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Abstract

Despite major advancements in lung cancer treatment, long-term survival is still rare, and a 

deeper understanding of molecular phenotypes would allow the identification of specific cancer 

dependencies and immune evasion mechanisms. Here we performed in-depth mass spectrometry 

(MS)-based proteogenomic analysis of 141 tumors representing all major histologies of non

small cell lung cancer (NSCLC). We identified six distinct proteome subtypes with striking 

differences in immune cell composition and subtype-specific expression of immune checkpoints. 

Unexpectedly, high neoantigen burden was linked to global hypomethylation and complex 

neoantigens mapped to genomic regions, such as endogenous retroviral elements and introns, 

in immune-cold subtypes. Further, we linked immune evasion with LAG3 via STK11 mutation

dependent HNF1A activation and FGL1 expression. Finally, we develop a data-independent 

acquisition MS-based NSCLC subtype classification method, validate it in an independent cohort 

of 208 NSCLC cases and demonstrate its clinical utility by analyzing an additional cohort of 84 

late-stage NSCLC biopsy samples.

Introduction

Lung cancer is the most common type of cancer worldwide with 2.1 million new cases 

each year. Most cases are diagnosed when the cancer has already metastasized and surgical 

resection is no longer an option, resulting in a dismal overall 5-year survival rate for non

small cell lung cancer (NSCLC) of 24% and only 6% in stage 4 disease (seer.cancer.gov). 

Rapid development of targeted therapies and immunotherapy present a major opportunity, 

but the impact on survival so far is blunted by a lack of biomarkers for therapy selection and 

limited knowledge of how therapies should be combined. Exploratory DNA- and RNA-level 

omics analyses of clinical cancer cohorts have demonstrated the value of a systems-level 

understanding of lung cancer1,2.

With the improved analytical depth provided by modern mass spectrometry (MS) we can 

finally measure the actual druggable molecular phenotype directly, i.e., the proteome, which 
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is imperative for predictive medicine. An important feature of such analysis is that it 

provides a readout of not only the cancer cells in the sample, but also the stromal component 

and infiltrating immune cells. Altogether, this provides a picture of the dominant molecular 
cancer phenotype, or simply the most distinct features of the tumor as an organ3. For 

lung cancer, proteogenomic studies was recently performed on squamous cell carcinoma 

(SqCC, n=108)4, and on adenocarcinoma (AC) in three studies (Gillette et al.5, n=110; 

Xu et al 6, n=103; and Chen et al.7, n=103). For the AC studies, much focus was put on 

cancer in never-smokers (46%, 77%, and 83% of cohorts, respectively) and consequently on 

EGFR mutation-driven AC due to enrichment of this mutation in never-smoker cases (EGFR 

mutations in 34%, 50%, and 85% samples, respectively).

Here we have performed, in-depth analysis of the NSCLC proteome landscape, covering 

nearly 14,000 proteins and all major NSCLC histological subtypes. Based on this data, 

we defined six proteome subtypes of NSCLC and used the protein-level information to 

demonstrate clinical implications of the proteome subtypes, such as prognostic or treatment 

predictive value. Our in-depth analysis provides crucial new information for potential 

stratification of NSCLC patients in relation to immuno-therapy and targeted therapy, 

underscoring the value of the herein defined proteome subtypes. Finally, we developed a 

MS-based classification method that can be used for both early- and late-stage NSCLC 

samples in a clinical setting.

Results

1 Proteome subtypes of NSCLC

The 2015 WHO histological classification subdivides NSCLC into AC, SqCC, large-cell 

neuroendocrine carcinoma (LCNEC), and large-cell lung cancer (LCC), all represented in 

the current cohort of resected tissue samples (n=141), together with two small-cell lung 

cancer (SCLC) samples for reference (Figure 1a, Supplementary Table 1). The cohort 

primarily consists of early-stage (I-II, 87%) cancer, as late-stage (III-IV) NSCLC rarely 

involves surgical removal of the tumor. For a comprehensive phenotype-level analysis of 

NSCLC we used isobaric labelling and HiRIEF-LC-MS8,9 with data-dependent acquisition 

(DDA) reaching an analytical depth of 13,975 identified proteins (gene-centric search, 

FDR<1%, Figure 1b, Supplementary Table 2). In addition to MS-data, mutation analysis for 

cancer-associated genes was performed by panel sequencing (n=370 genes), furthermore 

genome-wide methylation and mRNA-level data were available for most samples10–12 

(Supplementary Table 2).

For proteome-level molecular subtyping of NSCLC consensus clustering was performed 

resulting in six distinct clusters (Figure 1c, Extended Data Figure 1), hereinafter, referred to 

as (proteome) Subtypes 1–6. To evaluate the robustness of these subtypes we also performed 

NMF clustering13, indicating only minor differences in sample clustering (Extended Data 

Figure 1). Subtype 1–4 samples were primarily AC (77–100%), Subtype 5 samples LCNEC 

(64%), and Subtype 6 samples SqCC (96%), and both SCLC samples grouped together with 

LCNEC samples as expected due to neuroendocrine lineage origin. Further, never-smokers 

were enriched in Subtype 1 while evaluation of sex, tumor stage, and age distribution 

did not reveal any specific enrichment patterns (Supplementary Figure 1a-e). A previous 
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subtyping of the current NSCLC cohort based on mRNA-level analysis10 revealed ten 

different subtypes showing a partial overlap with the six proteome subtypes identified 

here (Figure 1c, Extended Data Figure 2a). Subtyping performed by The Cancer Genome 

Atlas (TCGA) network based on mRNA expression for AC specifically identified three 

expression subtypes; terminal respiratory unit (TRU); proximal-inflammatory (PI); and 

proximal proliferative (PP)2. Classification of the AC samples in the current cohort into 

these three subtypes based on RNA-level data revealed that Subtype 1 consisted primarily of 

TRU samples, Subtype 2 of PI samples, and Subtype 4 of PP samples (Figure 1c, Extended 

Data Figure 2b). Importantly, Subtype 3 did not show enrichment of any previous AC 

mRNA subtype. SqCC mRNA expression subtypes (“classical”, “primitive”, “secretory”, 

and “basal”) have also been described by the TCGA network1. Interestingly, all “classical” 

SqCC samples (9/9) in our analysis are found in Subtype 6, while “primitive” are found in 

Subtype 5 (3/5) or Subtype 4 (2/5), and 5/8 of the “secretory” in Subtype 3 (Figure 1c). 

SqCC samples clustering outside of Subtype 6 (12/35) commonly also express lower levels 

of SqCC markers (KRT5 and KRT6A), indicating that these cancers may be more atypical 

SqCC (Extended Data Figure 2c). Recently, a proteomics-based subtyping was reported for 

SqCC, with 4,880 proteins identified in at least 90% of samples where consensus clustering 

indicated three subtypes termed “Inflamed” (40% of samples), “Redox” (47%) and “Mixed” 

(13%)4. Analysis in relation to mRNA expression subtypes showed that the “Redox” 

subtype consisting primarily of “classical” samples, while “secretory” and “basal” samples 

spread out over “Inflamed” and “Mixed” subtypes and “primitive” samples distributed 

evenly over all three proteome subtypes4. Based on this, we conclude that Subtype 6 defined 

here most closely parallels the “Redox” SqCC proteome subtype defined by Stewart et al.

For a broad phenotypic characterization of the NSCLC proteome subtypes we performed a 

network analysis (Figure 1d, Extended Data Figure 2d-f) based on protein-level differences 

identified using DEqMS14 (Supplementary Figure 2, Supplementary Table 3). This analysis 

indicated subtype separation based on cell types and cell signaling with clear immune 

infiltration in Subtypes 2 and 3 and stromal component in Subtype 3, also supported by 

signature analysis using the ESTIMATE method15 (Figure 1c). These results agreed with 

the cell composition evaluation, as Subtypes 2 and 3 showed the lowest tumor cell content 

(“purity”, Extended Data Figure 2g). Further, the network analysis indicated the highest 

proliferation in Subtype 5, and the lowest in Subtype 1, which was supported by Ki67 levels 

as measured by MS (Figure 1c).

Panel sequencing confirmed previously reported mutation patterns in NSCLC and revealed 

enrichment of EGFR mutations in Subtype 1; STK11, KEAP1 and SMARCA4 in Subtype 
4; RB1 mutations in Subtype 5 and TP53 mutations in Subtype 6 (Extended Data Figure 

2h, Supplementary Figure 3, Supplementary Table 2). Further, the mutation patterns agree 

with the phenotype-level network analysis as E2F1/MYC signaling and RB1 mutations 

were enriched in Subtype 5, metabolism and STK11 mutations in Subtype 4, and both 

p53 signaling and TP53 mutations in Subtype 6. Interestingly, all three SqCC samples in 

Subtype 5 harbored RB1 mutations, and the only LCNEC sample outside of Subtype 5 was 

mutated for both STK11 and KEAP1 and grouped with Subtype 4. This indicates that the 

NSCLC Proteome Subtypes capture dominant molecular cancer phenotypes related to driver 

signaling pathways notwithstanding the formal histological classification.
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2 Cancer- and driver-related proteins

To associate proteome-level information to known cancer-associated genes, we defined a list 

of 951 “Cancer- and Driver-Related Proteins” (CDRPs), 832 of which were quantified in 

the NSCLC cohort (Supplementary Figure 4, Supplementary Table 4). Out of these CDRPs, 

291 showed outlier levels (defined here as extreme level, i.e., sample protein level > 3-fold 

up or down compared to cohort median, Supplementary Figure 4) in at least one sample, 

85% of the samples showed outlier expression of at least one oncogene, and 26% of at least 

five. Subtype 5 showed the highest number of overexpressed oncogenes per sample (Figure 

1e), commonly including the transcriptional activator MYB. Of the AC-enriched subtypes 

(Subtypes 1–4), Subtype 4 showed the highest number of overexpressed oncogenes per 

sample with common overexpression of the receptor tyrosine kinase RET (Supplementary 

Figure 5). Further, the analysis revealed overexpression of known NSCLC drivers such as 

EGFR, ERBB2, and KRAS, but also of oncogenes not commonly implicated in NSCLC 

such as the oncogenic kinase SGK1 (Figure 1f, Supplementary Figure 5).

Overall, the mRNA-protein correlation for the majority of CDRPs with outlier expression 

was high, however, for a subset of CDRPs mRNA levels poorly explained the protein levels 

(Figure 1g). As contributing causes for this, we noted significantly lower mRNA-protein 

correlation for known miRNA targets16, known protein complex members17 as well as 

mRNAs and proteins with low stability18 (Extended Data Figure 3a-c). For example, the 

analysis pointed out a lack of mRNA-protein correlation for HMGA2 (regulation by the 

let-7 microRNA19), MUC4 (degraded via hypoxia-induced autophagy20), IRS4 (oncogenic 

driver in breast cancers21), and E2F1 (regulated by the ubiquitin-proteasome system22, 

Supplementary Figure 6). Interestingly, E2F1 protein levels were specifically elevated in 

Subtype 5 samples, suggesting that E2F1 degradation was reduced specifically in this 

subtype. Elevated E2F signaling in Subtype 5 was also identified by the network analysis 

(Figure 1d).

The analytical depth of our MS-analysis, together with supporting genome-wide 

transcriptomics and methylation data allowed evaluation of gene regulation levels. 

