is a downward bias, as one might expect for a maximum likelihood estimate. Similar
patterns of underestimation or overestimation are also observed in the non-null case (not presented).
The effect of underestimation or overestimation of ρ or the related variance component will tend to make
inference respectively more or less conservative.

For the treatment effect, bias has been estimated as the difference between the mean of the simulated
estimates and the data-generating value. For the adjusted tests of proportions, summary measures and the
Satterthwaite test, this is a difference between the mean of estimates and (πG�πC). For the logistic
generalised estimating methods (LGEE), the bias is calculated as the difference between the mean of
estimates of the log-odds ratio and the data-generating marginal log-odds ratio (loge[(πG/(1�πG))/
(πC/(1�πC))]). For the LRI model, the bias is calculated as the difference between the mean of the
cluster-specific log-odds ratio estimates and (ηG� ηC), where ηG is the data-generating values defined

in the previous text and ρ is the solution of
Z þ∞

�∞

exp ηC þ zσUð Þ
1þ exp ηC þ zσUð Þϕ zð Þdz ¼ πC. For each estimate of

bias, a Monte-Carlo confidence interval was determined using the standard deviation of the simulation
estimates.

As before, the adjusted tests of proportions, summary measures and the Satterthwaite test methods
have the same treatment effect estimate. The Monte-Carlo confidence interval of the bias failed to
include zero in only 3.7% (6/162) of the null cases and 3.5% (24/ 684) of the non-null case. As one
might expect, there is no evidence of bias and so no further analysis is presented.

Figure 3 plots the bias of the log-odds ratio with Monte-Carlo confidence interval for the LGEE
method in the null case (log-odds ratio = 0). Where the intra-cluster correlation is non-zero, the log-odds
© 2015 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 1616–1636



Figure 2. Estimates of the intra-cluster correlation coefficient for the adjusted test of proportions (ATP), logistic
generalised estimating equations (LGEE) and logistic random intercept (LRI) models for small samples as a func-
tion of the proportion λ∈ (1, λeq). Control arm has the same number of subjects with no clustering. Three values of

the ICC are considered as indicated by the numeric labels on each line.
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ratio is negatively biased for πG=πC<0.5 and positively biased for πG=πC>0.5. These biases decrease
with increased sample size and so do not contradict the results for consistency of this method. It should
be noted also that the bias observed here, although similar in shape to that for non-consistency for the
LRC model (Figure 1 and Table I), is substantially smaller and depends on cluster size with a size of
5 giving less bias than that of 10. Note also that the bias is greater where there are 20 clusters of size
10 (Figure 3(iv)) as compared with 20 clusters of size 5 (Figure 3(i)).
© 2015 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 1616–1636



Figure 3. Bias in the treatment effect log-odds ratio estimate under the null (πC= πG) as a function of the
proportionπG= πC for the logistic generalised estimating equations model. OR, odds ratio.
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Figure 4 considers the non-null situation, plotting the bias with 95% Monte-Carlo confidence interval
of the bias against the data generation log-odds ratio. Data-generating values of πG (superscript) and πC
(subscript) have been added to points where the magnitude of the bias is greater than 0.025. Among the
684 simulations for which the data-generating log-odds ratio was non-zero, the bias is away from zero in
almost all scenarios (664/684) and is greatest where the log-odds ratio is further from zero. Of particular
note is the bias when the data-generating value of the ICC was zero as this suggests a bias for the non-
null case due to the method of estimation rather than data generation. As the sample size increases, the
bias decreases as would be expected for a consistent estimator.
© 2015 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 1616–1636



