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Abstract

Background: Insulin-like growth factor-I (IGF-I) provides pivotal cell survival and differentiation signals during inner ear
development throughout evolution. Homozygous mutations of human IGF1 cause syndromic sensorineural deafness,
decreased intrauterine and postnatal growth rates, and mental retardation. In the mouse, deficits in IGF-I result in profound
hearing loss associated with reduced survival, differentiation and maturation of auditory neurons. Nevertheless, little is
known about the molecular basis of IGF-I activity in hearing and deafness.

Methodology/Principal Findings: A combination of quantitative RT-PCR, subcellular fractionation and Western blotting, along
with in situ hybridization studies show IGF-I and its high affinity receptor to be strongly expressed in the embryonic and postnatal
mouse cochlea. The expression of both proteins decreases after birth and in the cochlea of E18.5 embryonic Igf12/2 null mice,
the balance of the main IGF related signalling pathways is altered, with lower activation of Akt and ERK1/2 and stronger
activation of p38 kinase. By comparing the Igf12/2 and Igf1+/+ transcriptomes in E18.5 mouse cochleae using RNA microchips and
validating their results, we demonstrate the up-regulation of the FoxM1 transcription factor and the misexpression of the neural
progenitor transcription factors Six6 and Mash1 associated with the loss of IGF-I. Parallel, in silico promoter analysis of the genes
modulated in conjunction with the loss of IGF-I revealed the possible involvement of MEF2 in cochlear development. E18.5 Igf1+/+

mouse auditory ganglion neurons showed intense MEF2A and MEF2D nuclear staining and MEF2A was also evident in the organ
of Corti. At P15, MEF2A and MEF2D expression were shown in neurons and sensory cells. In the absence of IGF-I, nuclear levels of
MEF2 were diminished, indicating less transcriptional MEF2 activity. By contrast, there was an increase in the nuclear
accumulation of FoxM1 and a corresponding decrease in the nuclear cyclin-dependent kinase inhibitor p27Kip1.

Conclusions/Significance: We have defined the spatiotemporal expression of elements involved in IGF signalling during
inner ear development and reveal novel regulatory mechanisms that are modulated by IGF-I in promoting sensory cell and
neural survival and differentiation. These data will help us to understand the molecular bases of human sensorineural
deafness associated to deficits in IGF-I.
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Introduction

Insulin-like growth factor I (IGF-I) is a member of the insulin

family that regulates development and tissue homeostasis [1,2]. It

acts primarily by binding with high affinity to the IGF-I tyrosine

kinase receptor (IGF1R) and its activity is modulated by IGF-binding

proteins (IGFBP) [3]. IGF factors, receptors and binding proteins

form the IGF system. Peak expression of IGF-I in the nervous system

occurs during late embryonic and neonatal periods, although

relatively high expression is maintained in areas of high plasticity,

such as the olfactory bulb and hippocampus [4]. Mutations in mice

have shown that IGF-I modulates survival, proliferation and

differentiation of all the neural lineages studied, and it promotes

synaptogenesis and dendritic arborisation in projection neurons

[4,5]. Activation of the IGF1R leads to phosphorylation of insulin-

receptor-substrates and activation of the cytosolic serine-threonine
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MAP kinases and Akt kinases that induce the translocation of

transcription factors to the cell nucleus, thereby initiating specific

gene expression programmes [6,7]. Deficits in IGF-I are associated

with severe nervous system disorders, including neurodegenerative

diseases, and treatment with IGF-I promotes neural cell repair and

regeneration [8]. Homozygous mutations in human IGF1 result in a

wide range of disorders including intrauterine growth retardation,

postnatal growth failure, microcephaly and mental retardation. They

also cause severe bilateral sensorineural deafness (ORPHA73272;

http://www.orpha.net; [9,10,11]).

Normal development of the inner ear depends on IGF-I

signalling [12]. The auditory sensory epithelium is the organ of

Corti, which is composed of linear rows of hair cells and

supporting cells housed within the cochlea. The mouse inner ear

develops from embryonic day (E)8 from the otic placode, a patch

of ectoderm that invaginates and pinches off to form the otic

vesicle from which all the sensory epithelial cells and sensory

neurons are derived. By E15.5, the organ of Corti has acquired its

full complement of cell types although it does not become

functionally mature until the onset of hearing at postnatal day 12–

14 [13]. Igf1 null (Igf12/2) mice are dwarfs that present organ-

specific growth retardation and a 30% reduction in brain size. The

impact on the nervous system includes loss of selective neuronal

populations, hypomyelinization and reduced peripheral conduc-

tion velocities [14,15]. As in man, IGF-I deficit in the mouse

causes all-frequency bilateral sensorineural hearing loss and a

delayed response to acoustic stimuli [16]. From postnatal day P5

cochlear development is severely impaired in mutant Igf12/2

mice, which develop a smaller cochlea with an immature tectorial

membrane. In addition, these animals suffer aberrant synapto-

genesis, abnormal innervation of the sensory hair cells in the organ

of Corti, poor myelination and a significant decrease in the

number and size of auditory neurons [17,18]. The marked

reduction reported in neural cell number at P20 is due to increased

apoptotic cell death of both neurons and Schwann cells [17].

Here, we have explored the otic-specific targets of IGF-I

signalling to further understand the function of this factor in the

inner ear and how its deficit causes neurosensorial deafness.

Comparative gene expression profiles from the cochlea of wild-

type (Igf1+/+) and Igf12/2 mice at embryonic day E18.5 suggest

that IGF-I modulates sensory cell differentiation and neural cell

fate decisions during late otic development. The expression

patterns of Six6, Mash1 and Fgf15 are altered in the cochleae of

Igf12/2 mice. Changes also occur in the expression, protein levels

and nuclear localization of FoxM1, a forkhead box transcription

factor that is ubiquitously expressed in proliferating cells and one

of its targets the cyclin-dependent kinase inhibitor p27Kip. In silico

analysis of the promoter regions of differentially expressed genes

selected from the microarray analysis of null versus wild type

cochleae at E18.5, pointed to the transcription factor myocyte

enhancing factor 2 (MEF2) as a novel downstream target of

cochlear IGF-I signalling. The nuclear expression of MEF2A and

D was lower in the absence of IGF-I. Thus, for the first time we

show that MEF2 and FoxM1 activities are modulated by IGF-I in

the mouse cochlea. These results also provide novel clues to the

molecular mechanisms underlying otic development and the

causes of neurosensorial deafness associated with defects in IGF-I.

Materials and Methods

Mouse Handling and Genotyping
Heterozygous mice in which the Igf1 gene underwent targeted

disruption were bred, maintained and genotyped as described

[14,17]. In brief, E18.5 Igf12/2 embryos on a C57BL/6J genetic

background, which die at birth, were used for the DNA array study,

whereas a hybrid MF1/129/sv genetic background was used to

increase survival in the resultant null mice as described [14,17].

Adult survival was around 20% of the newborn null Igf12/2 mice.

Both mouse strains showed similar cochlear gene and protein

expression profiles when tested at E15.5 and E18.5. Mouse

genotypes were identified using the REDExtract-N-AmpTMTissue

PCR Kit (XNAT, Sigma) following the manufacturer’s instructions

and with the following primer sets specific for the Igf1 and

neomycin genes (Igf1 forward 59-GTCTAACACCAGCC-

CATTCTGATT-39; Igf1 reverse 59-GACTCGATTTCACC-

CACTC-GATCG-39; neomycin forward 59-GCTTGGGTGGA-

GAGGCTAT-CC-39; and neomycin reverse 59-CCAGC-

TCTTCAGCAATATCACGGG-39). Hearing was tested in adult

animals by recording auditory brainstem responses as described

[16] (results not shown). Animals were humanely sacrificed and all

procedures were in accordance with the European Council

Directive (86/609/EEC) and the Bioethics Committee of the

CSIC.