Plotting the promoter methylation-mRNA correlation against mRNA-protein correlation 

indicated genes likely to be epigenetically regulated, transcriptionally regulated, and 

post-transcriptionally regulated (Extended Data Figure 3d-e, Supplementary Table 5). 

This analysis indicated several CDRPs potentially regulated epigenetically (significant 

negative methylation-mRNA and positive mRNA-protein correlation) such as LCK, HNF1A, 

LCP1, CARD11 and IRS2 (Figure 1h). LCK, LCP1, and CARD11 all showed modestly 

higher mRNA and protein levels in more immune-infiltrated subtypes (Subtypes 2 and 

3, Supplementary Figure 6), consistent with blood cell- and lymphoid tissue-specific 

expression as indicated in the Human Protein Atlas (www.proteinatlas.org). IRS2 and 

HNF1A, on the contrary, showed outlier expression in a subset of Subtype 4 samples 

(Extended Data Figure 3f). IRS2 is an insulin receptor substrate, methylation of this gene 

is associated with high fasting insulin levels, indicating epigenetic control of IRS2 23. 

HNF1A is a liver-specific transcription factor that is a master regulator of metabolism, 

mutations in this gene are one of the most common causes of Maturity Onset Diabetes of the 

Young (MODY)24. Interestingly, overexpression of these two proteins occurred in different 
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cases, suggesting that sample-specific altered epigenetic control of different metabolic genes 

occurs in Subtype 4 (Extended Data Figure 3g).

3 Immune landscape of NSCLC Subtypes

To evaluate the infiltrating immune cell subpopulations in the cohort samples, we applied 

previously described immune signatures25 to our MS-data. This analysis confirmed the 

overall high immune infiltration in Subtypes 2 and 3 samples. In particular, there was high 

signal for T-cells and IFN signaling in Subtype 2, and for B-cells in Subtype 3, suggesting 

a differential immune response in these two subtypes (Figure 2a, Supplementary Figure 

7). CD3 and CD8A immunohistochemistry (IHC) was performed on a subset of cases 

and showed correlation between MS data and stromal staining (Extended Data Figure 4, 

Supplementary Table 1). In contrast, Subtype 4 had very low signals for all immune cell 

subpopulations, indicating an overall immune-cold subtype. Next, we investigated antigen 

processing and presentation machinery (APM, Supplementary Figure 8) in relation to tumor 

mutation burden (TMB, Supplementary Figure 9) to evaluate the potential of neoantigen

dependent immune cell activation as recently performed for endometrial carcinoma26. This 

analysis indicated that Subtype 2 samples were associated with both high TMB and APM, 

while Subtype 3 showed high APM but low TMB, and Subtype 4 high TMB but low APM 

(Figure 2b-c). Subtype 2 thus fulfils the requirements to elicit a strong immune activation 

as high TMB and APM would suggest production of neoantigens that are also presented. 

Interestingly, the subtype marker analysis revealed PD-L1 as one of the clearest marker 

proteins of Subtype 2 (Figure 2d-e, Extended Data Figure 4), suggesting that targeting the 

PD-L1/PD-1 immune checkpoint would be efficient in these patients. In addition, Subtype 2 
showed the highest mRNA and protein levels of the chemokine CXCL9 that was described 

as one of the strongest predictors of immune checkpoint response in a recent meta-analysis 

of clinical studies across different cancer types27 (Figure 2f-h).

The immune landscape evaluation suggested high infiltration of B-cells in Subtype 3 
samples, and in addition we noted a dichotomy between the expression of B-cell markers 

and the expression of PD-L1 (Extended Data Figure 5a). B-cell rich tertiary lymphoid 

structures (TLSs) have previously been shown associated with good prognosis28 and 

response to immunotherapy29. An evaluation of TLS markers based on mRNA-level analysis 

as previously described29 indicated high expression in a subset of Subtype 3 samples 

(Extended Data Figure 5b). To investigate this further we evaluated tumor sections from 

a subset of the samples with either high levels of PD-L1 (Subtype 2) or B-cell markers 

(Subtype 3, Extended Data Figure 5c). This analysis supported the presence of TLSs 

in Subtype 3 (Figure 2i, Extended Data Figure 5d-f), but also indicated differences in 

predominant growth patterns between AC samples in Subtypes 2 and 3 (Supplementary 

Table 6). While Subtype 2 samples almost exclusively showed a solid growth pattern with 

low stromal component, Subtype 3 samples showed variable degrees of lepidic, acinary, 

papillary, micropapillary, mucinous, and solid growth patterns (Extended Data Figure 5g-n). 

Overall, these results emphasize that while both Subtypes 2 and 3 samples are infiltrated by 

immune cells, the type of infiltrating immune cells and the AC growth pattern is strikingly 

different.
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4 Tumor neoantigen burden in NSCLC

Apart from mutations, aberrant transcription of cancer testis antigens (CTAs) and of DNA 

sequences not expected to produce proteins at all, such as pseudogenes or endogenous 

retroviral (ERV) elements, could also produce neoantigens and elicit an immune reaction 

against the cancer cells30–33. These so-called “non-canonical”, “alternative”, or “aberrantly 

expressed” structures will be referred to here as non-canonical proteins/peptides (NCPs). 

Out of 230 CTAs (CTdatabase34 or annotated as testis-enriched in www.proteinatlas.org) 

identified at the protein level in the current cohort, 70 were identified with at least 2 unique 

peptides and showed outlier expression pattern (sample protein level > 3-fold up compared 

to the cohort median) and were evaluated further. Intriguingly, the expression of CTAs was 

found to be higher in the immune-cold subtypes (Subtype 4–6, Figure 3a, Supplementary 

Figure 10).

Next, for an unbiased evaluation of NCPs, we performed proteogenomic analysis by 

searching MS-data against a peptide database produced by 6-reading frame translation 

(6FT) of the entire human genome as previously described8,9 (Figure 3b, Extended Data 

Figure 6a). Following the same outlier expression pattern as in CT antigens (FC > 3), we 

identified 651 NCPs (class-specific FDR estimation<1%), with 13% of the corresponding 

genetic loci supported by more than one peptide (Supplementary Table 7). As the actual 

FDR is difficult to estimate in searches against large proteogenomic databases we evaluated 

the spectra of 105 NCPs by comparison to the spectra of the corresponding synthetic 

peptides (Supplementary Data 1), suggesting a false discovery rate of approximately 35%, 

not atypical of proteogenomics using very large search spaces (Extended Data Figure 6b-e). 

Interestingly, as in the case of CT-antigens, these complex NCP-antigens were detected 

in highest numbers in immunologically cold tumors (Subtypes 4 and 6, Figure 3b-c, 

Supplementary Figure 11a). Further, regression analysis suggested that the number of NCPs 

per sample was associated with tumor cell content (P = 0.011) and TP53 mutation (P = 

0.057), but not to TMB or proliferation probed by Ki67 (Figure 3d).

Previous research has shown that global hypomethylation and promoter-specific 

hypomethylation is associated with CTA expression35. In our proteome-wide analysis, the 

number of identified CTAs per sample showed a significant negative correlation to both 

global methylation and promoter methylation, indicating that looser epigenetic control 

contributes to protein-level expression of CTAs in NSCLC (Figure 3e, Supplementary 

Figure 11b). Importantly, also the number of identified NCPs per sample showed 

negative correlation to global methylation (Figure 3f, Supplementary Figure 11c). Further, 

the analysis revealed significant differences between subtypes in global and promoter 

methylation (Figure 3g-h), with the lowest methylation found in Subtypes 4 and 6.

To evaluate the potential for activation of anti-cancer immune response more 

comprehensively, we evaluated TMB in relation to CTA and NCP expression in the NSCLC 

cohort and summarized these three metrices into a Tumor Neoantigen Burden (TNB) score 

(Figure 3i). This analysis indicates that while Subtype 2 has the highest TMB, Subtypes 4, 

5, and 6 produce other types of neoantigens that could elicit a strong immune response given 

efficient presentation and infiltration of immune cells.
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Next, we performed a systematic evaluation of immune checkpoints based on previously 

identified inhibitory receptors (IRs) and their corresponding ligands36,37 (Figure 4, 

Supplementary Figure 12). This analysis indicated that the protein levels of IRs in general 

correlated with infiltration of T-cells. IR ligands (expressed by cancer cells and APCs), 

on the contrary, showed more variable patterns, suggesting that different subtypes may 

use different immune evasion mechanisms. The most striking IR ligand expression was 

found for PD-L1 in Subtype 2, but intriguingly the analysis also revealed two other subtype

specific IR ligands, FGL1 in Subtype 4 and B7-H4 in Subtype 6 (Figure 4). FGL1 was 

recently identified as a tumor cell-secreted, high-affinity ligand to LAG3, causing FGL1

LAG3-mediated supression of T-cells38. B7-H4 acts as an immune checkpoint to prevent 

autoimmunity39, and targeting of B7-H4 reduces the tumor growth and the formation of lung 

metastases in CT26 mouse models40. Taken together, the immunophenotype, the neoantigen 

burden, and the checkpoint analyses show that the NSCLC proteome subtypes identified 

here may have predictive value for different types of checkpoint inhibitors already in clinical 

use, or investigated in clinical trials.

5 STK11 inactivation and liver-specific signaling in Subtype 4

To investigate the mechanism behind FGL1 expression in Subtype 4, we performed a 

correlation analysis to identify FGL1-associated proteins and transcripts. This analysis 

showed a strong negative correlation between FGL1 and the tumor suppressor STK11/LKB1 

at protein, but not mRNA, level, suggesting post-transcriptional regulation of STK11 (Figure 

5a, Supplementary Figure 13a-b). STK11 forms a functional heterotrimeric complex with 

STRADα and CAB39 (MO25α)41, and in our data a stabilizing effect of this complex was 

supported as the correlation between STK11 and STRADα was much higher at protein 

level (0.69) than at the mRNA level (0.25, Extended Data Figure 7a-b). Further evaluation 

revealed a strong coincidence between STK11 mutation and high FGL1 protein and mRNA 

levels in Subtype 4 (Figure 5b, Extended Data Figure 7c).

Intriguingly, the protein/mRNA with the highest correlation to FGL1 was CPS1, a 

mitochondrial urea cycle enzyme known to be upregulated in cancer through the AMPK

mTOR signaling pathway after inactivation of STK1142 (Figure 5a, c and Supplementary 

Figure 13c-d). FGL1 and CPS1 are normally only expressed in liver38,42, but our data 

suggests that STK11 inactivation results in transcriptional upregulation of both genes also in 

lung cancer. Evaluating the FGL1 mRNA/protein correlation analysis against transcriptions 

factors as annotated in the animalTF database43 indicated the liver-specific HNF1A as 

the highest correlating transcription factor (Figure 5a). Interestingly, as described above, 

HNF1A was also noted as a gene potentially regulated by epigenetic mechanisms in NSCLC 

which is common for tissue/lineage-specific genes (Figure 5d).

