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Abstract

Objective: Clot characteristics can provide information on the cause of cerebral

artery occlusion and may guide acute revascularization and secondary prevention

strategies. We developed a rapid automated clot analysis system using machine

learning (ML) and validated its accuracy in patients undergoing endovascular

treatment. Methods: Pre-endovascular treatment gradient echo (GRE) images

from consecutive patients with middle cerebral artery occlusion were utilized to

develop and validate an ML system to predict whether atrial fibrillation (AF) was

the underlying cause of ischemic stroke. The accuracy of the ML algorithm was

compared with that of visual inspection by neuroimaging specialists for the pres-

ence of blooming artifact. Endovascular procedures and outcomes were com-

pared in patients with and without AF. Results: Of 67 patients, 29 (43.3%) had

AF. Of these, 13 had known AF and 16 were newly diagnosed with cardiac moni-

toring. By visual inspection, interrater correlation for blooming artifact was 0.73

and sensitivity and specificity for AF were 0.79 and 0.63, respectively. For AF clas-

sification, the ML algorithms yielded an average accuracy of > 75.4% in fivefold

cross-validation with clot signal profiles obtained from 52 patients and an area

under the curve >0.87 for the average AF probability from five signal profiles in

external validation (n = 15). Analysis with an in-house interface took approxi-

mately 3 min per patient. Absence of AF was associated with increased number of

passes by stentriever, high reocclusion frequency, and additional use of rescue

stenting and/or glycogen IIb/IIIa blocker for recanalization. Interpretation: ML-

based rapid clot analysis is feasible and can identify AF with high accuracy,

enabling selection of endovascular treatment strategy.

Introduction

Neuroimaging in acute ischemic stroke plays an impor-

tant role in selecting candidates for revascularization ther-

apy based on the distribution and extent of infarct core,

collateral, penumbra, and blood–brain barrier, and in

determining the mode of treatment based on clot charac-

teristics.1 Identifying the characteristics of clots blocking

brain vessels in acute ischemic stroke may provide impor-

tant information in determining strategies of revascular-

ization therapy as well as in choosing antithrombotics for

secondary prevention of stroke.2 Knowledge of clot char-

acteristics may help predict the recanalization rate, time

required for re-opening, and optimal mode of treatment.3

In addition, the effects of antiplatelet agents and anticoag-

ulants differ depending on the stroke subtype.4

As machine learning (ML), more specifically deep

learning, shows remarkable performance in computer

vision as well as in medical image analysis,5 it is increas-

ingly being used in acute stroke neuroimaging.6,7 For

example, segmentation of infarct core and penumbra with

ML algorithms demonstrated high accuracy compared to

experts’ manual annotations or commercial software.8–10

The accurate identification of diffusion and perfusion

lesions helps select patients eligible for endovascular treat-

ment (EVT). The estimation of infarct core and
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penumbra is related to the development of learning mod-

els in predicting final infarct distribution or patient out-

come in cases of favorable and unfavorable responses to

reperfusion therapy.11–13 Another ML application is the

prediction of risks of hemorrhagic transformation from

image data with blood–brain barrier information.14 The

ML-based prediction of hemorrhagic transformation may

serve as a decision support tool for reperfusion therapy.

Finally, ML was applied to the task of selecting patients

less than 4.5 hours from stroke onset.15,16 This may be

particularly helpful in selecting patients with unknown

onset to imaging time for intravenous thrombolysis.

Previous studies have indicated that vessel signs from

noncontrast computed tomography (CT) and gradient-

echo (GRE) magnetic resonance imaging (MRI) help

elucidate clot composition in acute ischemic stroke.17–19

Hyperdense artery sign in CT or blooming artifact in MRI

is associated with red blood cell (RBC)-rich clots.20,21

Image features such as two-layered susceptibility vessel sign

(SVS), overestimation ratio, and SVS diameter have been

demonstrated to be effective in predicting cardioembolic

stroke.3,22,23 In the previous literature, two-layered SVS

was assessed by visual inspection, and the quantification of

overestimation ratio and SVS diameter relied on manual

procedures by expert neurologists. The use of ML-based

pattern recognition in clot characterization may be advan-

tageous, since the decision making can be automated and

the issue of intra and interrater variability can be alleviated.

This study investigated the feasibility of analyzing clot

characteristics using GRE MRI and ML, with the expecta-

tion that ML could provide reliable assessment of clot

characteristics. In addition, the clinical impact of ML-

based MRI clot analysis on endovascular procedures and

outcomes was considered in patients who received

endovascular treatment.