Transcriptome Analysis by GeneChip Arrays
E18.5 was selected because most Igf12/2 mice die in early

postnatal development. E18.5 cochleae from two Igf1+/+ and two

Igf12/2 embryos were dissected and pooled to obtain RNA. Three

independent RNA pools of each genotype (6 mice) were isolated

with Trizol (Invitrogen) following the manufacturer’s instructions.

The purity of RNA was assessed with an Agilent Bioanalyzer 2100

(Agilent Technologies). Six additional microarrays were hybridized

with whole lung RNA obtained from the same mice or their siblings

and were included in the analysis to compare the expression profiles

of different organs (GSE17157; JGP manuscript in preparation).

Cochlear complementary RNA (cRNA) for hybridization to

MOE430A GenechipsH (Affymetrix) was prepared by sequentially

generating cDNA with the one-Cycle cDNA Synthesis Kit, which

was purified and used as a template in the in vitro transcription

reaction for cRNA amplification and biotin labelling. The cRNA

was then hybridized to the GeneChipH arrays and scanned with a

GeneChipH Scanner 3000 7G 4C (Affymetrix).

An initial analysis was performed with MAS5.0 (Affymetrix) and

Robust Multiarray Average (RMA) software [19], which indicated

a very high variability that was associated with the biological

variability and non-specific hybridization. Because most of the

tissue-specific genes are expressed at low levels at this developmen-

tal stage, the high background signal of common genes generated a

very high noise-to-signal ratio. The software package PUMA

(Propagating Uncertainty in Microarray Analysis) was then used to

estimate the gene expression levels. This package, integrated in the

Bioconductor project (http://www.bioconductor.org), uses novel

probabilistic models to analyse affymetrix GeneChip array data.

Specifically, the multi-mgMOS (multi-chip modified gamma model

for oligonucleotide signal) model was used to extract gene

expression levels and their estimated uncertainties [20]. The

analysis of the Fold change (FC) was used in combination with

the Probability of Positive Log Ratio (PPLR) algorithm from the

PUMA package, to reduce the number of false positives [21]. PPLR

associates probability values (between 0 and 1) to each log ratio,

which represents the probability of the log Ratio being positive.

This probability is a measure of the false positive detection of

differential expression and it allows the selected Differentially

Expressed (DE) genes to be ranked in order of the robustness of the

prediction. We defined DE genes in Igf1+/+ mice as those that

presented a positive FC greater than one log2 unit with an

associated probability higher than 0.95. Conversely, in Igf12/2
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mice we defined DE genes as those that presented a negative FC

less than -1 with an associated probability lower than 0.05.

Genes were classified by their ontology and by the biological

processes in which they are implicated using the PANTHER

Classifications Systems software (http://www.pantherdb.org) and

FATIGO+ (http://babelomics.bioinfo.cipf.es/).

Transcription Factor Analysis
The promoter regions of up-regulated genes in the Igf12/2

mouse cochlea selected either by their DE ranking and/or their

association with sensorial deficits in humans (IL-13ra1, Fgf15,

Foxm1, Six6, Rorb, Rp1h and Ush1c), were compared using the

MEME software (http://meme.sdsc.edu/meme/intro.html) to

identify common motifs. The promoter regions were selected

using the PromoSer database (http://biowulf.bu.edu/zlab/

PromoSer/) extracting 1.5 Kb upstream and 50 bp downstream

of the Transcription Start Site (TSS). Only motifs with a pair-wise

correlation lower than 0.30 were selected and the selected motifs

were searched for known transcription factor binding sites using

TESS (http://www.cbil.upenn.edu/cgi-bin/tess/). Only the tran-

scription factors sites with the highest Log-likelihood score were

selected. Similarly, down-regulated genes with a FC.1 were

grouped and the common motifs in the promoter region were

analysed using either the method indicated above or the

FATIGO+ software with similar results.

Low Density Arrays and Quantitative RT-PCR
TaqManH Low Density Arrays containing three replica probes

for each of the twenty genes selected from the array data were

hybridized with cDNA generated by reverse transcription (High

Capacity cDNA Reverse Transcription Kit. Applied Biosystems).

cDNA was prepared from three to five different RNA pools

corresponding to six to ten mice for each genotype. Each RNA pool

was isolated as described above from the pooled cochleae from two

embryos or mice for each genotype taken at the following times:

E15.5, E18.5, P5, P15, P30, P60 and P90. PCR was performed on

an Applied Biosystems 7900HT Fast Real-Time PCR System and

the genes were selected on the basis of their FC, physiological

interest and the availability of appropriate TaqManH probes. In

addition, probes to test the temporal expression of the IGF system

factors, receptors and transport proteins were used. Eukaryotic 18S

rRNA was chosen as an endogenous housekeeping control gene and

the estimated gene expression was calculated as 22DCt, multiplying

this value by a factor of 106 to generate a clearer graphical

representation. Alternatively, gene expression was analyzed by real

time PCR using validated probes from TaqManH Gene Expres-

sion Assays (https://products.appliedbiosystems.com/ab/en/US/

adirect/ab?cmd=ABGEKeywordSearch; Applied Biosystems).

Probes used are listed in Table S1 and included those for Igf2,

Irs2, Foxm1, Foxg1, Mash1, Mef2a, Mef2c and Mef2d. Assays were done

following manufacture’s instructions and using as reference the

expression levels of 18S. The relative quantification values (RQ)

were calculated by the 22DDCt method and data are presented as

means of log10RQ.

In Situ Hybridization
In situ hybridization was performed essentially as described

previously [22], with minor modifications. The cDNA used to

generate the in situ hybridization probes are detailed in Table S2

Three E15.5, E18.5 and P5 mice per genotype were tested in

parallel in three independent experiments. No signal was obtained

with the control sense probes (data not shown). Sections were

incubated overnight at 70uC with 1 mg/ml of the digoxigenin-

labeled probes, and binding detected by overnight incubation with

alkaline phosphatase-conjugated anti-digoxigenin antibody

(1:3500, Roche), which was visualised with NBT (Nitro blue

tetrazolium chloride)/BCIP (5-Bromo-4-chloro-3-indolyl phos-

phate, toluidine salt; 1:50, Roche) or Fast Red (Roche) for

fluorescence.

Cochlear Morphology and Immunohistochemistry
Selected E15.5, E18.5, P5 and P15 cochlear sections were

examined by dual in situ hybridization and immunohistochemistry

as described in [23] using the primary antibodies summarized in

Table S3. Sections were then sequentially covered with the

secondary antibody solution (1:100, biotin-conjugated anti-mouse

IgG or biotin-conjugated anti-rabbit, Chemicon), and extravidin

peroxidase (1:200, Sigma). Finally, antibody binding was visualised

using DAB as the chromogen and the sections mounted in Mowiol

for observation under a Nikon 90i microscope. When indicated,

Alexa Fluor 488 goat anti-rabbit, Alexa Fluor 546 goat anti-rabbit,

Alexa goat anti-mouse 488 or Alexa donkey anti-goat 488 dyes

(1:400, Molecular Probes) were used as the secondary antibody.

Three embryos or mice per genotype were tested in parallel in three

independent experiments. Control experiments without primary

antibody were carried out for each reaction and indicated that the

staining pattern was specific for antigen recognition (data not

shown).

Cochlear Protein Extraction and Analysis
Frozen cochleae from E15.5, E18.5, P5, P15, P60 and P90 mice

were pooled and homogenized in 200 ml of ice-cold RIPA lysis

buffer containing 0.01% of the P8340 protease and P5726

phosphatase inhibitor cocktails (Sigma) and heated to 95uC for

5 min. Cochlear extracts were cleared by centrifugation at 11,800

rpm for 5 min at 4uC, and the supernatant was stored at 270uC
until use. Three to six different pools from each genotype were

used. When indicated, NE-PERH Nuclear and Cytoplasmic

Extraction Reagent (PIERCE Biothecnology) was used to prepare

the cytoplasmic and nuclear extracts from E18.5 and P15 cochleae

as indicated by the manufacturers. The protein content of the

samples was determined with the CoomassieH Plus Protein Assay

Reagent Kit or Micro BCA Protein Assay Kit (PIERCE

Biothecnology) using BSA as the standard.

