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ABSTRACT
Important objectives in the development of stratified medicines include the
identification and confirmation of subgroups of patients with a beneficial
treatment effect and a positive benefit-risk balance. We report the results of
a literature review on methodological approaches to the design and analy-
sis of clinical trials investigating a potential heterogeneity of treatment
effects across subgroups. The identified approaches are classified based
on certain characteristics of the proposed trial designs and analysis meth-
ods. We distinguish between exploratory and confirmatory subgroup ana-
lysis, frequentist, Bayesian and decision-theoretic approaches and, last,
fixed-sample, group-sequential, and adaptive designs and illustrate the
available trial designs and analysis strategies with published case studies.
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1. Introduction

A major challenge in the development of stratified medicines is the identification and confirmation of
subgroups where a treatment is effective and has a positive benefit-risk balance. Many modern anti-
cancer drugs are understood to act on specific genetic targets, and as a consequence it is expected that
the treatment will be effective only in patients where the target is present. The identification and
confirmation of targeted subgroups raises several statistical issues, such as the multiplicity problem
when assessing multiple populations or the low power to detect treatment effects in subgroups with
low prevalence. In recent years, an impressive amount of methodological research has been conducted
to derive efficient trial designs and analysis strategies and to better understand the possibilities to
obtain evidence on the heterogeneity of treatment effects across subgroups.

For the investigation of targeted therapies, patient subgroups are typically defined by genetic or
proteomic biomarkers. In this review we restrict our attention to biomarkers that are measured prior to
treatment and therefore cannot be affected by outcome. However, we also consider settings where the
determination of a biomarker’s status may affect the outcome, for example if the determination requires
an invasive procedure or takes so long that it delays the start of treatment administration. Following the
standard terminology, we define prognostic biomarkers as biomarkers that allow one to predict the
outcome independently of any specific therapy and predictive biomarkers as biomarkers that predict the
treatment effect of an experimental treatment in comparison to control (Ziegler et al., 2012; Beckman
et al., 2011). The difference between prognostic and predictive biomarkers becomes most clear when
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considering a regression model with the outcome variable as dependent variable and the independent
variables treatment, biomarker, and the interaction term of treatment and biomarker. Then, the prog-
nostic effect of a biomarker is modeled with the main biomarker term in the model and the predictive
effect with the interaction term. For the development of targeted therapies, predictive biomarkers are of
main interest, and therefore we focus here onmethods to identify and confirm a predictive biomarker. If
the treatment effects differ between subgroups, we speak of a quantitative interaction, if the treatment
effects have different signs; this is called a qualitative interaction.

We conducted a literature survey and give an overview on methodology for clinical trial designs
and analysis methods investigating differential treatment effects in subpopulation(s) that address
these challenges.

The article is structured as follows: In Section 2, we describe the literature search and classifica-
tion strategy. In Sections 3 and 4, we report on the identified methods and trial designs. In Section 5,
we discuss several case studies and conclude with a discussion.

2. Literature search

We conducted a literature search on the PubMed web site at http://www.ncbi.nlm.nih.gov/pubmed/
advanced on April 5, 2015, using the following search strategy enrichment OR subgroup selection OR
subgroup analysis OR subgroup identification.

The search was restricted to methodological journals given in Table 1. In addition, relevant papers
from the list of references in the identified manuscripts as well as papers that were discovered via
manual searches have been included in the review. After screening the abstracts of the identified
manuscripts, we included only papers that focused on statistical methods for the design and analysis
of clinical trials that investigate subgroup effects.

Table 1. Journals included in the literature search.

Included journals

Biometrical Journal Biometrics
Biostatistics BMC Medical Research Methodology
Clinical Trials Contemporary Clinical Trials
Controlled Clinical Trials Journal of Biopharmaceutical Statistics
Journal of the American Statistical Association Journal of the Royal Statistical Society: Series B
Journal of the Royal Statistical Society: Series C Pharmaceutical Statistics
Statistics in Biopharmaceutical Research Statistics in Medicine

Table 2. Classification criteria.

Classification criterion Description

Confirmatory trial (CT) Confirmatory clinical trials investigating up to three prespecified subgroups controlling Type
I error rates.

Exploratory trial (ET) Exploratory clinical trials investigating more than three prespecified subgroups or not
controlling Type I error rates.