Further, gene expression data covering 31 different cancer types (TCGA PanCancer 

dataset44) supported a strong co-expression of FGL1, CPS1, and HNF1A but not 

correlation between FGL1 and STK11, as in our NSCLC data (Extended Data Figure 

7d). Hepatocellular carcinoma samples showed high mRNA-levels of FGL1 and CPS1 
as expected, but importantly also a subset of lung adenocarcinoma (Figure 5e). Further, 

both genes were significantly higher expressed in STK11-mutated AC cases, supporting 
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that FGL1 and CPS1 transcription is controlled by STK11-dependent signaling (Figure 

5f, Extended Data Figure 7e). STK11 wild-type lung adenocarcinoma with high mRNA 

expression of FGL1 and CPS1 showed reduced mRNA level of STK11, indicating that 

transcriptional or epigenetic regulation could contribute to STK11 inactivation (Figure 5g

h). Increased FGL1 and CPS1 mRNA levels and reduced STK11 mRNA expression was 

particularly evident in lung adenocarcinoma, suggesting cancer type-specific deregulation 

(Extended Data Figure 7f, Supplementary Figure 13e-f). Finally, FGL1 mRNA expression 

significantly correlated to HNF1A mRNA expression in lung adenocarcinoma (Extended 

Data Figure 7g).

6 HNF1A and FGL1 are controlled by STK11-AMPK in NSCLC

Analysis of the mRNA levels of FGL1 and CPS1 across 926 cell lines in the Genomics 

of Drug Sensitivity in Cancer (GDSC) project45 revealed co-expression specifically in a 

subgroup of NSCLC cell lines (Figure 6a). Focusing on NSCLC cell lines (n=109), we 

continued to evaluate differences in drug response between cell lines with high FGL1 and 

CPS1 expression (n=11) and the remaining cell lines (n=98) (Supplementary Figure 14a). 

This analysis revealed higher sensitivity of FGL1/CPS1-expressing cells to docetaxel, a 

chemotherapeutic agent commonly used in NSCLC, but strikingly also higher sensitivity to 

multiple compounds targeting mTOR signaling (Figure 6b, Supplementary Figure 14b-c). 

STK11 inhibits mTOR signaling through activation of AMPK, and in cancer cells with loss 

of AMPK activity, mTOR becomes an oncogenic driver46. Our results indicate that elevated 

FGL1/CPS1 levels is a solid indicator of loss of STK11-AMPK signaling, and as such a 

potential predictor of mTOR addiction in this group of lung adenocarcinoma. Importantly, 

STK11 mutation alone could not predict sensitivity to mTOR inhibitors, again indicating 

alternative STK11 inactivation mechanism and highlighting the need of phenotype-level 

information for a more comprehensive understanding of pathway activity (Supplementary 

Figure 14d).

Treatment of HepG2 cells (liver cancer) with the AMPK activator A-769662 for 24 and 48 

h resulted in reduced levels of HNF1A and FGL1 as evaluated by Western blot analysis 

(Figure 6c). Importantly, the same effect of AMPK activation on HNF1A and FGL1 levels 

was detected in STK11-mutated (mut) lung cancer cell lines, NCI-H1944 and NCI-H1395 

(Figure 6d-e, HNF1A not detected in NCI-H1395). Finally, we validated the role of STK11 

signaling in a rescue experiment by introducing wild-type (wt) STK11 in NCI-H1944 cells 

(Figure 6f). Re-expression of this tumor suppressor was poorly tolerated by the cells, 

nevertheless three replicate experiments showed that STK11wt protein expression was 

associated with loss of both FGL1 and HNF1A. Thus, our analysis shows that STK11 

inactivation in lung cancer results in loss of AMPK dependent control of downstream 

signaling, leading to upregulation of several liver specific genes including the transcription 

factor HNF1A, FGL1, and CPS1 (Figure 6g). Further, our analysis indicates that this 

signaling aberration is a feature of Subtype 4 that together with overactivation of mTOR 

signaling, potentially contributes to both immune evasion and cancer growth.
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7 DDA- and DIA-based classification of NSCLC Subtypes

Our analysis above indicated clinical value of the NSCLC proteome subtypes presented 

here. To enable knowledge transfer into a clinical setting, we developed two NSCLC 

classification pipelines: one support vector machine (SVM)-based for classification of 

sample cohorts, and one k-Top Scoring Pairs (k-TSP)-based for single-sample classification 

(Figure 7a, Supplementary Figure 15a). The SVM classifier was optimized by Monte 

Carlo cross-validation (100 iterations) indicating consistently high accuracy (average: 94%, 

Figure 7b) and an overlap in selected feature sets (Figure 7c, Supplementary Table 8). 

Misclassifications were sparse (6%, Extended Data Figure 8a) and mostly restricted to 

samples with ambiguity in the consensus index analysis generated during the original 

clustering of the 141 samples, indicating that the samples were cluster outliers (Extended 

Data Figure 8b).

For the k-TSP single-sample classifier, we first re-analyzed the NSCLC cohort using 

rapid label-free, data-independent acquisition (DIA)-based MS analysis. As expected, 

due to limited MS time per sample, the proteome coverage in the DIA analysis (6,717 

proteins identified, median 3,967 IDs per sample, FDR<1%) was less comprehensive, but 

importantly showed overall high correlation to the original DDA data (Extended Data Figure 

8c, Supplementary Table 2). The k-TSP classifier uses quantitative information from a set 

of protein pairs measured in a single sample for classification (Extended Data Figure 8d, 

Supplementary Figure 15b). The k-TSP classifier was optimized as the SVM classifier 

and resulted in high accuracy (average: 87%, Figure 7b, Extended Data Figure 8d-f, 

Supplementary Figure 15b), and feature pair overlap between iterations (Supplementary 

Table 8). Misclassifications spread out between subtypes, largely overlapping with subtype 

outliers as indicated by the consensus index (Extended Data Figure 8g).

Due to the lack of previous datasets describing the NSCLC proteome across histology 

types, we validated the SVM classifier using a NSCLC transcriptomics meta-dataset (GEO 

NSCLC dataset47). Importantly, the classification of the GEO NSCLC cohort reproduced 

the six NSCLC proteome subtypes with highly similar characteristics in terms of subtype 

size, signature, and marker expression (Figure 7d). Notably, AC samples that were classified 

into Subtype 6, showed expression of SqCC markers (KRT5 and KRT6A) and lacked the 

AC marker Napsin A (NAPSA). The associated overall survival data indicated differences 

in prognosis between the classified subtypes, suggesting a predictive value of the NSCLC 

proteome subtypes (Figure 7e). Next, we used the TCGA lung AC transcriptomics dataset2 

(TCGA-LUAD, n=510 samples), but as this dataset is restricted to AC, we re-trained the 

SVM classifier for the four AC enriched proteome subtypes (Subtypes 1–4). Again, SVM 

classification reproduced the 4 AC proteome subtypes in terms of subtype size, mutation 

enrichment pattern, signature, and marker expression (Extended Data Figure 9a), with a 

trend for poorer survival in Subtype 4, and better survival in Subtype 1 (Extended Data 

Figure 9b). This finding indicates that adjuvant therapy could be beneficial in Subtype 4. 

To further validate the proteome subtypes, we analyzed a recently published MS-dataset 

(TMT-labeled) for lung AC (Gillette et al.5). Overall, the classification of this dataset again 

demonstrated that proteome Subtypes 1–4 were distinct and reproducible between datasets 

and analytical platforms (Extended Data Figure 9c-d). The k-TSP classifier was evaluated in 
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another recent lung AC MS-dataset (label-free, Xu et al.6). In this dataset the lowest k-TSP 

feature pair coverage was 92%, and all 103 cases were included in the analysis, resulting in 

successful classification of 99 cases. Once again, the classification produced subtypes with 

characteristics matching those in the original discovery cohort (Extended Data Figure 9e).

8 DIA-based validation in two independent cohorts

To further evaluate the full MS-based classification pipeline, a second independent cohort 

of NSCLC was analyzed using DIA-MS (“Validation cohort”, n=208, Figure 8a-b, Extended 

Data Figure 10a and Supplementary Table 9). Samples with at least 50% coverage of the 

k-TSP feature pairs were selected for classification (188 samples, Figure 8c and Extended 

Data Figure 10b), resulting in successful classification of 175 cases (Extended Data Figure 

10c). The validation cohort classification reproduced the six NSCLC proteome subtypes 

described here with similar characteristics of subtype and histology distributions (Figure 

8d). As previously, unexpected classifications (AC samples in, and SqCC outside of Subtype 
6) were commonly associated with atypical expression of AC and SqCC marker proteins 

(KRT5, KRT6A, and NAPSA, Figure 8e and Extended Data Figure 10d). Further validating 

the results from the initial cohort, EGFR mutant cases were classified to Subtype 1 in 

13/19 cases (Fisher test P = 6.8 × 10-5) and poorly differentiated cancers were enriched 

in Subtype 2 (3.5-fold, P = 0.004). The DIA-MS analysis resulted in identification of 

both FGL1 and CPS1 in only nine cases, and eight of these were classified as Subtype 
4, underscoring the capacity of the DIA-based classification pipeline of identifying this 

potentially clinically important NSCLC subgroup (Figure 8f). Further, 3/5 LCNEC cases 

were classified into Subtype 5, and all five Subtype 5 cases showed high protein levels of 

BCL2 and CDK2 (Figure 8g), two targetable oncogenic proteins indicated as Subtype 5 
markers in the initial NSCLC cohort analysis (Supplementary Figure 2d). Finally, analysis of 

relapse-free survival (RFS) in the validation cohort samples once again indicated differences 

in prognosis between the classified subtypes, with significantly longer RFS in Subtype 1 
cases than in Subtype 4 cases (Extended Data Figure 10e).

Next, to evaluate the k-TSP classifier in a late-stage setting, we analyzed a cohort of biopsy 

samples from inoperable NSCLC (“late-stage cohort”, 84 samples, Supplementary Table 10) 

by label-free DIA-MS (Extended Data Figure 10f-h). The analytical depth was lower in the 

late-stage cohort compared to the discovery cohort and the validation cohort, likely as a 

result of inferior quality in biopsy samples compared to surgical material samples (Extended 

Data Figure 10i-k). The 50% feature pair coverage cutoff left 61 samples (Figure 8h) for 

single-sample k-TSP classification, 58 of which were successfully classified with an overall 

good agreement between histological subgroup and the classified NSCLC proteome subtype 

(Figure 8i). Disagreement was however indicated for a few samples, e.g., SqCC samples 

classified to Subtype 3 and SCLC samples classified to Subtypes 1 and 3, possibly due 

to atypical or borderline histology samples as shown by KRT5/Napsin A levels (Figure 

8j) and neural markers (Supplementary Figure 16). In summary, this analysis shows that 

DIA-MS-based analysis of either early-stage surgical material or late-stage biopsy material 

enables accurate classification of NSCLC into the six NSCLC proteome subtypes described 

here.
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Discussion

Apart from early detection, prediction of treatment response and optimal therapy 

combinations are two of the most urgent clinical needs in the management of non-small 

cell lung cancer (NSCLC). A systems-level understanding of the disease biology is crucial to 

achieve more accurate and precise molecular subtyping of the disease and fulfil these needs. 

The current study subdivides NSCLC into six proteome subtypes by in-depth molecular 

phenotype analysis of tumors, capturing driver pathways and new immune phenotypes.

Intriguingly, TNB was highest in the immune-cold Subtypes 4 and 6, that also showed 

common expression of NCPs exemplified by peptides from ERV elements and intronic/

intergenic regions. Such peptides with longer “non-self” stretches are suggested to be more 

immunogenic than SNV-mutation derived neoantigens, which are often too similar to the 

self-antigen48,49. These findings suggest that expression of highly immunogenic CTAs 

and NCPs may be incompatible with immune infiltration as this would elicit a strong 

immune response and killing of the cancer cells. Further, NCPs did not correlate with TMB 

suggesting that mutations are not the main cause of these types of neoantigens. Instead 

in our data, both CTA and NCP expression are associated with global hypomethylation 

suggesting looser epigenetic control, in line with previous reports for CTAs35. It is also 

likely that immunoediting impacts the evolution of the neoantigen repertoire and its relation 

to immune evasion mechanisms in individual tumors. From a treatment point of view these 

findings are interesting as NCP-antigens are more likely to be widely shared by different 

tumors than SNV-mutation-derived neoantigens, which tend to be patient-specific49. This 

renders NCP neoantigens more promising for off-the-shelf immunotherapy development.