Equal amounts of cochlear protein were subjected to SDS-

PAGE on 8%, 10% or 15% polyacrylamide gels and the proteins

were then transferred to PVDF membranes in a Bio-Rad Trans

Blot apparatus according to the manufacturer’s instructions. After

incubation with a blocking solution, the membranes were probed

overnight at 4uC with the appropriate primary antibodies

summarized in Table S3. All antibodies were diluted in blocking

solution except those against Akt, P44/42 ERK and p38 MAPK,

which were diluted in TBS-T containing 5% BSA. The

membranes were then washed and incubated with the appropriate

peroxidase conjugated secondary antibodies for 1 h at RT.

Immunoreactive bands were visualized by ECL (GE Healthcare

Amersham) and the bands were quantified by densitometry with

NIH Image J software. Statistical significance was estimated by

Student’s t-test after using Levene’s test to confirm the equality of

variances.

Results

Spatiotemporal Pattern of Expression of the IGF System
Elements and Modulation of Target Kinase Activities in
the Igf12/2 Null Mouse

Previous studies have shown that cochlear structures are positive

for IGF-I immunostaining, which was observed in the stria
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vascularis, spiral limbus and sensory supporting cells, as well as in

subpopulations of auditory ganglion neurons at postnatal day P20

[17]. However, because IGF-I is a hormone secreted by the liver, it

was important to determine whether or not it was synthesised in

the cochlea. To address this question we performed in situ

hybridization for Igf1 and Igf1r at stages E15.5, E18.5 and P5

(Fig. 1).

At stages E15.5 and E18.5, the auditory epithelium can be

divided into the greater epithelial ridge (GER), which includes the

single row of inner hair cells, and the lesser epithelial ridge (LER),

which includes the three rows of outer hair cells (Fig. 1A–B). By P5

(Fig. 1C), the structure of the organ of Corti more closely

resembles that of the adult. Igf1 and Igf1r temporal expression

patterns are shown in Fig. 1A–C painted in blue and red tones,

respectively. At E15.5, Igf1 mRNA was strongly expressed in an

area corresponding to the future stria vascularis and more weakly

in those areas that will give rise to Reissner’s membrane, the spiral

limbus and the outer sulcus (Fig. 1D,G). The expression of Prox1

was used to define the LER (see Fig. 1M; [24]). At E18.5, Igf1 was

still expressed strongly in the stria vascularis and spiral limbus,

while it was relatively weak in the outer sulcus and Reissner’s

membrane (Fig. 1E,H). The expression of Igf1 was restricted by

P5, when it was detected in the marginal cells of the stria vascularis

and it overlapped with the cells expressing the Kir4.1 potassium

channel (Fig. 1F,I,I’). Weaker expression was observed in the inner

and outer sulcus.

Igf1r was ubiquitously expressed at E15.5 but it was stronger in

the GER, LER and auditory ganglion (Fig. 1J,M). The expression

pattern remained similar at E18.5 (Fig. 1K,N), although it was

notably stronger in the apical turn of the auditory ganglion

(Fig. 1K’). As with Igf1, the expression of Igf1r was more restricted

by stage P5 and interestingly, the pattern was complementary to

that of Igf1 with this receptor being confined to the inner spiral

sulcus, Hensen’s, Claudius cells and the basal cells of the stria

vascularis (Fig. 1L,O,O’). The pattern of expression of the Igf1r did

not show any change in the Igf12/2 null mouse cochlea with

respect to the wild type cochlea at the stages studied (E15.5, E18.5,

P5 and P15; Fig. S1).

The temporal expression profiles of several genes of the IGF

system were studied in the cochleae of Igf1+/+ and Igf12/2 mice by

qRT-PCR. These included Igf1, Igf1r, Ins2, Igf2, Igfbp2 and Igfbp3

at stages E15.5, E18.5, P5, P15, P30, P60 and P90. In Igf1+/+ mice

the expression of Igf1 remained high during development, despite

the modest postnatal decrease, while as expected it was absent in

the Igf12/2 cochlea (Fig. 2A). Ins2 was not detected in wild type or

mutant mice, at any of the time points studied (data not shown). In

contrast, Igf2 expression remained high during development and

dropped after birth, the expression levels of Igf2 did not show

statistically significant differences between wild type and mutant

mice at any of the time points studied (data not shown). Expression

of Igf1r in the Igf1+/+ cochlea decreased dramatically from E15.5 to

P5, and it increased with age thereafter (Fig. 2B). In the Igf12/2

cochlea, Igf1r was expressed at higher levels than normal after

birth and it remained proportionally higher throughout the period

studied (Fig. 2B). IGFBP expression has been reported in the

cochleae of several species [25,26]. High levels of Igfbp2 and Igfbp3

expression were detected at E15.5, although this expression

diminished rapidly thereafter. There was slightly higher expression

of these binding proteins in the cochleae of Igf12/2 null mice

(Fig. 2C–D).

Upon IGF-I binding, its high affinity receptor IGF1R tyrosine

kinase activity is turned on and autophosphorylates receptor

residues that act as docking sites for adaptor proteins like the

insulin receptor substrate 2 (IRS2) [27], which in turn will activate

downstream signalling pathways. Fig. 2E and Fig. S2 show that

IGF1R is less phosphorylated in the Igf12/2 null mouse cochlea

than in the wild type. Interestingly, there was a slight (30%

p,0.05) increase in the tyrosine phosphorylation ratio of the

IGF1R in the Igf12/2 from E18.5 to P90 when compared with the

relative tyrosine phosphorylation ratio observed at E15.5; no

changes could be shown for IRS2 levels at the times studied

(Fig. 2F and S2).

IGF-I signalling is mediated by a network of intracellular

mediators that include the phosphatidylinositol-3-kinase/Akt

pathway and the mitogen-activated kinase cascades. In the

E18.5 Igf12/2 null mouse cochlea there were reductions in the

relative levels of activated phospho-AktSer473 (31%, p,0.01) and

phospho-ERK1/2 (56%, p,0.05), whereas phospho-p38 MAPK

was strongly activated (261%, p,0.005) when compared with the

Igf1+/+ wild type mouse cochlea (Fig. 2E,G). Akt and ERK1/2

MAPK activation are essential for cell survival and proliferation,

whereas p38 MAPK forms part of the cellular response to

environmental stress, such as ultraviolet light, heat, osmotic shock

and inflammatory cytokines [28]. These data indicate that the

IGF-I deficit at E18.5 diminishes the activity of the pathways that

control cell proliferation and survival, whilst those involved in the

cellular response to stress are heightened.

To recap, the main elements of the IGF system are present

during the development of the cochlea and they are expressed in

specific spatiotemporal patterns. IGF-I deficit affects the expres-

sion levels of the IGF system elements, and key IGF-I-activated

signalling pathways are profoundly altered. These data, together

with the reported morphological alterations and the profound

sensorineural deafness that the deficit in IGF-I causes in mice and

humans, prompted us to further study the molecular mechanisms

underlying IGF-I activity in the developing mouse cochlea.

Identification of Differentially-Expressed Genes in the
E18.5 Igf12/2 Mouse Cochlea

To study the otic-specific gene targets of IGF-I, mRNA from

whole cochleae of E18.5 Igf1+/+ and Igf12/2 mice was hybridized

with mouse ‘whole genome’ arrays (MOE430A) from Affymetrix.

The results were submitted to the Gene Expression Omnibus

(http://www.ncbi.nlm.nih.gov/geo/) with the accession number

GSE11821.

