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Abstract

Motivation: Messenger RNA subcellular localization mechanisms play a crucial role in post-

transcriptional gene regulation. This trafficking is mediated by trans-acting RNA-binding proteins

interacting with cis-regulatory elements called zipcodes. While new sequencing-based technolo-

gies allow the high-throughput identification of RNAs localized to specific subcellular compart-

ments, the precise mechanisms at play, and their dependency on specific sequence elements,

remain poorly understood.

Results: We introduce RNATracker, a novel deep neural network built to predict, from their se-

quence alone, the distributions of mRNA transcripts over a predefined set of subcellular compart-

ments. RNATracker integrates several state-of-the-art deep learning techniques (e.g. CNN, LSTM

and attention layers) and can make use of both sequence and secondary structure information. We

report on a variety of evaluations showing RNATracker’s strong predictive power, which is signifi-

cantly superior to a variety of baseline predictors. Despite its complexity, several aspects of the

model can be isolated to yield valuable, testable mechanistic hypotheses, and to locate candidate

zipcode sequences within transcripts.

Availability and implementation: Code and data can be accessed at https://www.github.com/

HarveyYan/RNATracker.

Contact: blanchem@cs.mcgill.ca

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

RNA subcellular localization constitutes a key but underappreciated

aspect of gene regulation (Chin and Lecuyer, 2017). Once tran-

scribed, capped, spliced, polyadenylated, mRNA can be shuttled to

different parts of the nucleus, or exported to the cytoplasm, where it

can further be transported to specific sites, or even excreted in extra-

cellular vesicles (Fig. 1). In the case of messenger RNA (mRNA),

subcellular localization can control how much will be available for

translation by ribosomes and where translation will occur, thereby

allowing both a quantitative and spatial control over protein pro-

duction. In particular, this mechanism represents an economical

mean of protein localization, by transporting the messenger to the

site where the protein is needed and performing on-site translation.

While the importance of RNA subcellular localization is best charac-

terized in embryonic development (Lécuyer et al., 2007) and neuron-

al dendrites (Bramham and Wells, 2007), it is also highly prevalent

in other cell types, with more than 80% of human transcripts show-

ing asymmetrical localization in human and insect-cultured cells

(Benoit Bouvrette et al., 2018). Defective RNA trafficking, due to

mutations either in the cis- or trans-acting molecules, are linked to a

number of muscular and neurodegenerative diseases, as well as can-

cer (Cooper et al., 2009). Improving our understanding of the mech-

anisms of mRNA localization, and its dependency on transcript

sequence or structure, is thus important for the fundamental under-

standing of molecular biology and has profound biomedical

implications.

The RNA trafficking process is mainly driven by a diverse popu-

lation of trans-regulatory factors called RNA-binding proteins

(RBPs) (Dominguez et al., 2018; Ferrè et al., 2016; Gerstberger

et al., 2014; Ray et al., 2013), which stochastically, cooperatively

and dynamically bind to specific RNA sequence/structure patterns.

While nonspecific protein–RNA interactions are common and help

stabilize mRNAs, sequence-specific binding to short sequence/struc-

ture patterns allows transcript-specific regulation (Bergalet and

Lécuyer, 2014). Indeed, sequence motifs have been mapped for a

large set of RBPs (Cook et al., 2011; Liu et al., 2017). mRNA
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localization cis-regulatory elements (also known as zipcodes) are

short (20–200 nt) RNA regions that harbor binding sites for one or

more RBP that help mediate the transport mRNAs to their intended

destination, either actively along the cytoskeleton, diffusion or

compartment-specific degradation. Although the number of well-

characterized zipcodes remains very limited (only about a dozen in

human), most are observed to be located in the 30 UTR (but many

exceptions exist) Bergalet and Lécuyer (2014).

While the importance and prevalence of mRNA subcellular lo-

calization has been known for a long time based on experiments

such as fluorescent in-situ hybridization (FISH) (Lécuyer et al.

2007), it is only more recently that high-throughput sequencing-

based assays emerged. APEX-RIP is a technique that takes advan-

tage of protein proximity-based biotinylation, mediated by a

compartment-specific APEX2 fusion protein, to identify localized

transcriptomes (Kaewsapsak et al., 2017). The organelle-localized

APEX2 fusion protein will biotinylate proximal interacting proteins

and, following crosslinking and streptavidin pull-down, co-localiz-

ing mRNAs can be identified by deep sequencing. This technology

was recently used to map the transcriptome of the nucleus, cyto-

plasm, endoplasmic reticulum (ER) and mitochondria. CeFra-seq is

an alternate technology relying on biochemical separation of subcel-

lular components, followed by RNA-seq (Benoit Bouvrette et al.,

2018; Lefebvre et al., 2017). It was used to map transcript abun-

dance in the nucleus and cytosol, as well as those associated to endo-

membranes (ER, Golgi, etc.) and those left in the insoluble fraction,

consisting of mRNAs associated to cytoskeletal and mitotic

apparatus-associated proteins. Both technologies yield reproducible

assessments of relative mRNA abundance in the subcellular compo-

nent they probe and demonstrate the breadth of localization pat-

terns observed in a variety of human cell types.