In relation to current immunotherapy, Subtype 2 is characterized by high PD-L1 and 

CXCL9 levels, T-cell infiltration, activated IFNγ signaling, proficient antigen presentation 

and high TMB, all indicators of response to PD1/PD-L1 checkpoint inhibition. Currently 

used single predictive biomarkers for PD1/PD-L1 inhibitors in NSCLC (PD-L1 IHC or the 

less-established TMB) have low sensitivity or may even be uninformative, and complex 

biomarkers that hold multi-level information are likely to improve the predictive accuracy50. 

Our data presented here indicate that MS-based proteome-level subtyping of NSCLC could 

offer a powerful and competitive method for therapy prediction in the future.

A second wave of checkpoint inhibitors are currently investigated in clinical trials with 

targets including the inhibitory T-cell receptors LAG-3, TIM-3, and TIGIT36. Based 

on positive results in mouse models51, antibody-based inhibition of LAG-3 is currently 

investigated in multiple clinical trials with the majority focusing on combined LAG3 and 

PD-1/PD-L1 inhibition36. Importantly, FGL1 was recently identified as a high-affinity 

ligand to LAG-3: binding resulted in T-cell suppression while blockade of the interaction 

potentiated anti-tumor immunity38. Our analysis reveals that FGL1 is overexpressed in 

Subtype 4 NSCLC, which depends on inactivation of the tumor suppressor STK11. 

Interestingly, Subtype 4 is immune-cold and secretion of FGL1 could potentially contribute 

to a systemic inhibition of T-cell activation and of tumor infiltration by immune cells. 

Further, if FGL1 is indeed the major cancer-derived ligand of LAG-3, our data indicate that 

immune cell infiltration or intra-tumoral CD8 (+) cells would be a poor predictor of response 
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to LAG-3 inhibitors as neither of these correlate with FGL1 levels. Instead, our analysis 

suggests that Subtype 4 could function as stratification for checkpoint inhibitors targeting 

LAG-3, or, if developed, FGL1.

Our analysis also indicates that B7-H4 may contribute to immune evasion in Subtype 6, 

which is supported by previous studies where B7-H4 and B7-H3 were found to be higher 

in SqCC than in AC52. B7-H4 belongs to the same ligand family as PD-1 and CTLA4, and 

it inhibits T-cell growth, cytokine secretion, and development of cytotoxicity53, but so far 

the target receptor has not been identified. Similarly to FGL1, B7-H4 can also be secreted 

as was previously demonstrated in both rheumatoid arthritis54 and ovarian carcinoma55, 

however the impact of secreted B7-H4 on the immune response in cancer remains to 

be shown. For the highly proliferating and relatively immune-cold Subtype 5 (LCNEC) 

our data do not reveal any subtype-specific IR ligand expression. The neoantigen burden 

analysis however indicates high expression of potentially immunogenic proteins. This raises 

the question if other, so far unidentified, IR ligands are expressed on the surface of or 

secreted by Subtype 5 cancer cells. Subtype 1 (EGFRmut-enriched) is also immune-cold but 

has low neoantigen burden, low immune infiltration, and low levels of all clinically relevant 

ligands of T-cell inhibitory receptors, in line with EGFR-mutant NSCLC being refractory 

to checkpoint inhibitors50. Overall, our study reveals new patterns of checkpoint protein 

expression and provides a resource for filling the knowledge gaps.

Our analyses show a striking co-expression of FGL1, CPS1, and HNF1A in a subset 

of Subtype 4 samples with STK11 inactivation. HNF1A is a liver-specific transcription 

factor as shown by us56 and others57, that activates broad liver-specific transcriptional 

programs with the potential to reprogram fibroblasts into hepatocytes58. Further, transfection 

of HNF1A into human fibroblasts resulted in a dramatic upregulation of multiple genes 

including FGL1 59. No direct link has previously been shown between STK11 inactivation 

and HNF1A activation, however the mouse equivalent to HNF1A, TCF1 is upregulated 

and activated by mTORC1-STAT360. Our analysis here suggests that reduced HNF1A 
promoter methylation in STK11 mutated samples contributes to elevated HNF1A mRNA 

levels, but the mechanism for this epigenetic regulation of HNF1A remains to be further 

elucidated. Collectively our data indicates that inactivation of STK11 in NSCLC modulates 

two cancer hallmarks at once by increasing growth rate by loss of mTOR signaling control 

and promoting immune evasion by expression of FGL1. Importantly, this finding also 

indicates a potential future combination therapy strategy in Subtype 4 NSCLC cases, where 

LAG-3/FGL1 checkpoint inhibitors are combined with mTOR inhibitors.

As our analysis demonstrates clinical utility of the proteome subtypes of NSCLC, we 

developed two methods for classification/subtyping of NSCLC that would be applicable 

in a clinical setting. The cohort-level classifier (SVM-based) is valuable in a clinical trial 

setting where multiple samples are collected and analyzed together. The single sample 

classifier (k-TSP) can be used in a routine diagnostic setting for rapid, label-free analysis 

of individual samples. Both classifiers showed high accuracy and robustness, and evaluation 

of the developed classifiers in multiple independent internal and external cohorts replicated 

close to perfectly the characteristics of the six proteome subtypes. Importantly, in a first 

proof-of-concept analysis we demonstrate that the DIA-MS based single-sample k-TSP 
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classifier can be successfully utilized even in late-stage NSCLC where very limited sample 

material is available. It should be noted that neither the sampling, nor the sample preparation 

was optimized for MS-based classification, so we predict significant improvement and 

increased quality of the DIA-based classification method.

In summary, we present a first comprehensive proteome analysis of NSCLC, demonstrating 

the value of high-resolution molecular phenotype analysis as an important component in 

our quest to understand cancer. Importantly, our analysis indicates, for the first time, that 

different immune evasion mechanisms are used by cancer cells depending on the type 

of neoantigens expressed. Immune response towards simpler mutation-derived neoantigens 

appear to be neutralized locally by PD-L1 as seen in Subtype 2, featuring high TMB but 

low non-canonical neoantigens. Immune infiltration would be detrimental to cancer cells 

with complex, likely more immunogenic neoantigens, thus secreted checkpoint ligands, 

such as FGL1, are expressed for a systemic inhibition of the immune response as seen in 

Subtype 4. Further studies are needed to determine how these strong neoantigens push for 

immune evasion mechanisms that hinder immune cell infiltration, and how to best target 

these processes.

Methods

Collection of NSCLC samples and ethical approvals

The early-stage cohort (also referred to as the “discovery cohort”) comprised resected lung 

cancer tumor samples from a total of 192 patients with operable lung cancer that were 

surgically treated at the Skåne University Hospital in Lund, Sweden. The samples were 

collected as described in previous studies10–12. The late-stage cohort comprised biopsy 

material from inoperable lung cancer (84 samples). The study was approved by the Regional 

Ethical Review Board in Lund, Sweden (Registration no. 2004/762 and 2014/32), and all 

experiments were conducted in agreement with patient consent and ethical review board 

regulations and decisions.

By decision of the Ethical Review Board, and as no sensitive data were used for this study, 

specific written informed consent was not required for the minority of patients who were 

included before the Southern Swedish Lung Cancer Study (conducted 2004–2014) or the 

ongoing LUCAS study (The Lung Cancer Study in Southern Sweden, started 2014), for 

which written informed consent existed. In accordance with the decision of the Ethical 

Review Board, information about the study was available for all patients through local 

advertisements in news media in the region. The validation cohort comprised resected 

lung cancer tumor samples from a total of 209 patients that underwent surgery for lung 

cancer at the Oslo University Hospital in Oslo, Norway from 2006 to 2015. Tumor tissue 

from the tumor center was snap-frozen in liquid nitrogen and stored at -80 °C until 

shipment on dry ice and further processing in 2020–2021. One sample was excluded due 

to insufficient material. Survival was followed until November 2018. All patients signed 

informed consent. The study was approved by the Regional Ethical Committee for Medical 

and Health Research Ethics, REK South-East in Oslo, Norway (ref: S-06402b). Clinical data 

from medical journals including follow-up has been made available for all patients. EGFR 
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status was retrieved from routine diagnostics and TP53 status was retrieved from analysis 

performed in a previous publication61.

All relevant clinical data for the samples in the three cohorts are reported in the source data.

MS-based proteomic analysis of NSCLC cohorts

Detailed methods describing HiRIEF-LC-MS data-dependent acquisition (DDA)-based 

and label-free data-independent acquisition (DIA)-based analyses of NSCLC cohorts are 

deposited at the Nature Portfolio Protocol Exchange platform62.

Synthetic peptide analysis—Synthetic versions of the 105 randomly selected non

canonical peptides (NCPs) were purchased from JPT Peptide Technologies. To improve 

the probability of success of the synthesis and also to limit costs, we limited the selection 

of peptides so as to include only lengths up to 20 amino acids. The peptides were pooled 

into 5 batches, labeled by TMT 10plex reagent 131, cleaned by SCX-SPE (Strata-X-C 

columns P/N 8B-S029-TAK-TN from Phenomenex), dried in a SpeedVac, dissolved in LC 

solvent A (final solution containing 100 ng/μl of each peptide), and analyzed by LC-MS 

using the same settings as described above. Annotated spectra of synthetic peptides were 

obtained by searching the MS raw files against a database containing only the 105 peptides. 

The annotated MS2 spectra of synthetic peptides were then aligned to their endogenous 

counterparts in “mirror plots” shown in Supplementary Data 1. One synthetic peptide failed 

to produce useful MS2 spectra and thus 104 “mirror plots” remained to be manually 

assessed. The inspection focused mainly on ions from the b and y series that are notable 

on the synthetic side but absent from the endogenous side, and also on peak proportionality, 

particularly in regard to the general expectation of a strong peak on the n-term side of 

proline residues.

Panel sequencing of early-stage NSCLC cohort

Library preparation and sequencing—An amount of 250 ng genomic DNA of each 

sample was used for library preparation, which was performed with Twist Biosciences 

enzymatic library preparation kit (Twist Biosciences) with the following modifications: 

fragmentation using a 7-min incubation in fragmentation step, xGen Duplex Seq adapters 

(3–4 nt unique molecular identifiers, 0.6 mM, Integrated DNA Technologies) were used 

for the ligation and xGen Indexing primers (2 mM, with unique dual indices, Integrated 

DNA Technologies) were used for PCR amplification (5 cycles). Target enrichment was 

performed in a multiplex fashion with a library amount of 187.5 ng (8-plex). The libraries 

were hybridized to a custom designed capture probes panel (Twist Bioscience), xGen 

Universal Blockers - TS Mix (Integrated DNA Technologies) and COT Human DNA 

(Life Technologies) for 16 h. The post-capture PCR was performed with xGen Library 

Amp Primer (0.5 mM, Integrated DNA Technologies) for 10 cycles. Quality control was 

performed with the Qubit dsDNA HS assay (Invitrogen) and TapeStation HS D1000 assay 

(Agilent). Sequencing was done on NovaSeq 6000 (Illumina) using paired-end 150 nt 

readout, aiming at 30 M read pairs per sample. Demultiplexing was done using Illumina 

bcl2fastq2 Conversion Software v2.20.
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The custom designed panel is a 370-gene panel and has been designed to enable detection of 

clinically relevant single-nucleotide variants (SNV) and insertion/deletion variants (INDEL), 

copy-number aberrations (CNA), fusion events (fusions), microsatellite instability (MSI) and 

to estimate the tumor mutational burden (TMB) in a single assay. The panel also contains 

selected hotspot variants in 9 genes where there is strong evidence of pharmacogenetic 

relevance. The panel contains approximately 21,000 baits, covering 1.9 Mb of target. Full 

coding sequence is captured of 198 genes, hotspot regions of 132 genes, CNVs for 86 genes, 

intronic sequences for SV detection of 19 genes and full gene-body sequencing of 9 genes.