We used multi-mgMOS and the model developed by the

PUMA group to estimate gene expression levels with credibility

intervals that quantify the measured variance associated with the

estimated target concentration within a sample. This within-

sample variance is a significant source of uncertainty in

oligonucleotide arrays, especially for genes expressed at low levels.

Final targets were selected using the PPLR algorithm that reduces

the number of false positives. Genes that presented a Fold Change

higher than a log2 unit of 1 (FC,1 with P,0.05 and FC.1 with

P.0.95) were selected for further analysis. Following these criteria,

the expression of 167 genes was seen to be considerably lower and

64 genes were expressed more strongly in the absence of IGF-I.

These genes were then compared with the NCBI Mus musculus

gene database, and ordered by gene ontology and biological

processes with the programs PANTHER and FATIGO+. This

analysis identified the different biological processes and cellular

activities of the cochlear genes affected by IGF-I deficit (Fig. S3). A

further selection was carried out on the basis of biological function,

reported expression in the inner ear or association with human

deafness, as well as for technical parameters as the FC and the low-

variance between arrays. Table S4 shows selected genes

differentially expressed in the absence of IGF-I, which include

genes related to sensorial defects (Ush1c, Esrrb and Tub), ion

IGF-I in Cochlear Development
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Figure 1. Igf1 and Igf1r mRNA expression in the cochlea. (A–C) Cartoons of the organ of Corti at E15.5, E18.5 and P5 show the expression of
Igf1 (blue), Igf1r (orange and red) or both (purple). (D–O) In situ hybridization of Igf1 (D-I,I’) and Igf1r (J-O, O’) in normal embryos at E15.5 (D,G,J,M),
E18.5 (E,H,K,N) and in P5 mice (F,I,L,O). Dual immunostaining with anti-Kir4.1 was performed to identify the neural projections, the stria vascularis and
pillar cells (F,I,I’) and with anti-Prox1 to identify the pillar cells, Deiter’s cells, and auditory neurons (J–O,O’). (D-I) Igf1 expression was located in the
stria vascularis (long black arrows), spiral limbus (black arrowheads), outer sulcus (green arrowheads) and Reissner’s membrane (short black arrow). At
P5 the Igf1 expression in the stria vascularis was observed in the marginal cells (I’). (J,K,M,N) At E15.5 and E18.5, Igf1r was strongly expressed in the
GER (red arrow) and weakly in the LER (red arrowhead). (L,O) At P5, Igf1r expression presented a complementary pattern to that of Igf1 and was
observed within the inner spiral sulcus (red arrows), Claudius and Hensen’s cells (red arrowheads). Igf1r was also located in the AG (asterisk in J,K, K’)
and in the basal cells of the stria vascularis (O’). Three embryos per genotype were tested in parallel in three independent experiments. GER, greater
epithelial ridge; IHC, inner hair cells; LER, lesser epithelial ridge; OHC, outer hair cells; PC, pillar cells; AG, auditory ganglion; SM, scale media; ST, scala
tympani; SV, scala vestibuli; TM, tectorial membrane. Scale Bars: D,E,F, 150 mm (D,E,F,J,K,L); A,B,C, 50 mm; G,H,I, 50 mm (G,H,I,M,N,O); I’, 10 mm; O’,
20 mm and K’, 30 mm.
doi:10.1371/journal.pone.0008699.g001
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transporters (Cacna1f, Kcnd2, Kcnmb1 and Mlc1), the acetylcholine

transporters Slc18a3 and Slc5a7 and the strial functional modula-

tors Esrrb and Cldn18, among others that have been previously

reported as cochlear-expressed genes.

To assess the organ specificity of the IGF-I target genes

identified in this study, a parallel study was carried out on total

RNA obtained from the lungs of Igf12/2 and wild type littermates

(GSE17157; JGP, manuscript in preparation). The comparison of

the differentially expressed genes obtained from both studies

indicated that 94 genes were up-regulated in the lung, whereas

only 64 genes were up-regulated in the cochlea. Interestingly none

of these genes was common to the two tissues. In addition, 56 lung

genes were down-regulated in the Igf12/2 mouse, in striking

contrast to the weaker expression of 167 cochlear genes when

compared to that in the wild type mouse cochlea. Only 3 genes

were present in both databases: integrin alpha V (Itgav), solute

carrier family 4 member 1 (anion exchanger - Slc4a1) and the

ubiquitin specific peptidase 12 (Usp12).

Figure 2. Time-course of mRNA expression of IGF-system genes and the activation levels of signalling mediators in the E18.8
cochlea. (A–D) mRNA expression levels of Igf1, Igf1r, Igfbp2 and Igfbp3 were analyzed by qRT-PCR in Igf1+/+ (open circles) and Igf12/2 (closed circles)
mice at E15.5 and E18.5 (n = 8), P5, P15, P30, P60 and P90 (n = 6). Eukaryotic 18S rRNA was used as the endogenous housekeeping control gene. The
estimated gene expression was calculated as 22DCt?106. (A) Igf1 expression was high in normal cochlea and absent in the null mice. (B) Igf1r
expression in normal cochleae decreased dramatically from E15.5 to P5 and increased with age thereafter. In the Igf12/2 cochlea, Igf1r followed the
same pattern but consistently presented higher levels at all time points studied. Igfbp2 (C) and Igfbp3 (D) mRNA levels were high at E15.5 but they
dropped thereafter. Their profiles were slightly higher in the Igf12/2 cochlea. (E) IGF-I modulates IGF1R, ERK, Akt and p38 activation at E18.5. (F)
Levels of phosphorylated-IGF1R and IRS2 in cochlear protein extracts from Igf1+/+ and Igf12/2 mice were studied by Western blotting at E15.5, E18.5,
P5, P60 and P90. Data are presented as percentage of Igf12/2 null mouse protein levels compared to the Igf1+/+. (G) To determine the levels of
phosphorylated AktSer473, ERK and p38 MAPK, cochlear protein extracts from E18.5 Igf1+/+ and Igf12/2 mice were analysed by immunoblotting.
Membranes were re-probed with b-Actin as a loading control, and for the non-phosphorylated forms of AKT and ERK1/2. Films were scanned,
densitometry performed by using ImageJ software and the levels were normalised by giving a value of 100 to the Igf1+/+ mouse samples. Values are
presented as mean6SEM of at least 3 different experiments involving at least 6 mice per condition for Akt, ERK and p38 MAPK. The statistical
significance estimated by Student’s t-test was as follows ***p,0.005; **p,0.01; *p,0.05.
doi:10.1371/journal.pone.0008699.g002
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The changes in the expression of 15 genes were confirmed by

qRT-PCR using TaqMan probes where available, or by in situ

hybridization. qRT-PCR has proven to be an efficient method to

verify DNA array results and the predicted differences were

confirmed for 68% of the genes studied (see Table S3). At E18.5,

qRT-PCR of total cochlear mRNA confirmed that Akr1c13, Fgf15,

Foxm1, Mash1, Rp1h, Six6 and Ush1c transcripts were more strongly

expressed in the cochleae of Igf12/2 mice [29,30,31,32]. In

contrast, Foxg1, which is involved in the morphogenesis of the

mammalian inner ear [33], did not present a differential

expression in the null mice (see Table S3).

These data contribute to our understanding of the molecular

basis of the delayed maturation of the sensory epithelium reported

in IGF-I deficit [17], extending the actions of this factor and

highlighting a relationship with the Usher’ syndrome molecules

Ush1c [32], Rp1h [34] and Tub [35] whose mutations cause both

deafness and blindness in men (ORPHA120433, ORPHA886).

Parallel in situ hybridization studies confirmed the aberrant

cellular expression of Six6 and Mash1, and of the fibroblast growth

factor Fgf15. These genes were expressed in the Igf12/2 cochlea

despite being absent or expressed at very low levels in the Igf1+/+

cochlea. Within the central nervous system, Six6 is expressed in the

presumptive and differentiating neural retina, ventral optic stalk,

olfactory placodes, hypothalamus, and pituitary gland [36].