In this paper, we aim to build a predictive model of mRNA local-

ization that will quantitatively determine the relative expression of a

given transcript among a predetermined set of cellular compart-

ments, based only on sequence information. Such a model is essen-

tial to generate testable mechanistic hypotheses about the cis- and

trans-regulatory molecules at hand and predict the impact of muta-

tions on this key step of gene regulation.

The computational identification of functional regulatory ele-

ments within biological sequences is one of the key problems

addressed by bioinformatics approaches. Recently, new types of ma-

chine learning approaches emerged for sequence function prediction.

Those are based on deep neural networks, and often combined con-

volutional (LeCun et al., 1989) and recurrent neural networks [e.g.

long short-term memory (LSTM) (Hochreiter and Schmidhuber,

1997)]. These approaches were shown to be highly effective at deci-

phering complex regulatory mechanisms, such as alternative splicing

(Leung et al., 2014), transcriptional regulation (Alipanahi et al.,

2015; Quang and Xie, 2016; Zhou and Troyanskaya, 2015), RBP

binding (Li et al., 2017; Pan and Shen, 2017) and RNA polyadenyla-

tion (Delong et al., 2018). In those approaches, feature extraction

and learning are combined in an end-to-end fashion that often yields

better performance compared to conventional feature engineering

approaches. The advantage of CNNs lies in their capability of per-

forming automatic and parallel feature extraction by learning para-

meterized sequence motifs analogous to the position weight matrices

(PWM) commonly used in classical sequence analysis algorithms.

LSTMs, on the other hand, are more suitable for analyzing sequen-

tial data to discover correlations between different positions, allow-

ing to capture sequence context and cooperative binding.

To our knowledge, no computational predictor of mRNA sub-

cellular localization exists to date. This is the challenge we tackle in

this paper. We introduce, evaluate and interpret RNATracker, a

deep neural network predictor of subcellular localization combining

two convolutional layers, a bidirectional LSTM layer and an atten-

tion module. Although the architecture of our model has some simi-

larities with previously proposed approaches (Li et al., 2017; Pan

and Shen, 2017; Quang and Xie, 2016), mRNA subcellular localiza-

tion differs from most previous applications of deep learning to bio-

logical sequence function prediction in several aspects that make it

particularly challenging. First, the process of subcellular localization

is a long chain of complex events mediated by a large number of

protein–RNA and RNA–RNA interactions, and may depend on

both primary sequence and secondary structure. Second, our goal is

to learn a multi-output function that predicts the expression distri-

bution of a given transcript across several cellular fractions, instead

of a single positive/negative label. Third, most mRNAs exhibit only

a moderate degree of subcellular asymmetry, and experimental

measurements are somewhat noisy and potentially biased. Finally,

transcripts have greatly variable lengths, an issue generally not

encountered in previous applications.

In this paper, we introduce the RNATracker model and demon-

strate its superior ability to predict subcellular localization on two

recently published datasets obtained by CeFra-seq (Benoit Bouvrette

et al., 2018) and APEX-RIP (Kaewsapsak et al., 2017). We then dis-

sect the trained models to learn new biology about the mechanisms

involved. Finally, we use a sliding window masking strategy to iden-

tify the regions most likely to be conferring the observed localization

pattern, and present evidence in support of the regulatory function

of those regions.

2 Materials and Methods

The goal of RNATracker is to predict an mRNA’s subcellular local-

ization profile from its sequence alone (including possibly its second-

ary structure inferred from the sequence). To this end, we designed a

convolutional bidirectional LSTM neural network with attention

mechanism, inspired from previous work on the prediction of pro-

tein–mRNA interactions (Alipanahi et al., 2015; Li et al., 2017; Pan

and Shen, 2017) and DNA function (Quang and Xie, 2016). Here,

we introduce the methodological aspects of training data, feature

encoding, model architecture, training and evaluation.

Fig. 1. Schematic representation of RNA trafficking mechanisms and out-

comes in eukaryotes
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2.1 Subcellular localization data
mRNA subcellular localization data were obtained from CeFra-Seq

(Benoit Bouvrette et al., 2018) and APEX-RIP (Kaewsapsak et al.,

2017) experimental data, in the form of normalized expression val-

ues (FPKM) for each annotated human protein-coding gene.