Figure 4. Bias in the treatment effect log-odds ratio estimate for logistic generalised estimating equations
(LGEE) model plotted against the data-generating value for ICC(rho) = 0, 0.05 and 0.1. Data-generating values

of πG (superscript) and πC (subscript) are given where bias is greater than 0.025. OR, odds ratio.
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Under the null, results for the logistic random intercept model (Figure S1) are similar to the LGEE
model (Figure 3). The non-null (Figure S2) reveals a similar pattern of biases to the LGEE model
(Figure 4) where the ICC is 0.05 or 0.1, but when the data-generating ICC is 0, the bias is more marked
than LGEE, and this is greater with a cluster size of 5 than 10. What is more, it is larger when the ICC is
0 than when the ICC is 0.05 or 0.1. This disparity can be explained by the substantial upward bias of the
estimated ICC when the data-generating value is zero (Figure 2). When the data-generating ICC is 0, the
data-generating log-odds are simply the log-odds without clustering. In contrast, the estimated log-odds
will be the larger cluster-specific value arising from the biased ICC estimate.

The presence of small sample bias for the treatment effect in the logistic models has implications for
test size in each tail. Assuming no counteracting asymmetry in the standard error, the test size will
increase for the tail in the direction of the bias.
© 2015 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 1616–1636
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It is generally recommended that two-sided tests are carried out; see, for example, Bland and Altman
[37]. This recommendation provides protection against analysis bias due to post-hoc selection of the
more favourable one-sided test. One might suppose therefore that test performance on each side is of
no concern, but we disagree. If one rejects a null hypothesis of no treatment effect with a two-sided test,
one does not just conclude the treatments are different but draws inference that one treatment is better or
worse than the other. In effect, a two-sided test is a composite of two one-sided tests. In rejecting the
hypothesis in one or other direction, we implicitly presume that two 2.5% one-sided tests have been
carried out having a family-wise error of 5%. In some settings, symmetry arguments allow us to
conclude that test performance will be the same in either direction on theoretical grounds. Where there
is between-arm asymmetry in the design, as we have here, the assumption that two-sided test perfor-
mance accurately reflects the performance of either side may not be justified. We need therefore to con-
sider test size for each side separately. For z- or t-distributed test statistics, estimation of empirical test
size of one-sided tests is straightforward. For the likelihood ratio test based on a chi-squared test, we
have split the empirical test size according to whether the treatment effect log-odds ratio was positive
or negative.

Results for test size are presented in full for both two-sided and one-sided tests in Tables S1–S6. For
all methods, the empirical two-sided test size increases as ρ increases. Test size is consistently below the
nominal level for the logistic random intercept model when ρ is zero, which can be explained by the up-
ward bias on the estimated of ρ in this model (Figure 2). Considering now the one-sided test results, the
treatment effect bias observed for LGEE (Figure 3) and LRI (Figure S1) would be expected to increase
the lower tail test size where πG=πC<0.5 and increase the upper tail test size where πG=πC>0.5.
Figure 5 illustrates the test size for three scenarios from Tables S1–S6. As expected, lower tail test size
is increased where πG=πC<0.5 and upper tail test size is increased where πG=πC>0.5 for most
methods. Interestingly, the effect is more marked for ATP, SMT and SATT, for which there is no treat-
ment effect bias. One explanation for bias of these methods is that they do not benefit from the variance
stabilising effect of the logistic transformation, which should be important where πG=πC are close to
either 0 or 1. The effect is most marked in the scenario with 10 clusters of size 10 and πG=πC=0.1or0.9
(Figure 5(i)). Whereas the empirical two-sided test size is close to the nominal value for the Satterthwaite
test (Table S2), the size of the upper and lower tails are very different, with the type I error on one
side being four times the type I error on the other side when πG=πC=0.1 or 0.9. The asymmetry is larger
for an ICC of 0.1 than 0.05 and is still present in larger sample sizes but to a lesser degree (Tables S5 and
S6). Comparing results for clusters of size 10 and 5, the effect would also appear to be more marked
where the cluster size is larger. For example, the scenario of 20 cluster of 10 (Figure 5(ii)) shows greater
asymmetry than 20 of 5 (Figure 5(iii)) despite having twice the sample size. In conclusion, test size in a
partially nested design with a binary outcome test size can be very different between sides, with the effect
being greater where the event rates are closer to either 0 or 1, and also for larger cluster size and intra-
cluster correlation.