Although Six6 mRNA is not normally expressed in the auditory

nerve at E18.5 (Fig. 3A,B), transcripts were clearly detected in the

Figure 3. Up-regulation of Six6, Mash1 and Fgf15 in the embryonic cochlea of the Igf12/2 mouse. In situ hybridization for Six6 (A, B, D, E),
Mash1 (C, F) Fgf15 (G–J and N–Q), Fgf8 (K) and FgfR3 (L) transcripts was performed on cryostat sections from Igf1+/+ and Igf12/2 E18.5 (A–F and G–
M) and P5 (N–Q) cochleas. (M) Schematic drawing of the organ of Corti showing the different cell types at E18.5. Six6 and Mash1 expression was
higher in the auditory nerve (AN) of E18.5 Igf12/2 cochlea. Fgf15 mRNA expression located in the border cells (BC) and in the inner phalangeal cells
(IPC) of E18.5 Igf12/2 mice (arrows in I,J), was absent in Igf1+/+ mice (G,H). Fgf8 (blue arrowhead in K) expression was detected in IHC in Igf12/2 and
FgfR3 (blue staining in L) transcripts were also detected in Igf12/2 supporting cells. At P5, Fgf15 expression was observed in the IPC and BC in the
basal turn of the cochlea of both Igf12/2 (arrows in N,O,O’,P) and normal (arrowhead in Q) mice. Immunostaining for Prox1 (brown in A,B,D,E),
MyosinVIIa (brown in H,P green in I,L,O) and p75 (brown in G,J,K) identified supporting cells, inner and outer hair cells and pillar cells respectively.
Three embryos per genotype were tested in parallel in three independent experiments. DC, Deiter’s cells; HC, hair cells; IHC, inner hair cells; OHC,
outer hair cells; PC, pillar cells; SM, scala media; ST, scala tympani; SV, scala vestibuli; TM, tectorial membrane. Scale Bars: A, 100 mm (A,D,N); E, 100 mm
(B, C, E, F); 50 mm (G); I, 20 mm (I,O,O’); and 30 mm (H,J,K,L,P,Q); M, 10 mm.
doi:10.1371/journal.pone.0008699.g003
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Igf12/2 mouse (Fig. 3D,E, arrows in E). The proneural bHLH

transcription factor Mash1 was also more strongly expressed in the

auditory nerve (AN) of the E18.5 Igf12/2 mouse (Fig. 3C,F),

overlapping the glial transition zone [37]. At P5, Mash1 expression

was similar between genotypes and was associated with neuronal

bodies amongst fibres that were strongly labelled for myelin basic

protein, which may suggest that at this stage Mash1 positive cells

are root neurones [38] (Fig. S4). These results suggest that IGF-I

participates in late neural cell fate decisions in the auditory

ganglia.

Fibroblast growth factors and their receptors have key roles

during inner ear development [39,40]. At E15.5 and E18.5, Fgf15

is not normally expressed in the organ of Corti of wild type mice

but transcripts from this gene were found in the inner phalangeal

cells and border cells of the Igf12/2 mice at E16.5 and E18.5, close

to the inner hair cells in the basal turn of the cochlea (data not

shown and Fig. 3G,J). These transcripts were associated with the

specific markers p75 for pillar cells and myoVIIa for hair cells

(Fig. 3I,J, see reference cartoon in M). At P5, Fgf15 expression in

the border and inner phalangeal cells was very similar between

genotypes (Fig. 3N–Q). Expression of Fgf8 (Fig. 3K) and Fgfr3

(Fig. 3L) was unchanged in the Igf12/2 cochlea at E18.5.

The expression profiles of Akr1c13, Dnabj7, Fgf15, Fibp, Foxg1,

Foxm1, Kcnd2, Kif17, Mash1, Shbg, Retnla, Rp1h, Six6, Slc19a2 and

Ush1c at stages E15.5, E18.5, P5, P15, P30, P60 and P90 were

studied in the cochleas of Igf1+/+ and Igf12/2 mice by qRT-PCR.

They were categorised in three groups: i) genes with profiles that

differed during embryonic development, either increasing like

Akr1c13, Fgf15, Foxm1 and Six6 (Fig. 4A) or decreasing like Dnabj7

(Fig. 4B), in the Igf12/2 cochlea; ii) genes with profiles that differed

during the postnatal stages, increasing like Fibp, Shbg (Fig. 4C),

Slc19a2 and Rp1h or decreasing like Kif17 and Retnla (Fig. 4D) in

the Igf12/2 cochlea; iii) genes that were affected by the absence of

Igf12/2 throughout embryonic and postnatal development, such

as Mash1, Ush1c (Fig. 4E) and Kcnd2 (Fig. 4F). One example from

each category is shown (Fig. 4).

FoxM1 and MEF2 Levels and Intracellular Localization Are
Differentially Regulated in the Igf12/2 Mouse Cochlea

In the mouse embryo, FoxM1 is associated with cell cycle control

and DNA repair in neural progenitors and its expression decreases

after differentiation [41]. FoxM1 prevents nuclear localization of

the cyclin-dependent kinase inhibitor p27Kip1 and is essential for

cytokinesis [42,43]. In the E18.5 Igf12/2 mouse cochlea, Foxm1

expression levels were up-regulated (+1.7 fold log2 change using

Genechip Arrays and +1.2 with qRT-PCR) with respect to the wild

type. To further explore the possible functional consequences of this

altered Foxm1 expression, cytoplasmic and nuclear protein extracts

from the whole cochlea of E18.5 and P15 mice were analyzed. At

E18.5, nuclear FoxM1 protein levels were 154% higher (p,0.05) in

Figure 4. Time-course of IGF-I target gene mRNA expression. qRT-PCR analysis of mRNA from Igf1+/+ (open circles) and Igf12/2 (closed circles)
cochleae obtained at E15.5, E18.5, P5, P15, P30, P60 and P90. Eukaryotic 18S rRNA was used as the endogenous housekeeping control gene.
Estimated gene expression levels are represented as 22DCt?106. Fgf15 (A) and Dnabj7 (B) expression profiles were similar, with high levels at E15.5 and
lower levels from E18.5 onwards. Up to P5, more Fgf15 transcripts and fewer Dnabj7 transcripts were detected in the mutant cochlea. Shbg levels
were higher from P5 onwards (C) whilst Retnla (D) expression increased with age. Although weaker in the Igf12/2 cochlea, Ush1c (E) mRNA levels
were higher in the Igf12/2 cochlea and Kcnd2 levels were lower from P15 onwards (F). Statistical significance estimated by Student’s t-test was as
follows ***p,0.005; **p,0.01; *p,0.05, with respect to wild type mice data (n = 6 mice/genotype).
doi:10.1371/journal.pone.0008699.g004
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Igf2/2 mice, whilst the cytoplasmic component was 57% lower

(p,0.005, Fig. 5A,B). In contrast, at P15, FoxM1 protein levels

were only 13% higher in the nuclear extract of whole cochlea,

whilst the cytoplasmic fraction was 50% lower (p,0.05, Fig. 5B)

Cytoplasmic protein levels for p27Kip1 were 121% higher (p,0.05)

in Igf2/2 mice at E18.5 whilst the nuclear fraction was 27% lower

(p,0.05) (Fig. 5B). At P15, p27Kip1 cytoplasmic levels were 24%

higher in the Igf12/2 mouse and the nuclear fraction was 58%

lower. These differences in subcellular localization of both FoxM1

and p27Kip1 in the Igf12/2 mouse cochlea suggested that FoxM1

may modulate the nuclear targeting of p27Kip1. The relative

expression levels of FoxM1 remained high during development and

decreased at postnatal stages in the Igf12/2 with respect to the

Igf1+/+cochlea (Fig. 5C). At P15, FoxM1 protein was located in

both genotypes at the stria vascularis, the auditory ganglia and in

the organ of Corti (Fig. 5D–M).