Frequentist method (FM) Includes methods based on hypothesis testing as well as regression models if frequentist
properties are considered.

Bayesian method (BM) Approaches where inference is based on posterior distributions of parameters or the trial
design is based on Bayesian techniques (as, e.g., in adaptive trials).

Decision-theoretic method (DM) Inference or trial design is based on maximizing a utility function.
Trial design type Classification into fixed sample designs (FD), group sequential designs (GS), adaptive designs

based on conditional error rate approach (ADce), adaptive designs based on combination
functions (ADcf), response adaptive designs (RA), and other adaptive designs (ADo).

Biomarker type Continuous (C), categorical (Cat), binary (B).
Number of prespecified
subgroups

The number of prespecified subgroups is classified into few (≤ 3), any number (Any), and no
subgroups prespecified (None).

Endpoint type Continuous (C), binary (B), time-to-event (TtE), categorical (Cat).
Class of exploratory methods Global outcome modeling (GOM), global treatment effect modeling (GTEM), and local

modeling (LM).
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The identified manuscripts were classified according to the criteria defined in Table 2. We
distinguished between confirmatory settings, where a small number (up to three) of prospectively
defined subgroups of patients are investigated and the frequentist error rates such as the familywise
error rate are explicitly protected, and exploratory settings, where multiple subgroups may be
considered and error rate control may not be addressed.

The analysis methods used in confirmatory and exploratory settings were classified as follows:

● Frequentist methods (FM) that deal with assessing frequentist properties of parameter estimates
and controlling Type I error rates in hypothesis testing problems;

● Bayesian methods (BM) that rely on inferences based on posterior distributions of parameters
or the trial design is based on Bayesian techniques;

● Decision-theoretic methods (DM) that are based on utility functions that assign gains and costs
to different decisions based on the clinical trial data.

Note that some of the proposed approaches fall into more than one of these categories because
they combine frequentist, Bayesian, and decision-theoretic methods, e.g., by considering multiple
testing procedures for hypothesis testing but a Bayesian decision theoretic approach to optimize trial
designs. Furthermore, the methods were classified according to the trial endpoint type, i.e., con-
tinuous, binary, categorical, or time-to-event endpoints (no count-type endpoints were found), and
biomarker type, i.e., binary, categorical, and continuous biomarkers, which define the subgroup(s) of
interest.

Another classification factor was the number of prespecified patient subgroups (which is related
to the exploratory/confirmatory classification criterion). While, by definition, binary biomarkers
used in confirmatory studies define two subgroups, categorical or continuous biomarkers, or
combinations of several biomarkers may define several subgroups. We distinguished methods that
can be applied to any (fixed) set of subgroups from methods where no candidate subgroups are
prespecified. Note that a method which controls the Type I error rate but is designed for an arbitrary
number of predefined subgroups was classified as both confirmatory and exploratory since it can be
applied to settings with a few subgroups as well as a large number of subgroups. Clinical trial designs
were classified into fixed-sample designs, adaptive designs based on the combination function or
conditional error approach, group-sequential designs, response adaptive designs, and other adaptive
designs. Finally, exploratory subgroup analysis methods were further classified into three subcate-
gories introduced in Lipkovich and Dmitrienko (2014a): global outcome modeling (GOM), global
treatment effect modeling (GTEM), and local modeling (LM), see Section 4 for a detailed description
of these categories.

We identified in total 239 papers of which 86 were classified as relevant for this survey (i.e.,
papers on novel methodology on the identification and confirmation of patient subgroups in clinical
trials). The results of the literature search are summarized in Figure 1 and Tables 3, 4 and 5. A table
with the list of all papers and their categorization can be found in the supplementary material.

3. Confirmatory methods

By definition, confirmatory approaches control the Type I error rate (familywise error rate) and
hence fall into the category of frequentist methods. However, some of these methods use frequentist
approaches for statistical inference but employ Bayesian or decision-theoretic methods in the trial
design. These approaches will be discussed in Sections 3.3 and 3.4.

The most frequently investigated scenarios are parallel-group designs with an experimental
treatment arm (T) that is compared to a control (C). In the simplest case, a single prespecified
subgroup S (termed the target subgroup) defined by a binary biomarker or binary classifier derived
from one or more continuous biomarkers is considered. We denote the complement of the subgroup
by S0 and the full population by F.
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Figure 1. Flow diagram of selected manuscripts.