Sequence data analysis—Detailed methods describing the data analysis are deposited at 

the Nature Portfolio Protocol Exchange platform63.

Gene expression and DNA methylation analysis

Pre-processed Illumina gene expression data for 118 cases in the early-stage NSCLC cohort 

was obtained from Karlsson et al.10 and DNA methylation data was available from previous 

studies for 113/141 lung cancer tumors in this cohort (GSE60645 and GSE149521)11,12. 

DNA methylation data processing and filtering were performed as previously described11,12, 

resulting in a final dataset interrogating 459,790 genomic positions. Methylation probes 

were annotated using the IlluminaHumanMethylation450kprobe (v2.0.6) R package and 

promoter regions were defined as TSS +/- 500bp and extracted using the promoters() 

function in the TxDb.Hsapiens.UCSC.hg19.knownGene (v3.2.2) R package. Methylation 

probes and promoter regions were overlapped using the findOverlaps() function in the 

GenomincRanges R package (v1.34.0), resulting in a total of 72,442 methylation probes 

in the promoter regions of 19,327 genes. For each gene, the promoter-overlapping probe 

with the highest standard deviation was selected and the Pearson correlation between probe 

methylation beta values and log2 transformed mRNA levels was derived.

The promoter methylation score for each tumor was calculated as the per sample mean of 

methylation beta values for promoter-overlapping probes. Similarly, the overall methylation 

score per sample was derived as the mean of methylation beta values for all probes.

Immunohistochemistry

Detailed methods describing immune landscape evaluation, including histological, tertiary 

lymphoid structure, and immunohistochemical analysis, performed on a subset of early

stage NSCLC samples are deposited at the Nature Portfolio Protocol Exchange platform64.

Statistical analysis of NSCLC cohort data

All statistical analyses were conducted using R (v.3.6.2 or higher). Correlations and 

associated p-values (Spearman and Pearson) were calculated with the R functions cor() 

or cor.test(). Linear models built with the R function lm(). Pairwise comparisons were 

computed by two-sided Wilcoxon rank-sum test with the R function wilcox.test() or two

sided Welch’s t-test using t.test(). For the multiple group comparisons, Kruskal-Wallis test 

was used with the R function kruskal.test() or ANOVA test using anova(). Two-sided post

hoc tests were computed using dunn.test() R function from dunn.test R package (v.1.3.5). 

Enrichment analysis were conducted in R by one- or two-sided hypergeometric tests with 
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the R function phyper() or fisher.test(). Where indicated, p-values were corrected for 

multiple testing using the Benjamini-Hochberg (BH) method65 in R. Survival analysis was 

conducted using Kaplan-Meier estimator from survminer (v.0.4.8) and survival (v.3.2-7) R 

packages. For the analysis of differential protein levels between samples DEqMS14 (v1.6.0) 

R package was used. BiomaRt R package (v.2.44.1) was used for gene-symbol conversion 

across data. Plots were created using base R graphics and ggplot2 (v.3.3.3) and using 

ComplexHeatmap (v.2.2.0) R packages.

Integrated downstream analysis and bioinformatics

Consensus clustering for determination of NSCLC Proteome Subtypes—
Consensus clustering R package (v.1.50.0)66 was used to group samples based on proteins 

quantified across all samples (input matrix: 9793 x 141). The following parametrization was 

applied: clusterAlg = ‘hc’, innerLinkage, finalLinkage = ‘ward.D2’, distance = “spearman”, 
pItem=0.8, pFeature = 1, reps = 1000, maxK = 11. The number of clusters (k = 6) 

was determined by the elbow method applied to the relative change in consensus index 

cumulative distribution function (CDF) curve and the empirical assessment of enriched 

mutations, MSigDB hallmark gene sets and immune/stroma signatures for k = 5,6,7. The 

consensus index for each sample was extracted and normalized to unity as an indication of 

the sample membership/outlierness to each cluster.

Non-negative matrix factorization (NMF) clustering—Non-negative matrix 

factorization (NMF) clustering for proteomics data was performed using NMF R package 

(v.0.23.0)13 as previously described in5. Specifically, the input data consisted of a 

concatenated non-negative log2 ratio matrix generated by the initial proteomics data after 

two modifications: firstly, after converting all negative numbers to zero and, secondly, after 

converting all positive numbers to zero and removing the signs of all negative numbers. 

NMF function was run with the following parameters: K = 2:11, method = ‘brunet’, 

nrun=100. The cophenetic correlation coefficient was used to evaluate the clustering quality. 

The cluster membership score was estimated as the fractional score of the corresponding 

column in the factorized matrix H.

Correlation network analysis—Filtering was first performed based on DEqMS analysis 

(|log2 ratio| > 0.5 and P.adj. < 0.01) and quantitative data in at least 70% of samples. 

Pairwise Pearson correlations were then calculated for the remaining 5,257 proteins. 

The resulting correlation matrix (input matrix: 5257 x 5257) was used for downstream 

analysis with Seurat R package (v.4.0.0)67. Specifically, PCA dimensionality reduction 

was performed on standardized correlations and the first 8 principal components were 

retained according to the elbow of the PCA standard deviation plot (PCAtools v1.2.0). 

These components were used to project proteins in 2-dimensional UMAP coordinates with 

n.neighbors = 20 and min.dist = 0.2 after empirical assessment of the local and global 

patterns captured in visualizations with different parameters. An Euclidean distance-based, 

shared nearest neighbor graph was constructed using the same n.neighbors (n=20), and 

Louvain community detection algorithm68 was applied to find distinct protein clusters. The 

resolution parameter (n_resolution = 0.6) was chosen as the maximum value for which 

every cluster could be assigned to at least one MsigDB hallmark (ClusterProfiler v3.14.369, 
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enrichment adj.p-value < 0.05). Cell-type enrichments were assigned with the same p-value 

significance threshold based on genes with absolute average log2 fold change > 0.5, adjusted 

p-value < 0.01) taken from Travaglini et al.70. Per subtype networks were visualized after 

estimating the median of the log2 ratios for each protein across the respective samples. The 

heatmap shows the above-estimated ratios averaged per term.

mRNA-protein differences—We calculated mRNA - protein Pearson correlations of 

genes with quantification values in at least 70% of samples (n.genes = 8,865). The 

correlations were Fisher z-transformed, and the differences caused by complex membership, 

stability – based on ranking in the top (bottom) one third of half-lives for stable (unstable) 

assignment – and miRNA-targeting were assessed using external experiment data16–18. 

Two-group and multi-group comparisons were assessed with two-sided t-tests and ANOVA, 

respectively.

Immune/stroma estimation – immune gene-set scores—Standardized immune 

and stroma scores were calculated using the ESTIMATE (v1.0.11) method15 on the 

complete proteomics data. Previously defined immune cell markers25 and hallmarks of 

‘INTERFERON ALPHA RESPONSE’ and ‘INTERFERON GAMMA RESPONSE’ from 

MSigDB71 were used as input for single-sample gene-set enrichment analysis (ssGSEA) in 

GSVA R package (v. 1.34.0)72.

TMB – antigen presentation machinery correlation—To evaluate the relationship 

between TMB and antigen presentation machinery (APM), a similar analysis to Dou et 

al.26 was followed. Specifically, samples were separated into TMB-high/-low cases based on 

their log2 TMB values and into APM-high/-low based on their enrichment score in ‘KEGG 

ANTIGEN_PROCESSING_AND_PRESENTATION’73. k-means algorithm was used with 

means of five highest and lowest values of TMB as initial centers for TMB-high and -low 

groups. We performed a similar analysis based on enrichment scores to define AMP-high/

low samples. For each of the four TMB/APM categories, subtype over-representation was 

evaluated by hypergeometric test and p-values were corrected for multiple testing.

Cancer- and driver-related proteins (CDRPs)—Detailed methods describing the 

identification of CDRPs are deposited at the Nature Portfolio Protocol Exchange platform63. 

The list of 832 CDRPs and their annotations can be found in Supplementary Table 4.

Proteogenomics 6FT search—Detailed methods describing the proteogenomics 6FT 

search are deposited at the Nature Portfolio Protocol Exchange platform63.

NCP - TMB relationship—Based on prior knowledge about factors that influence tumor 

mutational burden, we evaluated the relationship between the number of NCPs per sample 

and TMB using lm() function in R under the following linear model specification:

 NCPs  ∼ TMB + MKI67 +  TP53‐mutation  +  Purity 

Where:
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NCPs – number of NCPs per sample,

TMB – log2 values of the tumor mutational burden,

MKI67 – Proteomics log2 ratios of Ki-67 as a proliferation index,

TP53-mutation – presence/absence of mutation in TP53 gene, and

Purity – ASCAT-estimated sample purity.

Tumor Neoantigen Burden (TNB)—We devised the TNB score per tumor by:

1. Applying min-max normalization to each of the TMB, NCP and CTA values 

across tumors in order to rescale them to a range of [0,1].

2. Summing the rescaled TMB, NCP and CTA values per sample.

3. Applying min-max normalization to the sums.

Per subtype TNB score was estimated by the median of the TNB scores across the respective 

tumors.

Building and applying cohort and single-sample classifiers—Detailed methods 

describing the support-vector machine (SVM)-based cohort classifier and k-TSP-based 

single-sample classifier are deposited at the Nature Portfolio Protocol Exchange platform63. 

The list of features/marker proteins for the classifiers can be found in Supplementary Table 

9.

STK11 pathway in vitro validation

Detailed methods describing in vitro validation of the STK11 pathway, including via 

AMPK activation, rescue of STK11wt and subsequent Western Blot analysis are deposited 

at the Nature Portfolio Protocol Exchange platform74. Uncropped blots are available as 

Supplementary Data 2.
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Extended Data

Extended Data Fig. 1. Consensus clustering vs NMF clustering based on proteome data in 
NSCLC cohort.
Consensus clustering vs NMF clustering based on proteome data in NSCLC cohort. 