4. Estimating sample size and power

4.1. Formulae for calculating power and sample size

Moerbeek and Wong [8] gave an expression for estimation of power for a partially nested design with a
binary outcome measure based on the difference of proportions by using an inflation factor to account
for partial nesting as follows:

1� βð Þ ¼ 1� Φ z 1�α=2ð Þ � πG � πC
SE πG � πC½ �

� �
(12)

with

SE πG � πC½ � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πC 1� πCð Þ

NC
þ πG 1� πGð Þ

NG
1þ m� 1ð Þρð Þ

s
(13)

where m is the cluster size and the sample size of subjects in each arm are NG and NC. Assuming an al-
location ratio between control and intervention of 1 : λ,
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Figure 5. Empirical test size for lower and upper single-sided (nominal 2.5% level) tests with ICC=0.1 for the
adjusted test of proportions (ATP), summary measures test (SMT), Satterthwaite t-test (SATT), logistic general-
ised estimating equations (LGEE) model and a logistic random intercept model using a Wald test (LRI (z)) and a

likelihood ratio test (LRI (lrt)) against null proportion.
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NC ¼ z 1�α=2ð Þ þ z 1�βð Þ
πG � πC

� �2

πC 1� πCð Þ þ πG 1� πGð Þ
λ

1þ m� 1ð Þρð Þ
� �

(14)

from which the number of subjects in the group therapy arm and the therapy groups (k) in the group
treatment arm can be determined by NG= λNC and k= λNC/m, respectively. We refer to this method as
PROP in figures and tables.

When testing a new group-based intervention, the investigators may wish to gain as much experi-
ence as possible with the new treatment. There may therefore be interest in randomising a greater
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proportion of subjects to the group treatment arm. In a standard trial design, unequal allocation may
lead to loss of power, but this may not be the case here. Considering continuous outcomes, Roberts
and Roberts (2005) suggested that greater power for a given total sample size of subjects can be
achieved by using unequal allocation favouring the group arm. Minimising Equation (14) with respect

to λ suggests λmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πG 1�πGð Þ
πC 1�πCð Þ 1þ m� 1ð Þρð Þ

q
will give an optimal design in terms of total sample

size. It can also be shown that λeq ¼ πG 1�πGð Þ
πC 1�πCð Þ 1þ m� 1ð Þρð Þ gives the same power as equal allocation

(λ=1). Power will be increased relative to equal allocation where λ∈ (1, λeq).
Analyses using either the generalised estimating equation or the logistic random intercept models

estimate log-odds ratios. SupposeψG ¼ loge
πG

1�πGð Þ
h i

andψC ¼ loge
πC

1�πCð Þ
h i

; one might estimate power by

1� βð Þ ¼ 1� Φ z 1�α=2ð Þ � ψG � ψC

SE ψG � ψC½ �
� �

(15)

with

SE ψG � ψC½ � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
NCπC 1� πCð Þ þ

1þ m� 1ð Þρ
NGπG 1� πGð Þ

s
: (16)

With NG= λNC, sample size in the control arm is therefore

NC ¼ z 1�α=2ð Þ þ z 1�βð Þ
ψG � ψC

� �2 1
πC 1� πCð Þ þ

1þ m� 1ð Þρð Þ
λπG 1� πGð Þ

� �
(17)

giving NG= λNC and k= λNC/m. We refer to this method as LOG-ODDS. From (17), an optimal design

for total sample size will be achieved when λmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πC 1�πCð Þ
πG 1�πGð Þ 1þ m� 1ð Þρð Þ

q
for the LOG-ODDS

method and power will increase relative to equal allocation for λ∈ (1, λeq) where λeq ¼
πC 1�πCð Þ
πG 1�πGð Þ 1þ m� 1ð Þρð Þ.