To further identify common transcriptional regulators of the

IGF-I cochlear target genes, the 59UTR promoter regions (1.5 kb

upstream) of the selected genes were searched using MEME

software. Those with the lowest p-value for random recurrence

were selected and were analysed with TESS. Finally, the consensus

sequences with the highest probability of matching motifs were

selected. From two different analyses of genes up-regulated in the

Igf12/2 cochlea a possible binding site for the MEF2 transcription

factor was identified with the strongest likelihood of alignment.

There are four members of the MEF2 family of transcription

factors, A to D, whose tissue expression and functions are not well

known [44]. MEF2A and D are expressed in neuronal progenitors

and specific neuronal populations and Mef2c2/2 mice show

aberrant neuronal migration during development and immature

adult neurons [45]. In muscle cells, MEF2 levels are modulated by

IGF-I, which delays MEF2 degradation by the ubiquitin-

dependent proteasome pathway and promotes MEF2 transloca-

tion to the nucleus [46]. Here we study the cochlear expression

and regulation of MEF2 family members by IGF-I (Fig. 6).

Western blot studies showed that the levels and subcellular

location of MEF2 were altered in the Igf12/2 cochlea when

compared to the wild type control (Fig. 6A,B,C). At E18.5,

MEF2A protein levels were 26% lower in the cytoplasm (p,0.05)

and 32% lower (p,0.01) in the nucleus, whereas, at P15 both

cytoplasmic and nuclear levels were 40% lower (p,0.05) (Fig. 6B).

On the other hand, MEF2D protein levels in the E18.5 Igf12/2

cochlea were similar in the cytoplasm but 43% lower (p,0.05) in

the nucleus, while at P15, they were lower in both fractions (25%,

p,0.01, and 19% in the cytoplasm and nuclear fractions,

respectively) (Fig. 6C). Mef2a, Mef2c and Mef2d temporal

expression profiles were studied in the cochlea of Igf1+/+ and

Igf12/2 mice by qRT-PCR from E15.5 to P90 (Fig. 6D). Mef2a

and Mef2d showed similar differences in expression level in

embryonic and adult tissue, being slightly higher in Igf12/2

cochleae at E15.5 and lower at P5 and P90. In contrast, Mef2c

expression levels were much lower at all ages and MEF2C protein

was undetectable. Fig. 7 shows the localization of MEF2A and D

immunostaining in the E18.5 and P15 mouse cochlea of both

genotypes. MEF2A immunostaining was strong in E18.5 auditory

ganglion neurons, although it presented a more diffuse cellular

pattern in immature neurons of Igf12/2 mice (Fig. 7A,B,C). At

P15, MEF2A immunostaining was visible in the auditory ganglion

(Fig. 7I,J,K), pillar cells, Deiter’s cells and inner hair cells

(Fig. 7L,M) of both genotypes. MEF2D expression was observed

in the auditory ganglia and organ of Corti at E18.5

(Fig. 7D,E,F,G,H) and P15 (Fig. 7N,O,P,Q). At E18.5, MEF2D

label was strong and mostly located in the cytoplasm of the hair

cells in the Igf12/2 (Fig. 7H), whereas at P15 immunostaining

decreased in the null mouse (Fig. 7O,Q) and was strongly nuclear

in the neurons and inner hair cells of the wild type cochlea

(Fig. 7N,P).

Discussion

We have studied the molecular mechanisms by which IGF-I

regulates cochlear development and maturation by analyzing the

following parameters in the Igf1+/+ wild type and Igf12/2 null

mouse cochleae: i) the spatiotemporal expression of IGF-system

factors, receptors and binding proteins; ii) the activation of the

main IGF-I signalling kinases Akt, ERK and p38; iii) total cochlear

transcriptome changes caused by IGF-I-deficit by using mRNA

arrays; and iv) transcription factors associated with neuronal cell

cycle regulation modulated by IGF-I availability. We have found

novel regulatory genes for cochlear development whose normal

expression and activation depends on IGF-I. Severe syndromic

deafness in man is associated with null mutations in IGF1 [9,10,11]

and also with low levels of IGF-I [47]. Accordingly, the Igf12/2

mouse shows poor growth rates, high mortality, profound

sensorineural deafness and late postnatal morphological alterations

in the cochlea [16] We have shown previously that the absence of

IGF-I causes poor myelination and delayed maturation of auditory

neurones that suffer apoptosis during the early postnatal mouse

development P5-P20 [17,18]. At birth, however, the Igf12/2

mouse cochlea is the normal size with the expected complement of

cell types in the organ of Corti. At the molecular level, signs of

delayed differentiation were obvious, but the molecular clues

underlying this cochlear-specific phenotype were not clear. Here

we show that IGF-I deficit could be compensated, at least in part,

by increased expression of its high affinity receptor, which can also

be activated by other insulin family factors, whose gene expression

levels were unchanged. Typical IGF-I intracellular target kinases

were also examined in the cochlea, and interestingly a 25%

reduction in the activated forms of prosurvival Akt kinase and

proliferation-associated ERK1/2 were found, with a dramatic

increase in the levels of the stress kinase p38. Further analysis to

uncover IGF-I targets in the cochlea was carried out by using gene

microarrays to do a comparative analysis of the expression profiles

of the developing cochlea in Igf1+/+ and Igf12/2 mice.

Here, we have identified 231 genes that are differentially

expressed in the cochlea of the Igf12/2 mouse. A subset of these

genes was further studied by using a combination of complementary

approaches to further understand IGF-I actions in the inner ear. To

our knowledge, this is the first time that a comparative gene

expression profile has been carried out in an Igf12/2 mouse tissue.

Fig. 8 schematically shows the localization of the differentially

expressed genes in Igf12/2 cochleas that are known to be important

for inner ear development or to be linked to inherited deafness (9%

of total), including Kcnd2, Slc19a2 and Ush1c. The later encodes the

stereociliary protein harmonin and mutations in this gene cause

Usher’s Syndrome 1C [32]. Interestingly, the syndrome includes

retinal degeneration, which is also associated with mutations in Rp1h

[34], a gene expressed at higher levels in the Igf12/2 cochlea. Over-

expression of IGF-I causes profound alterations in the vascularisa-

tion of the mouse eye [48] but to our knowledge there are no reports

of eye defects associated with IGF-I deficiency. In contrast, IGF-I

deficit in the mouse severely impairs normal development of the

olfactory bulb [49]. 91% of the genes we found differentially

expressed in the Igf12/2 cochlea had not been described previously

in the inner ear. For example, Fgf15, the ortholog of human and

chicken Fgf19, presented an expression pattern suggestive of a novel

contribution to cell fate specification within the sensory epithelia.

This raises the question of the specific role of this member of the
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Figure 5. IGF-I deficiency modifies FoxM1 and p27Kip1 levels and intracellular localization. (A) Cytoplasmic and nuclear fractions of
protein extracts obtained from at least 12 different E18.5 or P15 Igf1+/+ or Igf12/2 mouse cochleas in at least six different experiments were
immunoblotted to detect the presence of FoxM1 and p27Kip1. Blots were reprobed with b-actin (cytoplasmic fraction) or histone H3 (nucleus) as
loading controls. The specific bands were measured by densitometry to determine the average expression with ImageJ software. Results were
normalized by assigning a value of 100 to the cytoplasmic Igf1+/+ and represented graphically in (B). (C) Relative quantification value (RQ) of Foxm1
expression in the Igf12/2 cochlea compared to Igf1+/+, estimated by qRT-PCR at E15.5, E18.5-P5 and P15-P90. Data are presented as log10RQ average.
(D–M) Localization of immunostaining for FoxM1 in the P15 Igf1+/+ (D–H) and Igf12/2 (I–M) mouse cochlea. The expression was located in the AG, the
stria vascularis and the organ of Corti (white arrows). Statistical significance estimated with the Student’s t-test was: ***p,0.005; **p,0.01; *p,0.05,
of mutant versus wild type mice data. Open and closed bars: Igf1+/+ and Igf12/2 mice, respectively. Cyt, cytoplasm; Nuc, nucleus; AG, auditory ganglia,
IHC, inner hair cell; OC, organ of Corti; OHC, outer hair cell; SM, scala media. Scale bars: D, 100 mm (D,I); E, 20 mm (E,F,J,K) and G, 20 mm (G, H, L, M).
doi:10.1371/journal.pone.0008699.g005
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FGF family during inner ear development and of its possible

regulation by IGF-I [12].