The first dataset covers four subcellular fractions

(F ¼ fcytosol; nuclear; membranes; insolubleg), whereas the se-

cond one identified transcripts enriched in a different set of compart-

ments (F ¼ {ER, mitochondrial, cytosol, nuclear}). Although FPKM

normalization can sometimes distort relative expression values

across samples, this was not a major concerned here because most

genes had similar expression across fractions.

We averaged replicates and excluded genes with low total ex-

pression, keeping only those whose total FPKM expression across

all fractions exceeds 1. This resulted in a set of 11 373 localization-

annotated transcripts in the CeFra-Seq dataset and 13 860 in the

APEX-RIP dataset. Let e(g, f) denote the expression level of gene g

in fraction f 2 F , expressed in FPKM. The normalized localization

value for gene g in fraction f 2 F was defined as

locðg; f Þ ¼ eðg; f Þ=
P

f 02F eðg; f 0Þ, which measures the relative abun-

dance of g in each fraction.

2.2 Sequences and RNA secondary structure
mRNA sequences were downloaded from the Ensembl database

(Aken et al., 2017), keeping only the longest protein-coding isoform.

We inferred RNA secondary structure information for each tran-

script using RNAplfold (Bernhart et al., 2006) (window size¼150,

span¼100). The output of RNAplfold, which is a list of base pair-

ing probabilities, are converted to an intermediate dot-bracket anno-

tation by greedily creating as many nested basepairs as possible. The

resulting predicted structure was parsed using the forgi library

(Kerpedjiev et al., 2015), part of the Vienna RNA package (Lorenz

et al., 2011), to annotate each position as belonging to an internal

loop (I), hairpin loop (H), multiloop (M), dangling start (F), dan-

gling end (T) or stem (S).

2.3 Feature encoding
RNA nucleotides are represented using 1-hot encoding over 4 bits.

When RNA secondary structure is considered, a 6-bit encoding of

the structural state is used, or a 24-bit encoding of the joint repre-

sentation of sequence and structural states.

Input sequence length varies from �200 nt to more than 30000 nt.

RNATracker can either operate on individual input sequence of arbi-

trary lengths, or on fixed length inputs, the latter allowing a variety of

mini-batch optimizations and normalizations. In the fixed-length

mode, sequences longer than 4000 nt are truncated at the 5’ end

[working under the assumption that localization signals are more often

found in a transcript’s 30 end (Bergalet and Lécuyer, 2014)]. Sequences

shorter than 4000 nt are left padded with empty nucleotides encoded

as 0000. We also investigated fixing the length at 1000, 2000 and

8000 nt, but obtained reduced prediction accuracy at 1000 and

2000 nt, and little accuracy benefits at 8000 nt.

2.4 Model architecture
RNATracker is a convolutional neural network (CNN) coupled

with a LSTM recurrent neural network with attention mechanism.

The overall structure of our model structure is shown in Figure 2.

Each component is described in detail below.

Our network includes two sets of CNNþpooling layers

(Fig. 2A). Each CNN layer consists of 32 convolutional filters of

length 10 with ReLU activation, initialized with Xavier uniform.

Each pooling layer takes a window of size 3 and a stride of 3, to ag-

gregate local information along the sequence as well as to effectively

downsample the sequence by a factor of roughly 9 before passing it

on to the subsequent LSTM layers. A network with a single convolu-

tional layer was also evaluated but proved less accurate.

The output of CNNþpooling layers is fed into the subsequent

LSTM layer (Fig. 2B), which is a recurrent neural network that

allows information to flow from position to position, while being

updated based on the data at the current position, according to the

following equations:
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ht ¼ ot � tanhðCtÞ (3)

where it, ft and ot denote the input, forget and output gate respect-

ively, each as an independent function of previous cell output ht�1

and input to the current cell xt. Ct is the cell memory, composed in

part of Ĉt which is the candidate cell memory for time step t, whose

element-wise multiplication with the input gate it determines how

much information to update into the current cell memory Ct.

Similarly ft controls how much information to forget from previous

cell memory Ct�1, therefore ft � Ct�1 makes up the other part of Ct.

Finally ot controls the information of the current cell output ht. }

stands for component-wise function composition.

The use of bidirectional LSTM has previously been shown to be

advantageous compared to ordinary unidirectional LSTM, since

they are able to aggregate information from both directions

(Schuster and Paliwal, 1997). Our network includes both a forward

(50 to 30) and a reverse (30 to 50) direction LSTM. For each time step,

the output of the bidirectional LSTM is the concatenation of the

outputs of the two directional LSTMs.