Another approach, sometimes used to estimate sample size with binary data, is the arc-sine transfor-
mation [38]. Suppose γG ¼ 2arcsin

ffiffiffiffiffiffi
πG

p� �
and γC ¼ 2arcsin

ffiffiffiffiffiffi
πC

p� �
; power would be estimated by

1� βð Þ ¼ 1� Φ z 1�α=2ð Þ � γG � γC
SE γG � γC½ �

� �
(18)

With

SE γG � γC½ � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
NC

þ 1þ m� 1ð Þρ
NG

s
from which

NC ¼ z 1�α=2ð Þ þ z 1�βð Þ
γG � γC

� �
1þ 1þ m� 1ð Þρ

λ

� �
(19)

with NG= λNC and k= λNC/m. We refer to this method as ARC-SINE in tables. An optimal design in
terms of total sample size is obtained for this method when λ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ m� 1ð Þρp
, and power will increase

relative to equal allocation for λ∈ (1, λeq) where λeq=1+ (m�1)ρ.
At this point, it is worth noting differences between Equations (14), (17) and (19). Equation (14) has

terms involving the variance term π(1�π) in the numerator, whereas Equation (17) has the same terms
in the denominator, and the term is absent from Equation (19).

The formulae in the previous text for power and sample size all assume a normal approximation and
so would be expected to overestimate power and underestimate sample size in small samples. Under
methods of analysis, we considered the Satterthwaite test based on Equation (1) with degrees of freedom
defined by Equation (6). The general form of the Satterthwaite test statistic is
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T ¼ μ1 � μ2ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
1
n1
þ σ22

n2

q ;with degrees of freedom υ ¼
σ21
n1
þ σ22

n2

� �2
σ2
1

n1

� �2

n1�1 þ
σ2
2

n2

� �2

n2�1

:

To calculate power for the SATT method, we suggest setting μ1 ¼ πG; σ21 ¼ πG 1�πGð Þ
m

1þ m� 1ð Þρð Þ; n1 ¼ k;μ2 ¼ πC; σ22 ¼ πC 1� πCð Þ , and n2 =NC for a proportions-based sample size

calculation and μ1 ¼ 2arcsin
ffiffiffiffiffiffi
πG

p� �
; σ21 ¼ 1þ m�1ð Þρð Þ

m ; n1 ¼ k;μ2 ¼ 2arcsin
ffiffiffiffiffiffi
πC

p� �
; σ22 ¼ 1, and n2 =NC

for an arc-sine-based calculation. Moser et al. [39] give methods for estimating power for the
Satterthwaite test that involve integration of the non-central F-distribution. These methods are referred
to as PROP SATT and ARC-SINE SATT in Tables S7–S12, respectively. All the methods of estimating
sample size and power of equations described in the previous text including the Satterthwaite test
method are implemented in a published user-written STATA routine called clsampsi [40].

4.2. Comparison of estimated and empirical power

To investigate the performance of the estimators of power and sample size described in the previous text,
a third simulation study was carried out. Data generation and analysis methods were the same as in the
study of small sample biases. The following parameter combinations were used: ρ=0.05, 0.1;m=5, 10;
NG=NC=100, 200, 400 and a selection of values of πG≠πC. To restrict the size of the simulation study,
pairs of πCand πG were chosen that gave a power in the range [0.75, 0.95], based on Equation (12) or by
the Satterthwaite test method with proportions, as combinations with power outside that range are of less
interest when designing a trial. The calculated power for a combination {πG=a,πC=b} will be the same
as the complimentary combination {πG=1�a,πC=1�b}. Because of partial nesting, the combination
{πG=a,πC=b} does not give the same calculated power as the combination {πG=b,πC=a} unless
b=1�a. We considered the following combinations, first, of πG≠πC∈ {0.1, 0.15, 0.2,.., 0.5} and, sec-
ondly, of {πG=1�a,πC=1�b} and πC∈ {0.55, 0.6,.., 0.9}. This gives all unique scenarios out of all
combinations of πG≠πC∈ {0.1, 0.15,.., 0.9} of which 192 scenarios had a power in the required range.
For each scenario, 40 000 simulations were carried out to give a 95% confidence interval of width less
than ±1%across the specified range of power and ±0.5% where the power was 0.85%.