Clustering of NSCLC based on 9,793 proteins identified and quantified across all 141 

samples in the cohort. a. ConsensusClusterPlus graphic output of Cumulative Distribution 

Function (CDF) plot, number of clusters k = 2:11. b. ConsensusClusterPlus graphic output 

for relative change in area (delta area) under the CDF curve, number of clusters k = 
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2:11. c. Cophonetic correlation coefficient for the different choice of rank (clusters) in the 

non-negative matrix factorization (NMF) clustering. d. Consensus clustering index and NMF 

membership index across the six subtypes in the NSCLC cohort. e. Overlap of samples in 

subtype assignment between Consensus clustering and NMF. f. Annotated heatmap showing 

the results of the consensus clustering including the six identified clusters. Annotations 

include: Histology, mRNA subtypes1-3, Stage, Age, Sex, Smoking, Tumor cell content 

(“Purity”), Immune and Stromal Signatures as described in (Yoshihara et al. 2013), TMB 

calculated from panel sequencing data, selected putative functional mutations from panel 

sequencing analysis, PD-L1 from IHC, PD-L1 from MS, KI-67 from MS, and Histological 

subtype markers from MS (NCAM1, KRT5, NAPSA).
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Extended Data Fig. 2. Enrichments for the NSCLC Proteome Subtypes.
Enrichments for the NSCLC Proteome Subtypes. Volcano plots showing the output from 

enrichment tests of NSCLC mRNA subtypes (a) and AC mRNA subtypes (Proximal 

Inflammatory (PI), Proximal Proliferative (PP) and Terminal Respiratory Unit (TRU)) (b). 

P-values were calculated using one-sided hypergeometric test with Benjamini-Hochberg 

adjustment. c. Scatter plot indicating the expression of SqCC markers KRT5 and KRT6A 

across the SqCC samples in the cohort (n = 25) colored by SqCC mRNA subtype (center) 

and proteome subtype (border). The associated Pearson’s correlation coefficient (Rho) 
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and two-sided p-value from t-distribution with n − 2 degrees of freedom are provided. 

d. Network analysis of NSCLC proteome subtypes. UMAP plots or each proteome 

subtype separately. Colors indicate subtype median protein level (log2) for the 5,257 

proteins. e. Module enrichment analysis performed against MSigDB Hallmarks gene sets. 

Indicated in the figure for each module are significantly enriched gene sets (One-sided 

hypergeometric test, Benjamini-Hochberg adjusted p-values < 0.05). f. Module enrichment 

analysis performed against cell subtypes gene sets gene sets. Indicated in the figure for 

each module are significantly enriched gene sets (One-sided hypergeometric test, Benjamini

Hochberg adjusted p-values < 0.05). g. Boxplot indicating the tumor cell content (“purity”, 

calculated based on panel sequencing data) across the NSCLC Proteome Subtypes (n = 

140). Green dotted line indicates cohort median. Middle line, median; box edges, 25th and 

75th percentiles; whiskers, most extreme points that do not exceed ±1.5 × the interquartile 

range (IQR). P-value was calculated by Kruskal-Wallis test. Dunn’s multiple comparison 

tests with Benjamini–Hochberg adjustment are available in Supplementary Table 3. h. 
Volcano plots showing mutation enrichment analysis for the six NSCLC proteome subtypes. 

Horizontal red and green dotted lines in all volcano plots indicate p-value=0.01. P-values 

were calculated using Two-sided Fisher’s exact test with Benjamini-Hochberg adjustment.
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Extended Data Fig. 3. CDRP outlier regulation level analysis.
CDRP outlier regulation level analysis. a. mRNA-protein correlation for genes (n = 8,865) 

divided based on annotation as either miRNA targets or not according to previously 

published data (Helwak et al. 2013). Statistical testing was performed using two-sided 

Welch’s t-test (exact p-value = 1.56 × 10-19). b. mRNA-protein correlation for genes (n = 

1,674 gene symbols) divided based on mRNA and protein stability as previously determined 

(Schwanhausser et al. 2011). Statistical testing was performed using one-way analysis 

of variance (ANOVA) and pairwise two-sided Welch’s t-test uncorrected for multiple 
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testing. c. mRNA-protein correlation for genes (n = 8865 gene symbols) divided based 

on corresponding proteins annotation as member of a protein complex according to CORUM 

(Giurgiu et al. 2019). Statistical testing was performed using two-sided Welch’s t-test (exact 

p-value = 1.13 × 10-56). d. Scatter plot showing promoter methylation to mRNA correlation 

vs mRNA to protein correlation for full gene-wise overlap (n = 9,018 gene symbols). 

Indicated on top and to the right are the corresponding density plots. e. Same as in a. but 

showing only CDRPs with quantification in at least 60 samples. f. Scatter plots indicating 

the mRNA and protein levels of IRS2 (n = 118 samples) and HNF1A (n = 66 samples). g. 
Scatter plot indicating the protein levels of IRS2 and HNF1A (n = 79 samples). For boxplots 

(a-c): middle line, median; box edges, 25th and 75th percentiles; whiskers, most extreme 

points that do not exceed ±1.5 × the interquartile range (IQR). Indicated in scatter plots is 

the number of samples with quantitative information at both mRNA and protein level (f), or 

for both proteins (g), a linear regression trendline (green) and outlier expression threshold 

(red). The associated Pearson’s correlation coefficients (Rho) and two-sided p-values from 

t-distribution with n − 2 degrees of freedom are provided.
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Extended Data Fig. 4. Immunohistochemistry (IHC) evaluation of selected proteins.
Immunohistochemistry (IHC) evaluation of selected proteins. a. Examples of positive (high) 

and negative (low) CD3, CD8 and PD-L1 determined by IHC. Images showing example 

stainings for the immune cell markers CD3 (left) and CD8 (center), and PD-L1 (right). Top 

three rows show high stromal staining of CD3 and CD8 as well as cancer cell staining of 

PD-L1 as exemplified from three Subtype 2 samples. Bottom three rows show examples 

of low/negative staining for all three proteins from proteome Subtype 1 and Subtype 5. 

b. Immune cell marker expression in NSCLC proteome subtypes. Scatter plots showing 
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MS-based quantification vs stromal staining determined by IHC for CD3E (left, n = 90 

samples), and CD8A (right, n = 90 samples). IHC scores were based on at least 100 

cells per sample and staining. Indicated in the plots are the linear regression trendlines in 

green. The associated Pearson’s correlation coefficients (Rho) and two-sided p-values from 

t-distribution with n − 2 degrees of freedom are provided.

Extended Data Fig. 5. Tertiary lymphoid structures (TLSs) and B-cell infiltration in NSCLC 
proteome subtypes.
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Tertiary lymphoid structures (TLSs) and B-cell infiltration in NSCLC proteome subtypes. a. 
Scatter plot indicating protein levels of PD-L1 vs the B-cell marker CD20 (MS4A1) in the 

entire NSCLC cohort (n = 141). b. Heatmap indicating mRNA expression levels of known 

TLS marker genes. Cohort samples are ordered as in main Figure 1. c. Scatterplot indicating 

protein levels of PD-L1 vs the B-cell marker CD20 in cohort subset selected for whole 

section IHC evaluation (n = 19). d. TLS count (10 high power fields per sample) by subtype 

(n = 19 samples). e-f. IHC images showing examples of tertiary lymphoid structures from 

two different Subtype 3 samples (out of 11 stained samples). g. Boxplot indicating percent 

solid growth pattern in AC samples analyzed by whole section IHC (n = 16 samples). h. 
Boxplot indicating stromal signature in Subtype 2 and 3 samples analyzed by whole section 

IHC (n = 19 samples). i-n. IHC images showing examples of different growth patterns in 

six AC samples analyzed by whole section IHC (out of 16 stained samples). For boxplots: 

middle line, median; box edges, 25th and 75th percentiles; whiskers, most extreme points 

that do not exceed ±1.5 × the interquartile range (IQR). P-values in boxplots were calculated 

using two-sided Wilcoxon rank-sum test.
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Extended Data Fig. 6. Proteogenomic analysis for detection of non-canonical peptides (NCPs) in 
the NSCLC cohort.
Proteogenomic analysis for detection of non-canonical peptides (NCPs) in the NSCLC 

cohort. a. Overview of the proteogenomic analysis. Six reading frame translation (6FT) 

database search was performed as previously described (Branca et al. 2014, Zhu et al. 2018) 

and search hits were filtered based on FDR<1%; SpectrumAI for automatic MS2 spectrum 

inspection/validation of single-substitution peptide identifications; and outlier expression 

pattern. Resulting 651 NCPs showed low identification overlap across cohort samples 
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indicating sample specific expression. Thirteen percent of corresponding genetic loci were 

supported by more than one unique peptide. b. Examples of mirror plots from NCP synthetic 

peptide validation for a peptide that passed the manual inspection (left) and a peptide that 

failed the manual inspection (right). For each example the upper part shows the annotated 

MS2 spectrum of the NCP identified in the original proteogenomic analysis, and the lower 

part shows the MS2 spectrum of the corresponding synthetic peptide. In the right figure, 

missing fragment ions in the spectrum of the synthetic peptide are indicated. Mirror plots 

of all 104 NCPs that were evaluated by synthetic peptides can be found in Supplementary 

Data 1. c. Pie chart indicating the results of the NCP synthetic peptide validation. d. Bar 

plot showing the results of the NCP synthetic peptide validation for each of the six NSCLC 

Subtypes. In total, the 104 NCPs evaluated were identified in 156 samples (the same NCP 

can be identified in several samples). e. Distribution of NCP synthetic peptide validation 

results per subtype indicating no statistically significant difference between subtypes. P 

value was calculated using two-sided Fisher’s exact test.
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Extended Data Fig. 7. FGL1 and STK11 in NSCLC proteome landscape and TCGA dataset.
FGL1 and STK11 in NSCLC proteome landscape and TCGA dataset. a. Scatter plot 

showing protein vs mRNA level Pearson’s correlations in the NSCLC cohort for 9,244 

genes where mRNA data and quantitative protein data was available for at least 70 samples. 

Red dotted lines indicate 5th and 95th percentiles of mRNA and protein level correlations. 

b. Scatterplot showing STK11 vs STRADA protein levels in NSCLC cohort colored by 

proteome subtype (n = 141 samples). c. Scatter plot showing STK11 vs FGL1 protein 

levels in NSCLC cohort colored by proteome subtype (n = 141 samples). Indicated by red 
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circles are samples with STK11 mutations. d. Scatter plot showing protein level Pearson’s 

correlations in the NSCLC cohort vs mRNA level correlation in the TCGA PanCancer 

dataset for 10,447 genes where mRNA data and quantitative protein data were available for 

at least 70 samples. Red lines indicate 5th and 95th percentiles of mRNA and protein level 

correlations. e. Boxplots showing FGL1 (left) and CPS1 (right) mRNA levels by STK11 

mutation status in the TCGA lung adenocarcinoma (LUAD) dataset (n = 504 samples). 