Methods

Patients and work-ups

This study included patients who were admitted to a uni-

versity medical center and underwent EVT between April

1, 2014 and February 31, 2017. The study inclusion

criteria were as follows: (1) middle cerebral artery (MCA)

occlusion, (2) MRI including gradient echo (GRE) sequence

performed prior to EVT, and (3) EVT within 12 h of

symptom onset. Patients with poor GRE image quality due

to motion artifact were excluded.

Demographic information, history of vascular risk factors,

and initial National Institutes of Health Stroke Scale

(NIHSS) scores were systematically collected. Radiologic

information (time interval from symptom onset to MRI)

and stroke treatment information (intravenous tissue

plasminogen activator, onset to initiation of EVT, and dura-

tion of EVT) were obtained by reviewing electronic medical

records. We performed standard cardiac source evaluation,

including multiple electrocardiograms, transthoracic or

transesophageal echocardiography, 24-h Holter monitoring,

and cardiac telemetry (72 h or more).24 Local institutional

review boards approved this study. All participants or

patient guardians provided informed consent.

Visual inspection of blooming artifact

Based on visual inspection, the presence or absence of

blooming artifact was scored by two neuroimaging

experts, who were experienced in stroke MRI reading

and blinded to clinical information. For each subject’s

data, each rater navigates the axial slices and identifies a

slice showing MCA. When MCA was captured in more

than one slice, the slice with larger MCA was chosen for

scoring. Blooming artifact was defined as an area of

hypointensity or signal loss in the proximal MCA, dis-

torting the margins of the vessel with enlargement of

vessel contour. The raters re-scored presence of bloom-

ing artifact 2 weeks later to estimate interobserver vari-

ability. The interrater agreement for the measurement of

blooming artifact was assessed using the Kappa statistics

and 95% confidence interval. The results of visual

inspection and presence of atrial fibrillation were

analyzed.

Region of interest allocation and extraction
of signal graphic information

MRI data were acquired on a 3T scanner system (Philips

Achieva, Best, The Netherlands) using a gradient-echo

(GRE) sequence with slice thickness = 5 mm, interslice

gap = 1.5 mm, TR = 610 msec, TE = 16 msec, flip

angle = 18°, field of view = 240 mm, acquisition matrix

size = 256 9 249, and reconstruction matrix size = 560

9 560. The GRE images were normalized to [0, 1] to

reduce the effect of the image intensity variability in the

subjects. Figure 1D and E shows our in-house graphical

user interface (GUI) developed in MATLAB (Mathworks,

Natick, MA, USA). Procedures for GUI usage are described

as follows. For each subject’s data, a user navigates the axial

slices and identifies a region of interest (ROI) indicating

blooming artifact in the MCA. When MCA was captured

in more than one slice, the slice with larger MCA was cho-

sen for evaluation. The start and end points are clicked by

the user; then, a centerline connecting the two points is

drawn and covers the clot ROI automatically. When the

start and end points are determined, 30-pixel-wide lines

are drawn to be parallel to each other and perpendicular to

the centerline. A line profile plot is obtained from the
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intensity values on each line. Each line profile served as fea-

ture input to a machine learning classifier model. Figure 1

shows representative ROI images and associated intensity

profiles for clot in patients with atrial fibrillation (Fig. 1A)

and without atrial fibrillation (Fig. 1B). The procedures

were semiautomatic and took approximately 3 min per

patient from loading of the GRE DICOM images in the

GUI until machine learning prediction of the AF clot

characteristics.

Development of supervised machine
learning model

Step 1. Model development

For ML model, individual patient’s GRE images were

included. The model did not include any clinical data in

order for the model to be performed without any addi-

tional manual entering of variables. Training data were

obtained from 52 subjects (n = 22 for atrial fibrillation,

n = 30 for nonatrial fibrillation). For each subject, samples

of the number of line profiles 9 30 vectors were obtained

after specification of the start and end points in a clot ROI.

We augmented the number of samples twice by horizon-

tally flipping each intensity profile. The dimensions of (# of

samples) 9 (# of features) in the training dataset were

2048 9 30, which was the input to the ML model. The

2048 samples consisted of 920 AF samples and 1128 non-

AF samples. Figure 1C displays the flow chart of our

ML-based clot characterization framework. For compar-

ison, we tested random forests, support vector machine,

artificial neural network, and logistic regression algorithms

since these four models have distinct characteristics in

model training and are widely used for classification.25

Step 2. Model validation

With the training dataset, fivefold cross-validation was

performed to evaluate the performance of the four ML

models. The cross-validation folds were constructed based

on the patient, rather than based on the intensity profile.