2.5 Attention mechanism
Based on previous studies (Chin and Lecuyer, 2017), we expect the lo-

calization signals contained within most mRNAs to be confined to a

relatively short contiguous portion of the sequence, often (but not al-

ways) located in the 30 UTR. To take advantage of this, RNATracker

integrates the notion of attention mechanism (Bahdanau et al., 2015),

which is a popular add-on technique for multiple tasks in fields, such

as document classification (Yang et al., 2016) and relation classifica-

tion (Zhou et al., 2016). This allows RNATracker to learn to pay

more attention to regions of the sequence that convey more relevant

information about localization. The details of the attention module

are shown in Figure 2C. Let us denote output of the bidirectional

LSTM layer at time step t as ht ¼ ½!ht; ht

 
�. The attention layer per-

forms the following computation:

st ¼ tanhðw � ht þ bÞ (4)

at ¼
expðstÞPl

i¼1 expðsiÞ
(5)

c ¼
Xl

i¼1

aihi (6)

where w is a trainable weight vector in lieu of a context vector,

l denotes the length of the output from the biLSTM layer and c is
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the vector that summarizes the output at different time steps in h

weighted by at.

Finally, we attach a fully connected layer with softmax activa-

tion after the attention module, to form a four-categorical output.

2.6 Loss function and regularization
The entire network is trained to minimize the Kullback–Leibler di-

vergence between the predicted and true subcellular distributions p

and q:

KLðp; qÞ ¼
XN

i

X
j2F

pij log
pij

qij

where N is the size of batch, and p is the observed distribution of

normalized localization values across the subcellular fractions.

Regularization is achieved using dropout units after convolutional

layers, with a ratio empirically determined at 0.2.

When using fixed-length input sequences, we use a mini-batch of

size 256, which significantly speeds up training. We have investi-

gated the use of batch normalization (Ioffe and Szegedy, 2015), in

which other contexts have been shown to speed up convergence.

However, we observe that with our 50 zero-padding of short sequen-

ces, this leads to extra input variability being introduced at the 50

end when the sequences in the batch have unequal lengths, resulting

in slightly decreased prediction accuracy. Therefore in practice we

choose not to use batch normalization, which however would be

worth considering if training efficiency is more of a concern, or in

situations where input sequences are of equal lengths.

The set of hyperparameters reported in this study are selected

based on the previous literature (Li et al., 2017; Pan and Shen,

2017) and subject to a small amount of manual tuning. Overall, we

found our model robust to the choice of reasonable

hyperparameters.

2.7 Use of RNA secondary structure
To assess the extent to which RNA secondary structure can be used

to inform subcellular localization prediction, we trained three var-

iants of RNATracker: (i) RNATrackerseq uses only primary se-

quence information; (ii) RNATrackerseq�struct represents sequence

and structure information jointly using 1-hot encoding over

4�6¼24 bits/nt; and (iii) RNATrackerseqþstruct, which uses differ-

ent encodings for the sequence and secondary structure, and proc-

esses them via different convolutional layers, whose outputs are

concatenated before going through the LSTMs.

2.8 Training and evaluation
Our model is implemented using Keras (Chollet et al., 2015).

Training uses the Adam optimizer with Nesterov momentum

(Dozat, 2016). For all experiments we used 10-fold cross-validation

to evaluate our models. A maximum of 100 epochs is used for train-

ing each fold, and a validation set consisting of 10% of the training

Fig. 2. Structure of the RNATracker deep neural network. (A) Top-down model architecture from the feature encoding, convolution and LSTM layers to the atten-

tion module. (B) Details of a LSTM cell. (C) Details of the attention module employed in this study
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data is used to monitor the loss in the training process to detect

overfitting.

The variable length of mRNA transcripts poses a unique chal-

lenge to this study in terms of training time, as this prevents the use

of mini-batches. Training examples thus need to be presented one at

a time, which results in slow training (7 days for 10-fold cross-

validation on a single GTX1080Ti graphic card, using a learning

rate of 10�4). Skipping the LSTM layers allows somewhat faster

training (2 days), but at a small cost in terms of accuracy (see

Section 3). Sequence truncation/padding to 4 kb allows batch train-

ing, which yields significant gains in training time (8 h for 10-fold

cross-validation, with a learning rate of 10�3).

2.9 Baseline predictors
Since we are not aware of any previous work on the prediction of

mRNA subcellular localization, we chose to compare the different

versions of RNATracker to two baseline predictors based on the

popular k-mer representation. The simplicity of k-mer-based ap-

proach stems from the fact that the ordering information is lost in

this representation. However, it has proved effective for related

types of sequence function prediction, such as transcription factor

binding (Ghandi et al., 2014). Here, we use a feature vector of k-

mer counts that combines features from 1-mer to 5-mer extracted

from the full RNA sequence, resulting in a 1367-dimensional input

vector. We actually investigated going up to 7-mers, but obtained no

benefit in terms of accuracy. Two types of predictors were trained: a

fully connected neural network (DNN-5Mer) with two hidden

layers of size equal to the input dimension, each followed by ReLU

activation and dropout, and a smaller neural network (NN-5Mer)

with no hidden layer.