Several transporters fundamental for the traffic of synaptic

vesicles were also expressed differentially in the Igf12/2 cochlea,

which is consistent with previous observations of aberrant synapsis

at the inner hair cells [17]. For example, the thiamine transporter,

Slc19a2 [32,50], the choline and acetylcholine transporters, Slc5a7

and Slc18a3 [51], and the membrane protein Vamp1 were normally

Figure 6. IGF-I deficiency modifies MEF2 levels and intracellular localization. (A) Cytoplasmic and nuclear fractions of protein extracts
obtained from E18.5 and P15 normal or Igf12/2 mouse cochleae (n = 21, from at least 7 different experiments) were immunoblotted to detect the
presence of MEF2A and MEF2D. Blots were re-probed with b-Actin (cytoplasmic fraction) or histone H3 (nucleus) as loading controls. The specific
bands were measured by densitometry (ImageJ software) to determine the average expression. Results were normalized respect to b-actin or histone,
a value of 100 was assigned to the scanned intensity of cytoplasmic forms in Igf1+/+ and represented graphically in (B,C). (D) Mef2a, Mef2c and Mef2d
expression was measured by qRT-PCR at E15.5, E18.5-P5 and P15-P90 data points in the Igf12/2 mouse cochleas and compared with the Igf1+/+. Data
are presented as the mean of log10RQ. Statistical significance estimated with Student’s t-test was: ***p,0.005; **p,0.01; *p,0.05. Open bars: Igf1+/+

mouse; Closed bars: Igf12/2 mouse. Cyt, cytoplasm; Nuc, nucleus, b-act, b-actine; H3, histone 3.
doi:10.1371/journal.pone.0008699.g006
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expressed in the inner hair cells of the mouse but their levels were

consistently lower in the Igf12/2 cochlea. In contrast Mlc1, which

encodes a protein located in the afferent fibers of the inner hair

cells [52], was expressed at higher levels. These data support the

idea that IGF-I is a key molecule for the maturation of the

auditory neurons and the refinement of the synaptic connections at

the inner hair cells.

Alterations in ion homeostasis and transport were also

associated with IGF-I deficit because Kcnd2, Kif17, Kcnmb1 and

Cacna1f showed lower levels in Igf12/2 cochleae. Kcnd2 encodes

the K+ channel Kv4.2, which is expressed in neurons that

innervate apical hair cells, which regulates dendritic excitability

[53] and which is transported to the dendrites by the neuronal

kinesin Kif17 [54]. The calcium-activated potassium channel

Kcnmb1 is know to be expressed in the cochlea but the null mouse

has no obvious cochlear phenotype or hearing impairment [55]. In

contrast, the presence of the calcium channel Cacna1f had not been

described previously in the mouse cochlea, but mutations in man

and mouse cause retinal neurotransmission disorders [56,57]. In

addition, differentially regulated genes included Claudin 18 a tight

Figure 7. MEF2A and MEF2D immunolocalization in the cochlea of Igf1+/+ and Igf12/2 mice. MEF2A expression in the cochlea of E18.5
(A,B,C) and P15 (I,J,K,L,M) Igf1+/+ (A,B,I,J) and Igf12/2 (C,K) mice. At E18.5, MEF2A strongly stained the nuclei in the Igf1+/+ auditory ganglion
(arrowheads in B), whereas fewer nuclei appeared labelled in the Igf12/2 ganglia (arrowheads in C) where the staining appeared more cytoplasmatic.
At P15, labelling was similar in the neurones (J,K), Deiter’s cells, pillar cells and in the IHC (L,M) of both genotypes. MEF2D expression at E18.5 was
shown in the auditory ganglia (E,F) and organ of Corti (G,H). MEF2D expression was less nuclear in the Igf12/2 (F, arrowheads pointing to unlabelled
nuclei, H) than in the wild type mouse (E,G). At P15, MEF2D expression was observed in the nuclei of auditory neurons (N) and in the IHC (P,P’) in the
Igf1+/+ but not in the Igf12/2 mouse (O,Q). AG, auditory ganglion; IHC, inner hair cells; OHC, outer hair cells; SM, scale media; ST, scala tympani; SV,
scala vestibule. Scale bars:. A, 100 mm; B, 25 mm (B,C,E,F); D, 75 mm; I, 100 mm; G, 20 mm (G,H); J, 20 mm (J,K); L, 20 mm (L,M); N, 20 mm (N,O); P, 20 mm
(P,P’,Q).
doi:10.1371/journal.pone.0008699.g007
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junction protein expressed in the stria vascularis [2] and the

estrogen related receptor Esrrb, whose mutations in man cause

autosomal-recessive non syndromic hearing impairment and that

is expressed and controls the development of the strial marginal

cells [20,21]. These data taken together suggest that ion

homeostasis and vesicular transport are impaired in the deaf

Igf12/2 mouse.

Neuronal fate specification is mastered by transcription factors

like Six6 and Mash1, which are typically expressed in the central

nervous system. Six6 is a member of the Six/sine oculis family and

it is known to be expressed in the developing and adult retina, in

the optic nerve, and in the hypothalamic and pituitary regions

[58,59]. Mash1 is a proneural transcription factor of the basic

helix-loop-helix family, which participates in the commitment of

neural progenitors, promotion of cell cycle exit and neuronal

migration, and in the final specification of neuronal identities in

the brain [60,61]. Interestingly, both were increased in the Igf12/2

mouse embryonic cochlea, Mash1 transcripts were visible in the

central part of the auditory nerve at the glial transition zone [37],

where Atoh1, another member of the bHLH transcription factor

family [62], has been shown to play a central role in root neurons

survival and on the functional maintenance of the peripheral and

central auditory pathway [63]. Taken together these data suggest

that these bHLH transcription factors are key players for the

differentiation and survival of the neurons at the interface between

the peripheral and central nervous systems.

IGF-I promotes a faster transition of the otic neural progenitors

to a mature neuronal state in the developing chicken inner ear

[12,64]. These data taken together suggest that IGF-I represses the

expression of Six6 and Mash1 during normal inner ear develop-

ment either directly or indirectly to facilitate neuronal differenti-

ation.

It is known that IGF-I is a key factor for cell cycle progression

and DNA repair and several cell types in the Igf12/2 mouse,

including cochlear neurones, are smaller and more immature than

those of the wild type mouse [17,18,65]. Here we show that in the

cochlea, IGF-I deficit causes an increase in IGF1R expression

levels although there is a net reduction in the ratio of tyrosine

phosphorylation, an increase in the activated phospho-p38 stress

kinase, and a decrease in the levels of the active phosphorylated

forms of the kinases ERK1/2 and Akt, the main intracellular

executors of IGF-I actions, indicating that the balance between cell

proliferation, survival and differentiation is altered. However, the

complexity of the regulation of cellular processes was evidenced by

the contrasting increase in the expression levels of the forkhead

transcription factor Foxm1. FoxM1 is essential for mitotic

progression and for the transcriptional response during DNA

damage/checkpoint signalling [42,66,67]. Its presence in the

developing cochlea had not been reported previously. Its increased

activation in the Igf12/2 cochlea was confirmed by its nuclear

localization and by the inhibition of one of its downstream targets,

the cyclin-dependent kinase inhibitor p27Kip1. In contrast,

transcripts for other cell cycle proteins, such as INCENP, were

expressed at lower levels, suggesting problems in chromosome

segregation [68]. In early postnatal cochleae from Igf12/2 mice

there is increased neuronal apoptosis and delayed neuronal

maturation, but there is no evidence for altered cellular

proliferation or cell damage [17]. These data suggest that FoxM1

Figure 8. Differentially expressed genes in the IGF-I-deficient cochlea. Names of selected differentially expressed genes (red) are shown on a
schematic drawing of the adult scala media. BC, border cells; BsC, basal cells; BM, basilar membrane; CC, Claudius’s cells; DC, Deiter’s cells; HC,
Hensen’s cells; IC, intermediate cells; IDC, interdental cells; IHC, inner hair cells; IPC, inner phalangeal cells; IS, inner sulcus; Li, spiral limbus; MC,
marginal cells; OHC, outer hair cells; PC, pillar cells; RM, Reisner’s membrane; AG, auditory ganglion; SL, spiral ligament; SM, scala media; ST, scala
tympani; SV, scala vestibuli; TM, tectorial membrane.
doi:10.1371/journal.pone.0008699.g008
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activation compensates for the unbalanced progression through

the cell cycle caused by IGF-I deficit.