Table 3. Classification of the methodological approaches.

Classification criterion

CT/ET 36 (CT) 36 (ET) 14 (CT & ET)
Number of prespecified subgroups 35 (≤ 3) 35 (Any) 16 (None)
Endpoint type 18 (B) 14 (TtE) 53 (C) 1 (Cat)
Biomarker type 34 (B) 29 (Cat) 23 (C)
Class of exploratory method 25 (GOM) 6 (GTEM) 5 (LM)

B, binary; C, continuous; Cat, categorical; CT, confirmatory trial; ET, exploratory trial; GOM, global outcome modeling; GTEM, global
treatment effect modeling; LM, local modeling; TtE, time-to-event

Table 4. Exploratory and confirmatory approaches stratified by frequentist methods (FM), Bayesian methods (BM), and decision-
theoretic methods (DM).

Exploratory / Confirmatory FM BM DM

Confirmatory (CT) 36 5 2
Exploratory (ET) 18 19 8
Confirmatory & Exploratory (CT and ET) 14 0 0

Note. Papers using more than one method (e.g., frequentist and Bayesian) appear more than once in this table.

Table 5. Results for trial design type classification criterion.

Trial design type ADce ADcf ADo RA GS FD

Number 3 11 13 6 1 52
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The following notation will be used throughout this section. With λ, we denote the population
prevalence of biomarker-positive patients. Furthermore, Δj, j 2 þ;�; Ff g, denotes the treatment
effect in the respective populations, e.g., Δþ specifies the mean treatment difference in the biomar-
ker-positive population under the assumption of a normally distributed outcome variable. For effect
sizes defined as mean differences, it is easy to verify that the treatment effect in the full population is
given by ΔF ¼ λΔþ þ ð1� λÞΔ�. We assume that Δþ � Δ�, reflecting settings where due to the
mode of action of the treatment it is justified to assume that the treatment effect is more pronounced
(or only present) in S.

A confirmatory clinical trial investigating treatment effects in this scenario can have the following
three distinct objectives:

● Objective O1: Demonstrate the efficacy of the treatment in S only.
● Objective O2: Demonstrate the efficacy in F only.
● Objective O3: Demonstrate the efficacy in F and enhanced efficacy in S.

Accordingly, a multiple testing procedure can be used to control the familywise error rate for the
null hypotheses of no-treatment effects in S and in F.

Millen et al. (2012) emphasized the importance of accounting for incorrect decisions related to
Objectives O1 and O3 and introduced tools for facilitating the decision-making process in multi-
population trials (known as the influence and interaction conditions). For example, a statistical test
may show a significant effect in the full population F which is entirely driven by a strong treatment
effect in S. The influence condition states that Objective O2 needs to be restricted to Objective O1 if
no treatment benefit is established in S0. Similarly, when considering Objective O3, it is important to
ensure that the treatment effect in the target subgroup S is meaningfully different from that in the
complementary subgroup S0. If the appropriately defined interaction condition is met, Objective O3
is valid, and it needs to be replaced with Objective O2 otherwise.

Frequentist and Bayesian rules for evaluating the influence and interaction conditions were proposed
in Millen et al. (2012, 2014). The Bayesian rules enable clinical trial researchers to account for available
prior information and uncertainty around the estimated treatment effects. As an illustration, within a
simple frequentist framework, the influence condition is met if Δ� � η, where η is a prespecified
constant which defines a meaningful treatment effect in the complementary subgroup, which supports
the conclusion that the treatment effect is homogeneous across the full population. Alternatively, η can
be viewed as a tuning parameter and selected based on appropriate statistical criteria. Switching to a
Bayesian framework, the influence condition is satisfied if the posterior probability of a meaningful effect
in the complementary subgroup given the available data is high enough, i.e.,

PðΔ� � c1jDÞ � γ1;

where 0<γ1<1 is a risk-tolerance parameter and D denotes the available data. Similarly, using a
Bayesian rule, the interaction condition is met if

PðΔþ � c2Δ
�jDÞ � γ2:

Here c2>1 is an application-specific threshold of clinical relevance, γ2 is again a risk-tolerance
parameter, and we assume that the prior on Δ� gives no weight to negative effect sizes. A detailed
mathematical description of the proposed assessment strategy for the the influence and interaction
condition for binary, time-to-event, and continuous endpoints is provided in Millen et al. (2014).