The fold 1,2, and 3 each contained the intensity profiles

from 4 AF and 6 non-AF patients, whereas the fold 4 and

Figure 1. Basic scheme of machine learning-based clot analysis. (A, B) The red circles indicate user-marked start and end points of clot ROI. The

five red lines were located vertical to user-marked clot location at even intervals and were used to extract signal intensities for graphic analysis.

(A, Clot related to atrial fibrillation; B, Clot unrelated to atrial fibrillation). (C) Flowchart of the proposed ML-based clot characterization method,

where T is the threshold for Afib/non-Afib classification. (D, E) Custom GUI for clot analysis. ROI, region of interest; GUI, graphical user interface;

Afib, atrial fibrillation; ML, machine learning; T, threshold.
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5 each had the intensity profiles from 5 AF and 6 non-AF

patients. The assignment of the patients to each fold was

performed in a random manner. The ML models of ran-

dom forests, support vector machine, artificial neural net-

work, and logistic regression, provided by the Python’s

scikit-learn package were used for cross-validation.26 After

hyperparameter selection of each model using grid search,

mean and standard deviation of the cross-validation accu-

racy were computed for each model.

For external validation, we used GRE images from 15

unseen subjects, who arrived at the hospital in the later

period (n = 7 for atrial fibrillation, n = 8 for nonatrial

fibrillation), and tested the performance of the binary clas-

sification of clot characteristics. The GRE image protocol

and clinical evaluation methods for detection of atrial fib-

rillation in the development and validation groups were

identical in this study. For each subject, users identified the

clot ROI and clicked the start and end points. Five perpen-

dicular line profiles were automatically drawn as shown in

Figure 1E. There are other choices in the number of line

profiles, but empirically 5 per clot ROI was the reasonable

number of line profiles based on the lengths of visually evi-

dent clots in all the subjects considered. Each line profile

was fed to the trained ML model. A probability of AF clot

was obtained as a result of the classifier, except for the sup-

port vector machine which produced binary values 0 or 1

as output. For the clot ROI of interest, final average atrial

fibrillation probability (PAF,avg) was obtained after averag-

ing of the five predicted AF probabilities. A receiver operat-

ing characteristic (ROC) curve was plotted to evaluate the

model’s prediction performance at various settings of the

PAF,avg thresholds. In the clot analysis GUI, the threshold

“T” in Figure 1C was determined to meet a proper trade-

off between sensitivity and specificity. The value of thresh-

old “T” in the GUI can be used for binary decision of AF/

non-AF.

Statistical analysis

Descriptive demographics and clinical and radiological

data are shown as mean � standard deviations or num-

bers and frequencies, as appropriate. We analyzed the dif-

ferences among the groups using chi-square or Mann–
Whitney tests for discrete variables and one-way analysis

of variance or Kruskal–Wallis tests for continuous

variables. Sensitivity and specificity were compared in

between visual inspection and machine learning-based

clot analysis for underlying atrial fibrillation.

Results

Of 129 consecutive patients treated with EVT during the

study period, 81 were diagnosed with stroke caused by an

MCA occlusion. After excluding 10 patients who did not

have GRE MRI prior to EVT or whose GRE image quality

was inadequate for analysis, and 4 with no visible MCA on

GRE imaging, a total of 67 were included in the final analy-

sis. Among these 67 eligible patients, 41 (61.2%) were male,

with a mean age of 61.7 � 16.2 years, and 29 (43.3%) had

atrial fibrillation; of these, 13 (44.8%) had known atrial fib-

rillation and 16 (55.2%) were newly diagnosed with pro-

longed cardiac monitoring. Median onset to GRE imaging

time was 120 min (interquartile range, 99–185), and med-

ian onset to groin puncture was 183 min (interquartile

range, 146–230). Comparisons of demographic, clinical,

laboratory, and treatment profiles of the study subjects

according to the absence or presence of atrial fibrillation

are summarized in Table 1. Inter and intrarater agreement

for blooming artifact was poor; (1) Interrater agreement

Kappa, 0.73; 95% confidence interval, 0.60–0.83, (2)