There were 478 simulation failures of the 7680 000 simulations (0. 006%) of which 74% (353/478)
occurred when the sample size in each arm was 100 and 67% (318/478) when the data-generating rate
in either arm was 0.1. Tables S7–S12 give the empirical power and calculated power for the methods
being compared for all 192 scenarios. Considering empirical power, the discrepancy between the
ATP, LGEE and LRI methods of analysis was greater with the larger cluster size (m=10), larger values
of the intra-cluster correlation (ICC=0.1) and values of πG further from 0.5. Among the three methods
of calculating power based on a normal approximation (PROP, ARC-SINE and LOG-ODDS) the
greatest difference between methods was 14% between the PROP and LOG-ODDS methods of calcula-
tion when πG=0.1,πC=0.3, k=10,m=10 and ρ=0.1 (Table S8).

More important for sample size calculation is the relationship between empirical power and the
calculated values as we would hope to identify methods of calculating power that give useful predictions
of the empirical power for a particular analysis method. Table II gives the mean, minimum and
maximum of the difference between empirical and calculated power. Negative values are of greatest
concern as they indicate that the method of calculation is over-optimistic compared with empirical
power. The largest negative difference between the empirical power and a method of calculation was
�14.1% between the likelihood ratio test (LRI (lrt)) and the proportions method (PROP), πG=0.1,π
C=0.3, k=10,m=10 and ρ=0.1 (Table S8). In contrast, the arc-sine method of calculation gave excel-
lent estimates of empirical power of the adjusted method of proportions with differences in the range
(�1.5%, 0.5%), which suggests this to be a good method of calculation for this method of analysis.

2From inspection of Tables S7–S12, there is evidence that the direction of the difference between
empirical and calculated power depends on the direction of the difference between πG and πC. The
differences between the empirical power of the ATP and power calculated by the proportions method
(PROP) according to the direct of the difference is displayed in Figure 6(i). Data-generating values of
πG and πC have been added to plotted values marked as superscript and subscripted, respectively.
Note that with two cluster sizes (5 and 10) and two values of the intra-cluster correlation coefficient,
the figure may contain up to four points with the same πG and πC if several combinations had power
in the range [75–95%]. Power calculated by the PROP method tends to underestimate empirical
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Table II. Difference between empirical power and calculated power.

Method of
analysis [1]

Method of
calculation+ [2]

Mean bias
mean [1, 2]

(%)

Overestimation
min. [1, 2] (%)

Underestimation
max. [1, 2] (%)

Adjusted test of
proportions (ATP)

PROP �0.7 �5.5 4.2
ARC-SINE �0.2 �1.5 0.5

Satterthwaite t-test
(SATT)

SATT �0.5 �3.3 3.2
ARC-SINE-SATT 0.1 �3.9 3.0

Logistic generalised
estimating equations
(LGEE)

PROP �0.5 �7.5 6.2
ARC-SINE �0.0 �3.2 2.6
LOG-ODDS 1.6 �0.1 6.9

Logistic random
intercept with Wald
test (LRI (z))

PROP �1.0 �7.8 4.6
ARC-SINE �0.5 �3.5 0.9
LOG-ODDS 1.0 �0.5 6.6

Logistic random
intercept (LRI) with
likelihood ratio test
(LRI (lrt))

PROP �1.1 �14.1 5.9
ARC-SINE �0.6 �9.9 1.8
LOG-ODDS 0.9 �0.3 3.6

+See text for description of each method.
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power for ATP when πC<πG and overestimate when πG<πC (Figure 6(i)). This effect will be
reversed where πG and πC are greater than 0.5. A similar pattern is seen in corresponding figures
(not given) when the PROP method is compared with the Satterthwaite test and logistic methods of
analysis with the disparity being larger for the logistic methods.