2.10 Locating zipcodes within individual transcripts
RNATracker can be used to quantify the extent to which specific

subsequences of a given transcript contribute to the localization pre-

diction, thereby identifying candidate zipcode elements. This is

achieved by temporarily masking (zeroing-out) the sequence of a

given portion of the transcript, and computing the Kullback–Leibler

distance between RNATracker’s localization predictions on the ori-

ginal and masked sequences. We use a mask of 100 nt and slide it

(with 1 nt stride) along the transcript’s sequence to obtain a relative

importance vector. Because all the masked sequences have the same

length, they can be evaluated in batch, which considerably speeds up

the execution. We also experimented with another masking scheme

where the masked portion is randomized rather than zeroed out

(100 repetitions), but this did not significantly change the results,

while taking significantly longer. Therefore, the results presented

here are for the zero-masking approach.

3 Results

The different versions of RNATracker were evaluated on two

mRNA subcellular localization datasets. The first was obtained by

CeFra-seq in HepG2 cells, and contains 11 373 transcripts analyzed

in the nuclear, cytosolic, membranes and insoluble fractions (Benoit

Bouvrette et al., 2018). The second was produced using APEX-RIP

on HEK 293 T cells, and contains 13 860 analyzed in the ER, mito-

chondrial, cytosolic and nuclear fractions (Kaewsapsak et al., 2017).

Figure 3 shows the distribution of normalized localization values for

each of the four CeFra-seq subcellular fractions, confirming the pre-

viously made observation that the cytoplasmic, nuclear and insol-

uble fractions contain a larger number of strongly localized

transcripts, compared to the membrane fraction. Normalized local-

ization values of different fractions are generally negatively corre-

lated, except for the cytosolic and membrane fractions, which are

unsurprisingly positively correlated due to physical colocation

(Supplementary Fig. S2). This will have important consequences on

the results presented later. Furthermore, transcripts localized to the

cytosol tend to be shorter. See also Supplementary Figures S3 and S4

for analogous analyses of APEX-RIP data.

3.1 Performance of RNATracker
We used 10-fold cross-validation to evaluate the performance of the

different versions of RNATracker and the two baseline k-mer profile

predictors, on both the CeFra-seq and APEX-RIP datasets. To limit

computational burden, more detailed analyses of some key model

components such as the attention weights and the learned sequence

motifs were performed exclusively on the CeFra-Seq dataset.

Figure 4 compares the true localization values to those predicted

by RNATracker on the ceFra-seq dataset (see Supplementary Fig. S5

for analysis of the APEX-RIP dataset). Correlation coefficients

obtained vary from 0.54 for the nuclear and membrane fractions to

0.705 for the cytoplasm faction, and all are significantly different

from zero (P-value � 0). In APEX-RIP data, the accuracy is slightly

lower, ranging from 0.456 (nuclear fraction) to 0.626 (ER), but

again all are highly significant (P-value � 0).

Table 1 compares the Pearson correlation coefficients between

the experimental and predicted localization values of the combined

folds, obtained by different predictors. This reveals several observa-

tions. First, for both datasets and across all fractions, the best results

are obtained using RNATracker applied to full-length sequences

(i.e. no trimming/padding) and without RNA secondary structure in-

formation. These correlation coefficients are consistently 10–25%

higher than those obtained by the k-mer-based neural network, and

2–14% higher than those obtained by RNATracker operating on

fixed-length sequences. Gains compared to fixed-length sequences

are particularly significant for the membrane fraction (CeFra-seq)

and ER (APEX-RIP), suggesting that localization to those fractions

may often be mediated by sequences located in the 50 end of the

transcript. This makes sense since targeting to the ER membrane is

known to be mediated by the signal sequence that can be found in

mRNAs encoding secreted proteins (Hermesh and Jansen, 2013).

We also observe that the two variants using RNA secondary struc-

ture information consistently perform 1–3% worse than the version

using sequence information alone (analysis only performed in the

fixed-length setting, for running time reasons).

Fig. 3. Summary statistics for the CeFra-Seq dataset. (A) Distribution of the

normalized localization values for each subcellular fraction. (B) Number and

average length of transcripts whose predominant localization is in each of the

four fractions
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Our LSTM-based RNATracker was also compared to a pure

CNN model (NoLSTM), revealing a consistent 3–7% increase in

correlation coefficients due to the LSTM component. Similarly, a

version of RNATracker without the attention module was evaluated

but performed significantly worse than its attention-based counter-

part (esp. on APEX-RIP data, where the difference ranges from 25%

to 30%). These results show that both the LSTM and attention

layers are essential for good prediction accuracy. However, the sig-

nificantly shorter training time makes the fixed-length training a vi-

able alternative when resources are limited.