Further insight into IGF-I cochlear targets was obtained by in

silico analysis of the promoters of IGF-I-modulated genes that

unveiled a potential role for MEF2 and its modulation by IGF-I in

the cochlea. MEF2 is essential for myogenic and neuronal

differentiation [45,69]. In both cell types, IGF-I activates MEF2

by decreasing its degradation rate and by preventing its

translocation from the nuclei to the cytoplasm [46,69]. MEF2D

is expressed in sensory neurons during development and it is

regulated by a TrkA-dependent ERK5 pathway that promotes

neuronal survival [70]. MEF2 is activated by the Raf/MAPK

cascade [46] and also by p38 MAPK [71]. Here we show that

MEF2A and D but not C are highly expressed in the nuclei of

embryonic mouse auditory ganglion neurons and that nuclear

MEF2 protein levels are lower in the developing Igf12/2 cochlea.

These data reinforce the conclusion that MEF2A and D are key

targets for otic IGF-I action and that they may have a fundamental

role during cochlear development. To our knowledge, this is the

first time that MEF2 transcription factors expression has been

reported in the auditory ganglia.

In summary, we show that Igf1 and Igf1r are expressed in the

developing mouse cochlea with complementary cellular patterns.

The stria vascularis apparently provides an intra-cochlear source

of IGF-I. Analysis of IGF-I-deficient cochlea showed that the

signalling levels of Akt and ERK1/2 were lower and that p38

activation was significantly higher. Transcriptional profiling of the

Igf12/2 cochlea identified potential novel IGF-I targets, including

factors like Six6, Mash1 and Fgf15. Finally, the transcription factors

FoxM1, Mef2a and Mef2d are expressed in the developing inner ear

and their sub-cellular localisation is modulated by IGF-I

availability. The results presented here offer new insight into the

mechanisms by which IGF-I support sensory cell and neuronal

survival and differentiation in the auditory receptor, and reveal

novel regulatory mechanisms of the cell cycle during cochlear

development.

Supporting Information

Figure S1 Spatiotemporal expression patterns of Igf1r mRNA

and IGF1R protein in the Igf1+/+and Igf12/2 mouse cochlea. (A–

F) shows that the mRNA expression of Igf1r was identical in the

two genotypes. (A,B,C) P5 Igf1+/+ and (D,E,F) P5 Igf12/2 mice.

IGF1R protein was shown at the organ of Corti and in the

auditory ganglion at E15.5 (G,H) and E18.5 (I,I’,J,J’) with similar

cellular localization between genotypes. At P15, the expression was

located mainly in the neurons of the auditory ganglion (K,L), no

differences could be observed. AG, auditory ganglion; BsC, basal

cells IHC, inner hair cells; MC, marginal cells; OC, organ of

Corti; OHC, outer hair cells; SM, scale media; ST, scala tympani;

SV, scala vestibule, TM, tectorial membrane. Scale bars: A,

150 mm (A,D); B, 20 mm (B,C,E,F); G, 20 mm (G,H); I, 100 mm

(I,J); I’, 20 mm (I’,J’); K, 20 mm (K,L).

Found at: doi:10.1371/journal.pone.0008699.s001 (3.53 MB

DOC)

Figure S2 IGF-I deficiency modifies IGF1R phosphorylation

levels.Protein extracts obtained from E15.5, E18.5, P5, P60 and

P90 Igf1+/+ or Igf12/2 mouse cochleas (n = 6, from at least 2

different experiments) were immunoblotted to detect the presence

of pIGF1R. Blots were re-probed with IGF1R as loading control.

The specific bands were measured by densitometry (ImageJ

software) to determine the average expression. Results were

normalized, a value of 100 was assigned to the scanned intensity of

the E15.5 Igf1+/+ cochlear extract. Statistical significance estimat-

ed with Student’s t-test was: **p,0.01; *p,0.05. Open bars:

Igf1+/+ mouse; Closed bars: Igf12/2 mouse.

Found at: doi:10.1371/journal.pone.0008699.s002 (0.05 MB TIF)

Figure S3 Clustering of the differentially expressed genes in

Igf12/2 cochleas grouped according to their functional category.

The 231 genes differentially expressed (closed bars), were classified

by their biological annotation compared with all Mus musculus

genome annotations in the NCBI (open bars). The statistical

analysis of the biological processes included a Bonferroni

correction for multiple testing and processes were selected at

p,0.05. The differentially expressed genes are implicated in the

following biological processes: signal transduction, developmental

process, ligand-mediated signalling, cell communication, immuni-

ty and defence, cytokine and chemokine mediated signalling,

muscle contraction, lipid, fatty acid and steroid metabolism,

granulocyte-mediated immunity and homeostasis.

Found at: doi:10.1371/journal.pone.0008699.s003 (0.20 MB TIF)

Figure S4 Mash1 expression in the Igf1+/+and Igf12/2 P5 mouse

auditory nerve.(A–K) Mash1 in situ hybridization was performed

on cryostat sections in Igf1+/+ (A–G) and Igf12/2 (H–K) cochleas

at P5. Axons in the auditory nerve (AN) were recognised by 3A10

immunostaining (red C,D,F,G,J,K). At P5, Mash1 expression in the

auditory nerve did not show differences between genotypes (B–

G,I–K). B, E and I are higher magnification images of the boxed

areas in A and H, respectively. D,G,K are merge images of Mash1

and 3A10 labelling. (L–S) Double in situ hybridization of Mash1

(red; L,P,O,S) and inmunohistochemistry of myelin basic protein

(green, MBP; M,Q,O,S). Cell nuclei were stained with DAPI (blue;

N,R,O,S). Mash1 expression was perinuclear and was associated at

P5 to the soma of cells, probably root neurones, embedded in

auditory axons (white arrows; L–S). Three embryos per genotype

were tested in parallel in three independent experiments. AN,

auditory nerve; SM, scala media; ST, scala tympani; SV, scala

vestibuli. Scale bars: H, 150 mm (A, H); K, 30 mm (B–G,I–K), L,

35 mm (L–O); P, 20 mm (P–S).

Found at: doi:10.1371/journal.pone.0008699.s004 (7.24 MB TIF)

Table S1 Summary of inventoried TaqMan probes used for

qRT-PCR. Applied Biosystems: https://products.appliedbiosystems.

com/ab/en/US/adirect/ab?cmd = ABGEKeywordSearch.

Found at: doi:10.1371/journal.pone.0008699.s005 (0.06 MB

DOC)

Table S2 Summary of cDNAS used to generate the in situ

hybridization probes. Prior to the in situ hybridization, all clones

were sequenced (ABI 3130XL Applied Biosystems). At least 3

embryos per genotype were tested in parallel in three independent

experiments. No signal was obtained with the sense probe (data

not show) * Igf1r probe was the generous gift of Prof. Flora de
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