Intrarater agreement #1 agreement Kappa, 0.70; 95% confi-

dence interval, 0.47–0.94, (3) Intrarater agreement #1

agreement Kappa, 0.73; 95% confidence interval, 0.65–0.88.
The discordant cases were re-reviewed and final bloom-

ing artifact was determined by consensus. The sensitivity

and specificity for underlying atrial fibrillation were 0.79

and 0.63, respectively (area under the curve, 0.78). For

the ML classification techniques, the fivefold cross-valida-

tion resulted in mean accuracy (standard deviation) of

75.4 (�7.7) % for random forest, 78.7 (�9.4) % for sup-

port vector machine, 75.5 (�10.4) % for artificial neural

network, and 77.3 (�9.4) % for logistic regression,

respectively. The external validation resulted in the areas

under the curve of 0.87–0.93 and 0.91–0.93 for observer 1

and observer 2, respectively (Fig. 2).

Among the 67 patients, 55 (82.1%) were treated with sten-

triever-based endovascular procedures. Compared to patients

with atrial fibrillation, more retrieval passes (3 [3–4] vs.

2 [1–3], P < 0.001) and more frequent reocclusion (2 [0–4]
vs. 0 [0–0], P < 0.001) were observed in patients without

atrial fibrillation. Using a stentriever, successful recanalization

(modified Treatment in Cerebral Infarction ≥ 2b) was

achieved in 2 (7.9%) patients without atrial fibrillation and

19 (65.5%) with atrial fibrillation (P < 0.001). Additional

recanalization was achieved with MCA stenting or intraarte-

rial glycogen IIb/IIIa blocker infusion in 13 (34.2%) patients

without atrial fibrillation and 2 (3.8%) with atrial fibrillation.

The details of EVT according to clot characteristics are sum-

marized in Table 2. Representative cases of clot analysis in

atrial fibrillation and intracranial atherosclerotic occlusion

are presented in Figure 3.

Discussion

The major findings of this study were as follows. In

patient with acute MCA occlusion, pretreatment GRE
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image-based clot analysis was feasible, and a machine

learning-based clot analysis algorithm predicted atrial fib-

rillation with high accuracy. Response to EVT and the

need for therapy differed between patients with and with-

out atrial fibrillation as well as according to the character-

istics of clot imaging. This suggests that utilization of a

machine learning algorithm for evaluation of clot charac-

teristics based on GRE imaging could be helpful in select-

ing an appropriate EVT modality and may lead to faster

recanalization in patients with MCA occlusion.

There have been efforts to visualize the clot in patients

with acute ischemic stroke. Clot characteristics can be

Table 1. Baseline characteristics according to presence of atrial fibrillation.

Without atrial fibrillation (n = 38) With atrial fibrillation (n = 29) P-value

Age (year), mean � SD 56.5 � 17.8 68.4 � 10.8 0.002

Male sex, n (%) 26 (68.4) 15 (51.7) 0.165

Hypertension, n (%) 19 (50.0) 15 (51.4) 0.889

Diabetes, n (%) 7 (18.4) 8 (27.6) 0.373

Dyslipidemia, n (%) 5 (13.2) 6 (20.7) 0.41

Atrial fibrillation, n (%) NA

Previously diagnosed 0 (0.0) 13 (44.8)

Newly detected 0 (0.0) 16 (55.2)

Other causes of clot NA

Intracranial atherosclerosis 24 (63.2) 0 (0.0)

Thromboembolism from carotid plaque 6 (15.8) 0 (0.0)

Other and undetermined sources1 8 (21.0) 0 (0.0)

Initial NIHSS score 12 [9–16] 15 [12–18] 0.038

Intravenous tPA, n (%) 23 (60.5) 22 (75.9) 0.185

Glucose (mg/mL), mean � SD 133.2 � 42.7 118.0 � 20.7 0.083

Systolic blood pressure (mmHg), mean � SD 139.7 � 21.6 140.9 � 17.6 0.814

Symptom to ER arrival, median (IQR) 53 [28–98] 45 [31–123] 0.537

Symptom to GRE imaging, median (IQR) 124 [94–183] 116 [101–187] 0.368

Symptom to groin puncture (min), median (IQR) 190 [145–227] 180 [157–240] 0.502

SD, standard deviation; tPA, NIHSS, National Institutes of Health stroke scale; Tissue plasminogen activator; ER, emergency room; IQR, interquartile

range; GRE, gradient echo.
1Paradoxical embolism in 2, aortic arch atheroma in 1, and undetermined source in 5.