We next assessed the ability of RNATracker to identify the pre-

dominant localization of a given transcript, defined as the fraction

where the transcript’s expression is the highest. Instead of retraining

RNATracker for this new classification task, we simply turned this

regressor into a classifier by making it output the fraction with the

highest predicted localization value. Supplementary Figure S6

reports the receiver operating characteristic (ROC) and precision–re-

call (PR) curves for each predictor, micro-averaged across the four

fractions. Consistent with the results on the regression task,

RNATracker trained with full-length sequences slightly outperforms

all other models, although by a narrow margin compared to the

fixed-length version. These results also confirm the strong benefit of

the attention module, and the slightly deleterious impact of includ-

ing RNA secondary structure information. Similar observations can

made for the APEX-RIP dataset (Supplementary Fig. S7).

To better illustrate the difference between various models, we

used Delong’s test from the R package pROC (Robin et al., 2011) to

compare the ROC curves, confirming that the performance gain

from fixed-length to full-length version is statistically significant (P-

value ¼ 6:1� 10�9), and so are the benefits of the LSTM and the at-

tention module (both P-values < 2:2� 10�16).

Given its slightly superior performance, for the rest of this sec-

tion, we focus analyzing RNATracker with full-length input sequen-

ces but no RNA secondary structure, and with LSTM and attention

layers. Supplementary Figure S6C and D dissects the prediction

performance per subcellular fraction. Consistent with correlation

results previously shown in Figure 4, RNATracker has the best per-

formance for the cytosolic fraction (ROC AUC ¼ 0.851, PR AUC ¼
0.716), slightly better than results on the insoluble and nuclear fac-

tions, and much better than those on the membrane fraction. Several

factors may explain these differences. First, very few transcripts

(�1000) are predominantly found in the membrane fraction, and al-

most none have membrane localization value greater than 0.5 (see

Figure 3A). Second, transcripts predominantly localized to the cyto-

plasmic fraction tend to be significantly shorter than others (see

Figure 3B), which is a clue our predictor takes advantage of.

3.2 Dissecting the attention module
As demonstrated earlier, the attention mechanism is beneficial to

predicting localization profiles. To better understand its role, we

studied how the attention weights ai vary along the sequence, under

the fixed-length setting. Figure 5 shows that most of the attention

weight concentrates at the �400 nt at the 30 end of the transcript.

This is likely caused by two factors. First, the few well-characterized

cis-acting localization regulatory elements tend to be located in the

30 UTR (Chin and Lecuyer, 2017), so it is likely that this is where

the most meaningful signal is located. Second, the zero padding

introduced in transcripts shorter than 4 kb is always introduced at

the 50 end, making this region generally less informative. It is worth

noting, however, that RNATracker is fully able to identify zipcodes

located outside that region (see Supplementary Fig. S1).

3.3 Analysis of sequence motifs
The weights learned by the 32 filters from the first CNN layer are

akin to position-weight matrices used in classical sequence analysis.

We used weblogo (Crooks et al., 2004) to visualized the learned

motifs, and Tomtom (Bailey et al., 2009) to map learned motifs to

binding preferences of known RBPs (Ray et al., 2013) (keeping in

mind the caveat that this is an incomplete catalog and that matching

motifs to RBPs is error-prone). A total of 9 of the 30 convolutional

filters were found to match the binding profile of a known RBP

(Tomtom P-value < 0.05). Representative examples are shown in

Figure 6A, with strong matches to RBPs TIA1 (P-value ¼
7:63� 10�4) and BRUNOL5 (P-value ¼ 1:64� 10�6).

To better understand the role of the 32 motifs learned by

RNATracker, and the way in which it combines them to obtain pre-

dictions, we clustered them based on their co-occurrences across a

subset of 1024 transcripts consisting of the 256 transcripts most

strongly localized to each of the four fractions. Two broad sets of

motifs emerge. The first (top half of heatmap), contains several C/G-

rich motifs as well as more complex motifs, which are strongly asso-

ciated to cytoplasmic transcripts. The second (bottom half of heat-

map), is characterized by A/U-rich motifs, as well as A-G or U-G

dinucleotide repeats, which are mostly found in transcripts from the

nuclear and insoluble fractions.

To study how RNATracker uses individual sequence motifs to

obtain its localization predictions, we iteratively zeroed out the out-

put of all but one of the filters, and computed the Pearson correl-

ation coefficient between the predicted localization values in the full

and zeroed-out model, separately for each fraction. In this way, we

are able to crudely isolate the contribution of each single convolu-

tion filter to the final prediction.