Middle line, median; box edges, 25th and 75th percentiles; whiskers, most extreme points 

that do not exceed ±1.5 × the interquartile range (IQR). P-values were calculated using 

two-sided Wilcoxon rank-sum test. f. Scatter plot showing STK11 vs FGL1 mRNA levels 

in the TCGA LUAD dataset colored by STK11 mutation status (n = 504 samples). g. 
Scatterplot showing FGL1 vs HNF1A mRNA levels in the TCGA LUAD dataset colored by 

STK11 mutation status (n = 504 samples). For scatter plots b, c, f, and g, linear regression 

trendlines are indicated in green. The associated Pearson’s correlation coefficients (Rho) and 

two-sided p-values from t-distribution with n − 2 degrees of freedom are provided.
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Extended Data Fig. 8. Support-vector machine (SVM) and k-Top Scoring Pairs (k-TSP) based 
classification of NSCLC subtype.
Support-vector machine (SVM) and k-Top Scoring Pairs (k-TSP) based classification of 

NSCLC subtype. a. Sankey plot showing the SVM classification output from the SVM 

testing (100 Monte Carlo cross-validation (MCCV) iterations) with 94% accuracy. b. 
Stacked bar plots showing the subtype outlierness indicated by consensus index from 

the original clustering (top) and the classification output form the 100 MCCV iterations 

(bottom). Indicated by red arrows are seven samples that were frequently mis-classified by 
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the SVM. c. DIA-MS analysis of the 141 samples resulted in the identification of 6,717 

proteins (FDR<1%) with a minimum of 2220 proteins per sample and a full overlap of 

1202 proteins across all samples. Right part shows protein-wise and sample-wise correlation 

between DIA-MS based, and DDA-MS based quantifications. d. Selection of (k) for the 

k-TSP classifier was performed based on accuracy in test data, resulting in k=13 feature 

pairs. e. k-TSP classifier feature pair importance evaluated by the frequency each feature 

pair was used across the 100 MCCV iterations. After training, the accuracy of the classifier 

was estimated using the test set samples. The overall accuracy was reported as the average 

accuracy of the 100 iterations. The 13 most frequently used feature pairs for each binary 

model (15 models), resulting in 195 final feature pairs, were used to build the final model. 

f. Sankay plot showing the classification output from the k-TSP test data (100 iterations) 

resulting in 87% accuracy. g. Stacked bar plots showing the subtype outlierness indicated 

by consensus index from the original clustering (top) and the classification output form the 

100 MCCV iterations (bottom). Indicated by red arrows are 19 samples that were frequently 

mis-classified by the k-TSP.
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Extended Data Fig. 9. SVM and k-TSP based classification of public domain AC transcriptomics 
and proteomics data.
SVM and k-TSP based classification of public domain AC transcriptomics and proteomics 

data. a. Output from SVM-based classification of the TCGA lung adenocarcinoma (LUAD) 

cohort based on mRNA-level data. Indicated below is sample annotation by mRNA subtype, 

mutation patterns and marker/signature levels. b. Kaplan-Meier plot showing overall survival 

in the TCGA LUAD cohort by classified subtype (n = 501 samples). P-value was calculated 

using log-rank test. c. Venn diagrams showing overlap between current early-stage NSCLC 
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cohort and the Gillette et al. lung AC cohort in all identified proteins (top) and proteins 

with full overlap in respective cohorts (bottom). Indicated by red circle is the overlap with 

250 most frequently used features from the SVM classifier optimization. d. Output from 

SVM-based classification of the Gillette et al. AC cohort (n = 111 samples). Indicated 

below is sample annotation by mRNA and protein subtype, mutation patterns and marker/

signature levels. To the right, results are displayed by classified subtype including p-values 

from Kruskal-Wallis test (markers and signatures) or one-sided hypergeometric test with 

Benjamini-Hochberg adjustment (mutations). e. Output from k-TSP-based classification of 

the Xu et al. lung AC cohort (n = 99 samples). Indicated below is sample annotation 

by mutation patterns and marker/signature levels. To the right, results are displayed by 

classified subtype including p-values from Kruskal-Wallis test (markers and signatures) or 

one-sided hypergeometric test with Benjamini-Hochberg adjustment (mutations).
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Extended Data Fig. 10. DIA-MS analysis and k-TSP based classification of NSCLC Validation 
and late-stage cohorts.
DIA-MS analysis and k-TSP based classification of NSCLC Validation and late-stage 

cohorts. a. DIA-MS analysis of the 208 samples in the NSCLC validation cohort resulted in 

the identification of 7,379 proteins (FDR<1%), with a median number of identified proteins 

per sample of 3,552. b. Scatter plot showing k-TSP feature pair coverage vs number of 

identified proteins per sample. Red line indicate threshold for classification inclusion. c. 
k-TSP classifier output for the 188 samples where at least 50% of k-TSP feature pairs 
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were covered colored by histological subgroup. d. Scatter plot indicating the levels of 

SqCC markers Keratin 5 (KRT5) and Keratin 6A (KRT6A) in the SqCC subset of the 

NSCLC validation cohort color-coded by classified subtype as quantified by DIA-MS. e. 
(Left) Kaplan-Meier plot showing relapse-free survival in the NSCLC validation cohort by 

classified subtype (n = 171 samples). P-value was calculated using log-rank test. (Right) 

Pairwise statistics for relapse free survival in classified subtypes of the NSCLC validation 

cohort with p-values calculated by log-rank test with Benjamini-Hochberg adjustment. f. Bar 

plot showing the histologies of the 84 samples included in the late-stage cohort. g. Scatter 

plot showing mRNA and peptide yields from the sample prep of biopsy samples using 

Allprep kit followed by digestion, colored by biopsy type (n = 84 samples). h. Experimental 

setup for DIA-MS analysis of late-stage cohort samples. i. DIA MS analysis of the 84 

samples resulted in the identification of 5,124 proteins (FDR<1%), with a median number 

of identified proteins per sample of 2,494. j. Scatter plot showing peptide yield vs number 

of identified proteins per sample, colored by biopsy type (n = 84 samples). k. Scatter plot 

showing k-TSP feature pair coverage vs number of identified proteins per sample (n = 84 

samples). Red line indicate threshold for classification inclusion. For scatter plots (b, g, and 
k), linear regression trendlines are indicated in green. The associated Pearson’s correlation 

coefficients (Rho) and two-sided p-values from t-distribution with n − 2 degrees of freedom 

are provided.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

DNA sequencing was performed at SciLifeLab Clinical Genomics Facility, at Stockholm; and the MS-analysis was 
supported by SciLifelab proteogenomics facility and Karolinska University Hospital Clinical proteomics facility. 
We thank Dr. Marcus Buggert for critical reading of the immune system regulation related parts. We thank Dr. 
Johan Lindberg and Dr. Valtteri Wirta for expert support on DNA sequencing analysis. pBABE-FLAG-LKB1 was 
a gift from Lewis Cantley (Addgene plasmid #8592). The study was funded by The Swedish Research Council, 
Swedish Cancer Society, The Cancer Research Funds of Radiumhemmet, European Council H2020 financing 
(projects Rescuer, OncoBiome, AipBAND, DART), The Swedish Foundation for Strategic Research, The Erling
Persson Family Foundation, the Sjöberg Foundation, the Fru Berta Kamprad Foundation, Karolinska Institutet’s 
funding for doctoral education (KID), BioCARE a Strategic Research Program at Lund University, Stiftelsen 
Jubileumsklinikens Forskningsfond mot Cancer (Gustav V:s Jubilee Foundation), and The National Health Services 
(Region Skåne/ALF). C.G.H. lab is supported by a University of Edinburgh Chancellor’s Fellowship and the 
Worldwide Cancer Research. K.P.P. is funded by MRC Precision Medicine DTP Studentship.

Data availability

The mass spectrometry proteomics data for DDA and DIA analyses have been deposited 
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Previously published proteomics data that was re-analyzed in this study are available 

in PRIDE with the identifier PXD010429, in iProx Consortium with the subproject ID 

IPX0001804000 and CPTAC Data Portal (https://cptac-data-portal.georgetown.edu/study

summary/S056).

Previously published gene expression data that were re-analyzed here are available 

under accession codes GSE60645 and GSE149521, and in ArrayExpress with the 

identifier E-MTAB-6043. The human [Pan-Cancer Atlas and lung adenocarcinoma (LUAD) 

gene expression data] data were derived from the TCGA Research Network: http://

cancergenome.nih.gov/. The dataset derived from this resource that supports the findings 

of this study is available at https://gdc.cancer.gov/access-data.

Previously published resource of drug sensitivity in cancer cell lines data are available at 

https://www.cancerrxgene.org/. Source data for all figures and Extended Data figures have 

been provided as Source Data files. All other data supporting the findings of this study are 

available from the corresponding author upon reasonable request.

Code availability
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Figure 1. MS-based identification of NSCLC proteome subtypes.
a. Bar plots showing histology and stage distribution in the patient cohort. b. Overview 

of experimental setup for MS-based proteome profiling, analysis output, and supporting 

data levels. c. Hierarchical tree showing the results from consensus clustering used to 

identify NSCLC proteome subtypes. Annotation bars below indicate clinical information of 

samples, mRNA subtypes, infiltration signatures, common mutations, and protein levels of 

selected markers. d. NSCLC proteome subtype network analysis with UMAP plot colored 

by modules (left), modules vs subtypes heatmap (center), and cell types/signaling pathway 
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enrichment analysis output for the 10 modules (right). e. Boxplot indicating the number 

of overexpressed oncogenes per sample by NSCLC proteome subtype (n = 141 samples). 

Middle line, median; box edges, 25th and 75th percentiles; whiskers, most extreme points 

that do not exceed ±1.5 × the interquartile range (IQR). P-value was calculated using 

Kruskal-Wallis test and the number of samples per subtype is indicated in red. f. Bubble 

plot indicating cancer- and driver-related proteins (CDRPs) commonly overexpressed in the 

NSCLC cohort. g. Scatterplot indicating mRNA to protein Pearson’s correlation of CDRPs. 

The corresponding correlation density plot is displayed on top. h. Scatterplot showing 

promoter methylation to mRNA correlation vs mRNA to protein correlation for CDRPs. 

Indicated on top and to the right are the corresponding density plots for the full gene

wise overlap (9,018 genes). Dunn’s multiple comparison tests with Benjamini-Hochberg 

adjustment for boxplot (e) are available in Supplementary Table 3.
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Figure 2. Immune landscape in NSCLC.
a. Overview of infiltrating immune cell subpopulations for each NSCLC proteome subtype. 

b. Scatter plot showing antigen processing/presentation machinery (APM) scores vs tumor 

mutation burden (TMB) for each sample. Dotted lines indicate subdivision of the samples 

into four subgroups: TMB-Low/APM-High, TMB-High/APM-High, TMB-Low/APM-Low, 

TMB-High/APM-Low as described in methods. Right side panels show for each subgroup 

enrichment analysis of NSCLC proteome subtypes. Y-axes denote enrichment p-values 

calculated using two-sided Fisher’s exact test with Benjamini-Hochberg adjustment. c. 
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Boxplots indicating TMB by proteome subtype in tumor mutation burden (TMB) analysis in 

NSCLC cohort (n = 139 samples). Red line, TMB median; green line, TMB 90th percentile. 

d. Boxplot indicating protein levels (n = 141 samples) of PD-L1 by proteome subtype based 

on MS-data (left). Right figure shows the result of PD-L1 immunohistochemistry (IHC) vs 

MS analysis for a subset of the samples (n = 50 samples). e. Scatterplots indicating TMB vs 

PD-L1 protein level quantified by MS (n = 139 samples). f. Boxplots indicating the mRNA 

levels of the cytokine CXL9 by proteome subtype (n = 118 samples). g. Boxplots indicating 

the protein levels of the cytokine CXL9 by proteome subtype (n = 61 samples). h. Scatter 

plot indicating the protein levels (n = 61 samples) of CXCL9 and CD274 (PD-L1). i. IHC 

analysis of tertiary lymph node structures (TLSs) in selected subtype 2 and 3 samples (n 

= 19 samples). For scatter plots (d, e, and h): Samples are colored by proteome subtype 

and a linear regression trendline is displayed in green. The associated Pearson’s correlation 

coefficients (Rho) and two-sided p-values from t-distribution with n − 2 degrees of freedom 

are provided. For boxplots: middle line, median; box edges, 25th and 75th percentiles; 

whiskers, most extreme points that do not exceed ±1.5 × the interquartile range (IQR). 