Figure 2. ROC curves for external validation (n = 15) in classification of AF and non-AF clots. For each patient, two testers blinded to clinical

information evaluated the classification of AF and non-AF clots in the custom GUI, by taking the five intensity profiles in a clot ROI as input to

four different machine learning classifiers. ROC, receiver operating characteristic; RF, random forests; SVM, support vector machine; NN, neural

network; LR, logistic regression.
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expressed by the length/burden and composition, which

may be related to etiopathologic subtypes of stroke. The

importance of clot burden in intravenous thrombolysis

has been evaluated with computed tomography (CT) and

MR angiography.27–29 Recent studies attempted to mea-

sure clot burden using clot volume and length with non-

contrast CT or CT angiography. However, conflicting

results have been reported for the association with suc-

cessful endovascular recanalization,30 and results from

recent randomized clinical trials showed that clot burden

score did not modify the effects of EVT.31,32 In addition,

thin (e.g., 1 mm) scan thickness and software for post-

processing was required to measure clot volume and

length using CT images, which may not be practical in

the setting of EVT for acute ischemic stroke. In addition,

successful reperfusion could be associated with the

histopathology of occlusive thrombi, including the exis-

tence of atheromatous gruel and proportion of erythro-

cyte components.33 Although there have been efforts to

predict the response to revascularization therapy using

CT clot imaging, a recent systematic analysis showed a

lack of association between CT-based clot image (e.g.,

Hounsfield units) and the histopathology of thrombi or

stroke etiology.20

MRI can identify clot with high specificity and can

measure clot burden more clearly than CT images.34–36

Blooming artifact, caused by paramagnetic materials, in

GRE or susceptible weighted images has been associated

with cardioembolic stroke.3,23 Compared to large artery

atherosclerosis, clot with atheromatous plaque, deoxyhe-

moglobin, and hemosiderin in the erythrocyte can cause a

paramagnetic blooming effect. In a pathology study with

thrombi retrieved via EVT, blooming artifact appearance

was determined by the presence of red blood cells, and

their absence indicated fibrin-predominant occlusive

thrombi.17 The limitation of brain MRI including GRE

imaging requires longer scan time compared to CT.

Although a comprehensive MRI protocol can be per-

formed in 20 min, a fast MRI protocol can be performed

in 6 min, rivaling that of any comprehensive acute stroke

CT protocol.37 This fast MRI protocol includes diffusion

weighted imaging, fluid attenuated inversion recovery,

GRE, MR angiography, and MR perfusion. We used a

modified protocol that required a 9-min scanning time in

candidates for EVT.38 An additional 3 min were required

for postprocessing and machine learning-based etiologic

prediction of clot with GRE imaging. The 12-min proto-

col might be acceptable considering that decision making

with trial-and-error for stentriever failure often requires

tens of minutes or even hours.

Machine learning technique may help to increase inter-

rater reliability in interpreting stroke imaging data. For

example, Alberta Stroke Program Early CT score

(e-ASPECT) software automatically generates a score

from brain CT, and proved to be effective with a high

degree of reliability in calculating the score compared to

that calculated by a stroke physician and neuroradiolo-

gist.39,40 This study showed that compared to simple

visual analysis of blooming effect by neuroimaging

experts, machine learning technique increased interrater

reliability, and overall reliability in terms of predicting

atrial fibrillation with clot analysis. The advantages of

machine learning technique over simple visual inspection

include the extraction of various imaging features and

analysis of large amounts of quantitative imaging data

(“radiomics”). Utilization of machine learning technique

with multimodal imaging including high-resolution MRI

could be helpful in various stroke pathophysiologies.

However, it should be noted that machine learning may

be prone to misclassification errors in the case that some

patients’ images are degraded by motion. In this study,

we excluded a few patients whose GRE images were inad-

equate for analysis.

Stroke subtypes and related clot composition may

determine the response to recanalization therapy.33,41,42

Although cardioembolic stroke, especially in association

with atrial fibrillation, is the most common subtype in

patients with acute disabling ischemic stroke, patients

with other subtypes could be candidates for EVT.

Intracranial atherosclerosis is especially prevalent in

Asians and is associated with frequent EVT failure. In this

Table 2. Endovascular treatment procedures and outcome by presence

of atrial fibrillation.