3.4 Locating zipcodes within transcripts
RNA subcellular localization is generally believed to be linked to the

presence of discrete contiguous regulatory elements called

Fig. 4. RNATrackerseq predictions for the CeFra-Seq dataset by fractions,

trained with full-length transcripts. Each point is a transcript with its true lo-

calization value shown on the x-axis and the predicted value shown on the

y-axis. (A) Cytosolic fraction (B) Insolution fraction (C) Membrane fraction (D)

Nuclear fraction
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localization zipcodes. By iteratively masking small portions of a

transcript and studying how the predicted localization changes, one

can identify candidate zipcodes, defined as regions whose masking

significantly alters the localization prediction (see Section 2 and

Supplementary Fig. S1 for examples on specific transcripts). A can-

didate zipcode can further be assigned an enhancing or repressive

label for a given fraction, depending on whether its masking results

in a reduction or increase in the predicted localization score for that

fraction. Figure 7 shows the number of positive and negative zipcode

regions identified at different stringency levels (KL cut-off). At the

KL cut-off of 0.0075, we identify 374 unique positive zipcodes, but

only 167 unique negative zipcodes.

Because the number of experimentally characterized zipcodes is

very small (less than a dozen in human), we had to rely on indirect

measures to assess the validity of the predicted zipcode elements.

Due to their important role in regulating proper gene expression, we

would expect most zipcodes to be under negative selection, and thus

to be more highly conserved across species than their neighboring

regions. We thus used PhyloP conservation score (Pollard et al.,

2010), calculated from the multiple genome alignments of 100 verte-

brates and available from the UCSC Genome Browser (Haeussler

et al., 2019). Focusing on the 2392 transcripts exhibiting strong sub-

cellular localization (maximum localization value >0.5), we com-

pared the distribution of average PhyloP scores within the top 541

predicted zipcodes to the PhyloP score distribution of regions of 30

UTRs not predicted to be zipcodes (Fig. 8). While the two distribu-

tions largely overlap, large conservation scores (>1) are roughly two

times more frequent in candidate zipcodes than elsewhere, and the

two distributions have means that are significantly different [P-value

close to 0 using a Kolmogorov–Smirnov (KS) test]. This shows that

predicted zipcodes are under stronger negative selection than the

rest of the 30 UTRs, although this may be caused by functions other

than localization. Varying the KL threshold used to identify zipco-

des, we observe that higher KS statistics (i.e. higher interspecies con-

servation values) are obtained for our most confidence predictions

(Fig. 7). With the caveat mentioned above, this suggests that

RNATracker’s KL score can be used as indicators of zipcode predic-

tion reliability.

4 Discussion and conclusion

Along with two recently published approaches by Zuckerman and

Ulitsky (2019) and Gudenas and Wang (2018), RNATracker is

among the first computational predictors of mRNA subcellular lo-

calization. It achieves satisfactory (but certainly perfectible) per-

formance on two of the largest subcellular localization datasets

currently available, thanks to its use and adaptation of cutting-edge

machine learning approaches such as LSTM and attention modules,

without which prediction accuracy is generally inferior. Although

the problem of predicting localization from sequence has some simi-

larity to other sequence-based function prediction, its difficulty

stands out because of the complexity of the mechanisms at play and

the relative weakness and noisiness of the localization signal of most

transcripts, among other reasons. The variable length of transcripts

also leads to new challenges, both in terms of generalization and

computational efficiency. Beyond being able to predict subcellular

localization of full-length transcripts, RNATracker is able to locate

candidate cis-regulatory regulatory regions (zipcodes) in strongly

localized transcripts. In the absence of a large set of experimentally

identified zipcodes, validating these predictions are challenging, but

an analysis of interspecies sequence conservation, used a proxy for

negative selection and thus function, indicates that many of our pre-

dicted zipcode are under stronger selection than surrounding 30 UTR

regions.

Somewhat surprisingly, and despite our best attempts, we were

unable to demonstrate significant benefits from the consideration of

Table 1. Pearson correlation coefficients by subcellular fraction of various model and input settings. Numbers in bold are the maximum of

their row

Full-length RNA Inputs Fixed-length Inputs (4 kb) 5Mer Inputs

Dataset Compartment RNATrackerseq NoLSTM RNATrackerseq NoAttention SeqþStruct Seq�Struct DNN-5Mer NN-5Mer

CeFra-Seq Cytosol 0.705 0.676 0.685 0.625 0.666 0.652 0.637 0.558

Insoluble 0.641 0.626 0.619 0.557 0.604 0.591 0.552 0.478

Membrane 0.540 0.509 0.469 0.306 0.451 0.409 0.421 0.384

Nuclear 0.542 0.515 0.502 0.379 0.475 0.449 0.485 0.432

APEX-RIP ER 0.626 0.554 0.485 0.150 0.469 0.394 0.407 0.368

Mitocondria 0.482 0.449 0.423 0.139 0.376 0.320 0.292 0.224

Cytosol 0.561 0.522 0.501 0.259 0.493 0.423 0.446 0.363

Nuclear 0.456 0.402 0.397 0.235 0.384 0.338 0.332 0.238

Note: NoLSTM and NoAttention are the two ablation tests without the bidirectional LSTM or the attention module.