Figure 6(ii) illustrates the empirical power of the logistic random intercept model with a likelihood
ratio test and power calculation by the log-odds transformation (LOG-ODDS). In almost all instances,
the log-odds-based calculation underestimates the empirical power. Similar effects are seen for the logis-
tic generalised estimating equation model test (figure not given), although the underestimation of the
log-odds method is increased with a maximum of 6.9% for LGEE as compared with 3.6% for LRI with
a likelihood ratio test. An explanation for the empirical power being greater than that by calculation
using the LOG-ODDS method could be the bias of the log-odds ratio seen in Figure 4 for LGEE and
Figure S2 for LRI.

In conclusion, we have seen that the arc-sine method appears to be better than the proportions method
where the analysis used is the adjusted test of proportions, and the log-odds method of calculation gives
a potentially useful lower bound for power where analysis is based on the logistic generalised estimation
equations model or the logistic random intercept model. Differences in methods of calculation were
greater in the circumstances that one would expected, namely larger cluster size and intra-cluster corre-
lation, smaller total sample size and the group treatment proportion πG being closer to either 0 or 1.

4.3. Implication of cluster size variation for power

To simplify the exposition, we assumed equal cluster sizes. Candel and Breukelen [41] investigated the
effect of cluster size variation for a partially nested design with continuous outcome measures where the
analysis is based on a linear mixed model. They conclude that there is a loss of efficiency, but this rarely
exceeds 10% for what they considered to be a plausible variation in cluster size.

There is an extensive literature on the implications of cluster size variation in cluster randomised trials
considering both continuous [34–36, 42] and binary [15, 30, 35] outcome measures. This shows that
cluster size variation leads to loss of power, but the magnitude of this loss depends on how clusters
are weighted in the analysis [34]. Where analyses weight subjects equally, there is a simple adjustment
to sample size formulae using the cluster size variance or the coefficient of variation (c.v.) of the cluster
size. The sample size formulae given in Section 4.1 can be easily modified to take account of this type of
weighting by adding terms for the coefficient of variation of clusters size [35, 42] or the cluster size
variance to the design effect. This method of adjustment is implemented in the clsampsi routine [40]
parameterised by the cluster size variance. Where the c.v. is small (<0.23), it has been shown that the loss
of power is small [35]. This is quite reassuring as the c.v. of cluster size will generally be small in trials of
group-administered treatments. For linear model-based analyses of cluster randomised trials, Breukelen
et al. [36] give a Taylor series approximation, again involving the coefficient of variation. They show that
© 2015 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 1616–1636



Figure 6. Comparison of empirical power of the adjusted test of proportions or logistic random intercept model.
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the effect of cluster size variation on efficiency rarely exceeds 10% for linear mixed models. Candel and
Breukelen [30] consider the implications of varying cluster size for a cluster randomised trial with
a binary outcome analysed using logistic random intercept models. They suggest that an inflation
factor for sample size of 1.25 might be needed, but this is based on rather larger values of the
coefficient of variation than are likely for group-administered treatments. Whichever method of
analysis is used, it would seem reasonable to assume that the effects of cluster size variation on
power of trials of group-administered treatment is not likely to be great, particularly as the cluster
size variation is absent from the un-clustered control arm of the trial.

5. Discussion

A strength of the simulation work presented here is that it was based on a design balanced in terms of
total trial size, cluster size, intra-cluster correlation and event rates, which simplifies interpretation of
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each of these factors separately. A limitation is that we have only considered the small cluster sizes one
might expect in trials of group-administered treatments and not the rather larger cluster sizes sometimes
found in trials of therapist and care-provider treatments. The implication of sample size can nevertheless
be inferred by comparison of the effects for clusters of size 5 and 10. For example, the effect on test size
was greater for a cluster size of 10 than 5 in all scenarios and so one can infer that performance will
deteriorate further for larger cluster sizes.