P-values were calculated by Kruskal-Wallis test (c, d, f, and g) or two-sided Wilcoxon 

rank-sum test (i). Dunn’s multiple comparison tests with Benjamini-Hochberg adjustment 

for boxplots are available in Supplementary Table 3.
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Figure 3. Cancer-Testis (CT) antigens, neoantigen burden and methylation in NSCLC.
a. Overview of cancer testis antigen (CTA) evaluation in NSCLC. Bottom part shows 

boxplot indicating the number of CTAs expressed per sample by proteome subtype (n = 

141 samples). b. Overview of proteogenomic analysis by 6-reading frame translation (6FT) 

database searching. Lower part shows bar plot indicating the number of identified NCPs 

per sample (n = 141 samples). c. Boxplot indicating the number of non-canonical peptides 

(NCPs) per sample by proteome subtype (n = 141 samples). d. Scatter plot (top) showing 

the number of NCPs per sample vs TMB (n = 139 samples) and output from a multivariate 
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linear regression analysis (bottom) between the number NCPs and TMB, tumor cell content 

(“purity”), TP53 mutations and proliferation (Ki67 quantified by MS) (n = 139 samples). 

e-f. Scatter plot indicating the global methylation plotted against the number of CT antigens 

per sample or the number of NCPs per sample (n = 113 samples). g-h. Boxplots indicating 

the global and promoter methylation by proteome subtype (n = 113 samples). i. Heatmap 

showing Tumor Neoantigen Burden (TNB) by proteome subtype where TNB is defined as 

a summary score based on TMB, CTAs and NCPs. In figures e, f, g, and h, red dotted 

lines indicate median values and the number of samples with quantitative information at 

both methylation and protein level is provided. For scatter plots d, e, and f: Samples are 

colored by proteome subtype. The number of samples with quantitative information at both 

methylation and protein level is provided and a linear regression trendline is displayed in 

green. 95% confidence intervals are shown in grey. The associated Pearson’s correlation 

coefficients (Rho) and two-sided p-values from t-distribution with n − 2 degrees of freedom 

are provided. For boxplots a, c, g, and h: middle line, median; box edges, 25th and 75th 

percentiles; whiskers, most extreme points that do not exceed ±1.5 × the interquartile range 

(IQR). P-values were calculated by Kruskal-Wallis test. Dunn’s multiple comparison tests 

with Benjamini-Hochberg adjustment for boxplots are available in Supplementary Table 3.
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Figure 4. Immune Checkpoints in NSCLC proteome subtypes.
a. Heatmap indicating protein levels of inhibitory receptors (IRs) and their ligands. All 

values represent protein level quantifications (log2) except for CTLA4 where mRNA levels 

(log2) are displayed since it was not detected by the MS data. P-values were calculated using 

Kruskal-Wallis test. b. Scatter plot indicating the correlation between checkpoint proteins 

and overall immune infiltration signature (x-axis) vs the correlation between checkpoint 

proteins and CD8A as a marker of cytotoxic T-cells (y-axis). All values were estimated 

using protein-level quantifications (log2) except for CTLA4 where mRNA levels (log2) were 

Lehtiö et al. Page 50

Nat Cancer. Author manuscript; available in PMC 2022 May 22.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



used since it was not detected by the MS analysis. Red lines indicate significant Pearson’s 

correlation coefficient threshold (p-value < 0.01, two-sided, t-distribution with n − 2 degrees 

of freedom). c. Boxplots indicating protein levels of inhibitory receptors (IRs) and their 

ligands (n = 141 samples (PD-L1, FGL1), 114 samples (PD-1, B7-H4) and 97 samples 

(LAG-3)). The number of samples with quantitative information at protein level is provided. 

Red lines in boxplots, where present, indicate outlier expression threshold. P-values were 

calculated using Kruskal-Wallis test. Dunn’s multiple comparison tests with Benjamini

Hochberg adjustment for heatmap (a) and boxplots (c) are available in Supplementary Table 

3.
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Figure 5. FGL1 and STK11 status in NSCLC cohort and TCGA pan cancer data a.
FGL1 mRNA- and protein-level correlations in the NSCLC cohort for 9,244 genes 

with overlapping information at mRNA and protein level and quantitative protein level 

information in at least 70 samples. b. FGL1 mRNA expression plotted against the FGL1 

protein level colored by STK11 mutation status (n = 118 samples). c. FGL1 and CPS1 

protein levels in the NSCLC cohort colored by proteome subtype (n = 141 samples). d. 

Scatterplots for evaluation of HNF1A regulation showing promotor methylation vs mRNA 

level (n = 113 samples) (left), promotor methylation vs protein level (n = 64 samples) 
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(center) and mRNA level vs protein level (n = 64 samples) (right) in NSCLC cohort colored 

by proteome subtype. e. CPS1 and FGL1 mRNA expression in the TCGA pan cancer dataset 

colored by cancer type (n = 9,066 samples). Indicated by red lines are the 90th percentiles 

of mRNA expression for both genes. f. CPS1 and FGL1 mRNA expression in the TCGA 

lung adenocarcinoma (LUAD) dataset colored by STK11 mutation status (n = 504 samples). 

Indicated by black lines is the median mRNA expression of both genes. g. Scatterplot 

showing CPS1 vs FGL1 mRNA levels of STK11wt samples in the TCGA LUAD dataset (n 

= 435 samples). Indicated in the figure are four expression subgroups, FGL1highCPS1high, 

FGL1highCPS1low, FGL1lowCPS1low, FGL1lowCPS1high (cut-offs arbitrarily chosen). 

f. Boxplot indicating the STK11 mRNA expression by expression subgroups as defined 

in (g) (n = 435 samples). Middle line, median; box edges, 25th and 75th percentiles; 

whiskers, most extreme points that do not exceed ±1.5 × the interquartile range (IQR). 

Two-sided Wilcoxon rank-sum tests uncorrected for multiple testing. For scatter plots b
f: linear regression trendline is displayed in green. The associated Pearson’s correlation 

coefficients (Rho) and two-sided p-values from t-distribution with n − 2 degrees of freedom 

are provided.
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Figure 6. Co-expression of FGL1 and CPS1 predicts sensitivity to docetaxel and mTOR 
inhibitors and mechanism investigation of STK11-FGL1 signaling.
a. CPS1 and FGL1 mRNA expression in the GDSC dataset colored by cell line tissue 

origin. Indicated by red lines are the 90th percentiles of mRNA expression for both genes 

(n = 926 cell lines). Linear regression trendline is displayed in green. The associated 

Pearson’s correlation coefficient (Rho) and two-sided p-value from t-distribution with n − 2 

degrees of freedom are provided. b. Volcano plot indicating differences in drug sensitivity 

between NSCLC cells with high mRNA expression of CPS1/FGL1 vs remaining NSCLC 
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cells. Indicated in the plot is docetaxel and several drugs targeting mTOR. P-values were 

calculated by two-sided Welch’s t-test uncorrected for multiple testing. c. HNF1A and 

FGL1 levels in HepG2 cells after 24 and 48 h treatment with an AMPK activator (250 

μM A-769662). The densitometric values were normalized to α-actin and then to the 48-h 

control mean and are represented as mean ± SD (n = 3 independent cell cultures). The 

p-values were calculated using Welch’s two-sided t-test. d. HNF1A and FGL1 levels in 

STK11-mutant NCI-H1944 cells after 24- and 48-h treatment with an AMPK activator (250 

μM A-769662). The densitometric values were normalized to β-actin and then to the 48-h 

control mean and are represented as mean ± SD (n = 3 independent cell cultures). The 

p-values were calculated using Welch’s two-sided t-test. e. FGL1 levels in STK11-mutant 

NCI-H1395 cells after 24 and 48 h treatment with an AMPK activator (250 μM A-769662). 

The densitometric values were normalized to β-tubulin and then to the 48-h control mean 

and are represented as mean ± SD (n = 3 independent cell cultures). The p values were 

calculated using Welch’s two-sided t-test. f. STK11, HNF1A, and FGL1 levels in NCI

H1944 cells expressing FLAG-STK11wt or vector control after retroviral transduction. The 

Western blots show results from three separately transduced cell cultures. g. Model showing 

the suggested impact of STK11 inactivation in lung cancer cells. STK11 inactivation by 

e.g., mutation results in loss of AMPK dependent control over liver-specific transcription 

resulting in upregulation of HNF1A, FGL1, and CPS1. HNF1A is a known master regulator 

of liver specific transcription and potentially responsible for transactivation of FGL1 and 

CPS1.
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Figure 7. NSCLC classification pipelines validate NSCLC proteome subtypes and indicate 
clinical utility a.
Overview of NSCLC Proteome Subtype classification pipelines. b. Violin plot indicating 

the accuracy of the SVM classifier and the k-TSP classifier based on test data output 

from Monte Carlo cross-validation (MCCV) iterations. Median accuracy is shown in red. 

c. Scatterplot showing SVM classifier feature importance evaluated by the frequency each 

feature was used across the MCCV iterations. Indicated by dotted red lines is the lowest 

feature frequency for the 200 features that were selected for the final classifier. d. SVM
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based classification of the GEO NSCLC cohort based on mRNA-level data. Indicated below 

each subtype is sample annotation by histology, mRNA subtype and marker/signature levels. 

e. Kaplan-Meier plot showing overall survival in the GEO NSCLC cohort by classified 

subtype (n = 489 samples) with associated pairwise statistics as calculated by log-rank test 

with Benjamini-Hochberg adjustment.
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Figure 8. Validation of DIA-MS based NSCLC classification pipelines in two separate NSCLC 
cohorts.
a. Barplot showing the histology distribution of the 208 cases included in the validation 

cohort. b. Experimental setup for DIA-MS analysis of validation cohort samples. c. DIA-MS 

data coverage of the k-TSP feature pairs in the validation cohort in relation to histology. 

Indicated in the plot are the 188 samples with more than 50% coverage of the k-TSP feature 

pairs that were included for classification. d. Output from k-TSP-based classification of the 

NSCLC validation cohort for the 175 samples that were successfully classified. Indicated 
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below is sample annotation by histology, stage, differentiation grade, mutation patterns, and 

marker levels. e. Scatter plot indicating Napsin A (AC marker) vs Keratin 5 (SqCC marker) 

protein levels in the classified subset of the validation cohort as quantified by DIA-MS. Left 

plot is color-coded by classified subtype and right plot by histology. f. FGL1 and CPS1 

protein levels in the validation cohort colored by classified proteome subtype. g. Scatter plot 

indicating BCL2 and CDK2 protein levels in the classified subset of the validation cohort 

as quantified by DIA-MS. Left plot is color-coded by classified subtype and right plot by 

histology. h. DIA-MS data coverage of the k-TSP feature pairs in the late-stage NSCLC 

cohort in relation to biopsy type and histology. Biopsy = forceps biopsy by bronchoscopy, 

FNA = fine needle aspiration by EBUS (endobronchial ultrasound), Brush = bronchial brush 

by bronchoscopy. i. k-TSP classifier output for the 61 late-stage cohort samples where at 

least 50% of k-TSP feature pairs were covered colored by histological subgroup. j. Scatter 

plots indicating the protein levels of SqCC markers Keratin 5 (KRT5) and Keratin 6A 

(KRT6A) in the classified subset of the late-stage NSCLC cohort as quantified by DIA-MS. 

Left plot is color-coded by classified subtype and right plot by histology. Indicated by 

arrows in the plots are cases with unexpected classification output. Lines indicate median 

abundances.
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