Fig. 5. Attention weights ai, for RNATracker with fixed-length inputs, averaged

over the transcripts predominantly localized to each of the four fractions, as a

function of position in transcript
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RNA secondary structure. This may be explained by a number of

factors, and certainly does not suggest that structure plays no role in

localization. First, our ability to accurately characterize secondary

structure is imperfect, and our use of RNAplfold, which only consid-

ers relatively short-range interactions, may be limiting; the probabil-

istic structure profile proposed by Cook et al. (2017) may be good

alternative. Second, incorporating RNA structure information

increases the size of the input feature space, from 4 bit per position

for pure sequence, to 10 or 24 depending on whether the seqþstruct

or seq�struct encoding is used. This may more easily lead to overfit-

ting, thereby negating the benefits of this potentially valuable infor-

mation. More condensed encodings (e.g. paired/unpaired) may

prove beneficial. Finally, rather than feeding as input precomputed

structural information, one may consider letting the model learn to re-

construct them from some lower-level sequence/structural features.

Several factors may be limiting the accuracy of RNATracker.

First and foremost, the quantity and specificity of RNA localization

data remains relatively low, which limits the sophistication of the

models learned from it and forces the use of strict regularization

(limitation in model complexity, early stopping, dropout) to avoid

too severe overfitting, which in turn limits the space of reasonable

hyperparameters. This is in part due to the fact that isoforms are

currently not distinguished (all expression data are mapped to the

longest annotated isoform), although this could be addressed by

more advanced processing of future ceFra-seq/APEX-like data, pro-

vided higher sequencing depth is obtained. Second, localization data

produced by ceFra-seq/APEX are inherently noisy and may some-

times inaccurately reflect a transcripts true localization. Combined

with the fact that many transcripts exhibit only slightly asymmetric-

al localization or strong localization to more than one subcellular

fraction, this makes for hard data to train from.

Improvements to our current approach could be considered in

several directions, most of which are currently being explored. First,

we may be able to take advantage of transfer learning to exploit

models trained for other types of prediction tasks relevant to mRNA

localization, such as the easier prediction of RBP binding (Alipanahi

et al., 2015; Li et al., 2017; Pan and Shen, 2017) or possibly alterna-

tive splicing (Leung et al., 2014). This would involve building a pre-

dictive model initialized from a model previously trained for one of

Fig. 6. (A) Visualization of selected learned sequence motifs (above) mapped to those of known RBPs (below) from Ray et al. (2013) that are TIA1 (up) and

BRUNOL5 (down). (B) Hierarchical clustering of 32 filters with 1024 strongly localized transcripts (256 transcripts per fraction), using the cosine distance between

the 1024-dimensional vectors of average activation values, averaged across the transcript length

Fig. 7. Number (left) and interspecies conservation [measured using the KS

statistics (right) of enhancing and repressive candidate zipcode regions iden-

tified at increasingly strict KL cut-offs]
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these tasks, or reusing certain components of it, such as its convolu-

tion filters. Our initial attempts in that direction, based on reusing

the convolutional filters trained to predict RBP binding events from

Clip-Seq data (Stra�zar et al., 2016), did not provide improved accur-

acy. Indeed, the convolution filters only take up a small proportion

of all trainable weights. Alternatively, we could directly use prior

knowledge about RBP binding affinities, e.g. from Ray et al. (2013);

Dominguez et al. (2018), to initialize convolutional filters.

Second, in this study, we used interspecies conservation as an in-

direct valuation of our zipcode predictions. One could instead make

direct use of this information as an input to the predictor or to its at-

tention module.

Finally, bootstrapping techniques, e.g. reconstruction loss (Reed

et al., 2014), can be integrated into the training to account for the

noise of the targets, together with unlabeled RNA sequences.

With mRNA subcellular localization increasingly recognized as a

key player in regulating gene expression, new and improved datasets

will rapidly become available, and the power of approaches such as

RNATracker will increase. At the same time, the predictions made by

RNATracker, both in terms of location of zipcode elements and the

way in which individual motifs combine to results in its localization

predictions, constitute testable hypotheses that will fuel discovery in

the field. All in all, this represents a rich, promising and challenging

area for future research in bioinformatics and machine learning.
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