A second limitation of the work is that equal cluster sizes have been assumed in the simulation stud-
ies. We do not consider this to be a major issue for trials of group-administered treatments as treatment
will generally specify a target therapy group size. In contrast, trials of therapist treatments may contain
rather greater variation in cluster size, as the numbers of patients treated by each therapist may vary
greatly due to differences in the numbers of therapists between clinics. What is more, the employment
of trial therapists specifically to treat trial subjects may lead to a small number of particular large cluster
sizes. Ideally, this should be avoided, but this variation may be quite difficult to control and so the
coefficient of variation in therapist cluster size could be much larger than for group-administered
treatments. Not only would this have implications for power, but it might affect the performance of
analysis methods. There is therefore the need for further work investigating the performance of methods
in the presence of gross variation in cluster size, but this is not simply an issue for a partially nested trial
but would also affect a fully nested trial comparing two or more therapist treatments.

We have compared several methods that might be applied to binary data from a partially nested trial
design. Consideration of consistency for a null effect suggests a serious weakness of the logistic random
coefficient model as defined by Equation (8) as a null effect on the scale of proportions corresponds to
negative treatment effect on the scale of log-odds where πG=πC<0.5 and a positive effect for
πG=πC>0.5. The problem here is that the model compares a subject-specific effect in the clustered
arm with a marginal effect in the control.

In small samples, there was evidence of bias in the estimates of the treatment effects for logistic GEE
and random intercept models. We also saw some test size bias for all methods. For a two-sided test, the
maximum test size for a 5% level test was only 7%, but this is deceptive as the type I error was not
equally distributed between test sides with type I error raised for the alternative hypothesis that πG<πC
where the null π<0.5 and for πG>πC where the null πG=πC<0.5. This bias was particularly striking
for the summary measure test and the Satterthwaite test procedure. For one scenario, the type I error on
one side was four times the type I error in the other side, while the type I error for the two-sided test was
only slightly elevated. This disparity between the test sizes can be explained by asymmetry in the
data-generating model and its consequences for the subsequent statistical analyses. As discussed in
the previous text in Section 3.3, standard guidance in medical statistics is to carry out two-sided tests
[37] as this protects against analysis bias. While supporting this guidance, we have seen here an example
where test performance may differ between sides due to asymmetry in the data-generating model. Based
on this experience, we would argue that it may be important to check the empirical test size in both tails
separately where there is asymmetry in the data-generating model or design.

The biases we have seen in empirical test size have in the main increased the probability of accepting
of the alternate hypotheses H1 :πG<πC where πG<πC<0.5 and H1 :πG>πC where πG>πC>0.5.
Based on the one-sided test properties, the logistic models appeared to perform better than those based
on proportions with the likelihood ratio test performing best in the range of scenarios considered here.
This suggests that a likelihood ratio test may be the recommended procedure for this design within
the range of design parameters we have considered. In extrapolating beyond this, one needs to be aware
that a method of estimation may be affected by more than one source of bias that can interact. For
example, the constraint that the random effects are non-negative in a random effects model makes a test
of the treatment effect more conservative. This will counter-act the non-conservative small sample bias
giving better net performance for the method in some situations than others.

When the three methods of calculating power were compared with empirical power, we found both
underestimation and overestimation. The arc-sine method of calculating power was much closer to the
empirical power of the adjusted test of proportions than that based on the proportions. The log-odds
method of calculation gave a lower bound for empirical power where the analysis was based on the
logistic random intercept or logistic generalised estimating equations models. We therefore recommend
the arc-sine method for samples size calculation where the analysis is to be an adjusted test of propor-
tions and the log-odds methods where a logistic model is the planned analysis.

We also considered the implications of unequal allocation. Where the allocation ratio is in the range
where λ∈ (1, λeq), power is increased compared with equal allocation. The range and optimal value of
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λmax depend on the intra-cluster correlation coefficient used in the sample size calculation. Should the
estimated intra-cluster correlation coefficient be smaller, power will be less for πG<πC<0.5 than equal
allocation. It will nevertheless be increased relative to the original calculation. If, instead, the
intra-cluster correlation is larger, the detrimental effect on power will be less than for equal allocation.
Given that the implications of choosing too small an intra-cluster correlation coefficient are of greater
concern for sample size calculation than too large a value, an allocation ratio equal toλeq may have
benefits over equal allocation, when designing partially nested trials.
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