Without atrial

fibrillation

(n = 38)

With atrial

fibrillation

(n = 29) P-value

Intravenous tPA before

procedure, n (%)

23 (60.5) 22 (75.9) 0.185

Treatment modality, n (%)

Stentriever 31 (81.6) 24 (82.8) 0.901

Stent 7 (18.4) 1 (3.4) 0.061

Glycogen IIb/IIIa blocker 11 (28.9) 2 (6.9) 0.024

Procedural event, median [IQR]

Number of retrieval passes 3 [3–4] 2 [1–3] <0.001

Number of reocclusions

during procedure

2 [0–4] 0 [0–0] <0.001

Total procedure time (min) 101.6 � 46.1 82.4 � 36.4 0.07

Procedural outcomes, n (%)

mTICI 2b or 3 16 (42.1) 21 (72.4) 0.013

by stentriever 3 (7.9) 19 (65.5) <0.001

by other modality

Stent 7 (18.4) 1 (3.4) 0.061

Glycogen IIb/IIIa

blocker

6 (15.8) 1 (3.4) 0.102

tPA, Tissue plasminogen activator; IQR, interquartile range; mTICI,

modified Treatment in Cerebral Infarction.
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condition, adjuvant therapy, such as the use of a glycogen

IIb/IIIa inhibitor or rescue stent placement, may be

needed.43,44 Therefore, differentiation between intracranial

atherosclerotic and cardiogenic embolic occlusion using

pretreatment imaging data could help customize EVT.2 In

this study, the rate of successful recanalization with sten-

triever was lower in patients without atrial fibrillation and

additional recanalization was achieved using rescue stent-

ing and glycogen IIb/IIIa blocker treatment. In addition,

there were more retrieval passes and reocclusion episodes

and longer total procedure time in patients without atrial

fibrillation. Therefore, etiologic diagnosis of arterial

occlusion prior to EVT could be helpful in guiding EVT

strategies.

Study limitations

This study has several limitations. First, this was a single-

center study performed on a 3T scanner and a relatively

small number of patients were available for analysis. In

addition, only Korean patients were included for analyses.

Therefore, generalizability of the study findings may be

limited. Given that we used routine MRI data, our

method can be applied in the acute clinical setting, and

our results should prompt larger, multicenter, multieth-

nicity, confirmatory studies. Furthermore, GRE image uti-

lized in the study was not three-dimensional scans.

Future study with three-dimensional GRE image could

address partial volume effects with higher signal to noise

ratio. Second, clinicians would determine presence of

blooming artifact for standard of care, but neuroimaging

experts scored blooming artifact in this study. However,

this issue does not affect robustness of the study findings.

Third, even though MCA occlusion is the most common

reason for EVT, only MCA clots were analyzed and distal

internal carotid artery, MCA branch, and basilar artery

occlusions were excluded in this study. Further study is

needed to evaluate and validate the study findings in

other intracranial arteries. Fourth, GRE imaging used in

the present study was performed with 5-mm section

Figure 3. Representative cases of GRE vessel signal change after successful endovascular clot retrieval in atrial fibrillation and intracranial

atherosclerosis patients. (A) Clot signal analysis prior to endovascular thrombectomy showing “W” shaped signal intensity. (B) Retrieved red clots.

(C) Resolved “W” signal after successful removal of atrial fibrillation-related clot. (D) Clot signal analysis prior to endovascular thrombectomy

showing “non-W”-shaped signal intensity. (E) Retrieved white clots. (F) Heterogeneous dark signal after successful recanalization of atherosclerotic

occlusion with emergency stenting. GRE, gradient echo.
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thickness and interslice gap of 1.5 mm and was prone to

a partial volume effect. Therefore, precise quantitative

measurement of clot volume was not possible. Fifth, the

study finding was not confirmed with pathologic evalua-

tion. A prospective study with thrombus collection and

pathologic correlation is warranted to confirm that

machine learning-based noninvasive imaging analysis

could determine thrombus composition. However, analy-

sis of retrieved clot might not be the gold standard for

clot characterization, given the conflicting results for the

association between stroke subtype and histopathologic

data.18,45,46 Finally, due to the retrospective nature of the

study, we could not confirm whether EVT strategy selec-

tion based on clot characteristics could reduce procedure

time and increase the rate of successful recanalization.

Future study with a prospective design is warranted to

evaluate angiographic and clinical outcomes of clot char-

acter-based EVT.

Conclusion

Our data indicate that machine learning-based rapid and

noninvasive evaluation of clot characteristics is feasible

and could provide information on clot composition in

acute MCA occlusion patients. Further studies using mul-

timodal MRI and machine learning-based evaluation of

other stroke pathophysiologic factors, for example, collat-

eral circulation, blood–brain barrier, and tissue perfusion

status, and their association with EVT outcomes are

warranted.
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