A special class of treatment strategies need to be considered in settings where the process determina-
tion of a patient’s biomarker status may impact the outcome, for example, because of the time needed to
determine the biomarker status or because invasive examinations are involved. In these cases, it is of
interest to assess whether patients treated based on their biomarker status have a better outcome than
patients whose treatment does not account for the biomarker. This leads to the following objective:
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● Objective O4. Demonstrate the superiority of a biomarker-guided treatment strategy compared
to a treatment strategy that does not take the biomarker into account, for example, strategies
that assign all patients to the control treatment or all patients to the experimental treatment.

Depending on the trial’s objectives defined above, different strategies can be considered to utilize
the available biomarker in the design or analysis of biomarker-driven clinical trials:

● Strategy B1. The biomarker status is used as part of the inclusion criteria.
● Strategy B2. Treatments are assigned based on the patient’s biomarker status.
● Strategy B3. The biomarker status is used in the analysis as a stratification factor or identifies

an important subgroup, which is included in the primary analysis.

Different proposals for applying Strategies B1, B2, and B3 in different trial designs to reach the
design-specific objectives are discussed below.

3.1. Single-stage designs

Single-stage clinical trial designs (Mandrekar and Sargent, 2009; Freidlin et al., 2010b; Mandrekar
and Sargent, 2011b; Freidlin et al., 2012; Ziegler et al., 2012) recruit patients from prespecified
populations according to a prespecified sampling rule. The designs proposed in the literature differ
in the way populations are investigated, the role of the biomarker in the trial design, and the way
multiple hypothesis testing is implemented. Figure 2 gives an overview of five proposed designs
(Designs F1 through F5) and associated sampling and treatment allocation rules. Below we discuss

Figure 2. Overview of single-stage clinical trial designs. Τ is the experimental treatment, С is the control treatment. Solid lines
indicate deterministic decisions whereat dashed lines indicate that a randomization procedure is involved.
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their relation to Objectives O1 through O4 and identify the appropriate biomarker analysis strategies
(Strategies B1 through B3) that were implemented in each design.

Design F1 is a simple enrichment or subpopulation-only design which has the following features.
Before inclusion in the trial, patients are screened and selected by their biomarker status such that
only biomarker-positive patients enter the trial and are randomized to the experimental treatment T
or control C. The biomarker is utilized in this design using Strategy B1 and enables the trial’s
sponsor to test only one null hypothesis, namely, the null hypothesis of no-treatment effect in the
biomarker-positive population, i.e., Hþ : Δþ � 0. This means that the treatment effect can be studied
in this population only (Objective O1).

To investigate whether a treatment is also effective in a larger patient population, including
biomarker-negative patients, more complex trial designs are required. An example is the biomarker-
stratified or multi-population design (Design F2). This design includes four arms, where patients are
screened for biomarker status and randomization, stratified for the biomarker status, is performed.
Biomarker-positive as well as biomarker-negative patients are randomized to the treatment T and
control C, which means that Strategy B3 is applied in this design. Compared to Design F1, this design
supports testing the null hypotheses of no effect in the biomarker-positive and full populations, i.e.,
Hþ : Δþ � 0 and HF : ΔF � 0, which means that it may be used to address Objectives O2 or O3 (the
influence and interaction conditions need to be applied to determine the most relevant objective).

An important feature of Design F2 is that several null hypotheses are tested to examine the efficacy of
the experimental treatment. This leads to Type I error rate inflation and a multiplicity adjustment must
be applied to control the familywise error rate (FWER) in the strong sense. FWER is controlled strongly if
the probability to commit at least one Type I error does not exceed the nominal level (e.g., one-sided
α ¼ 0:025) regardless of howmany andwhich null hypotheses are true (see, e.g., the tutorial (Dmitrienko
and D’Agostino, 2013)). Suitable multiple testing methods include non-parametric procedures such as
the Bonferroni procedure, Holm procedure, or more flexible Bonferroni-based stepwise procedures
(Bretz et al., 2009). However, since the test statistics for the null hypotheses in the full and biomarker-
positive populations are positively correlated, Bonferroni-based proceduremay become conservative and
more efficient approaches include semi-parametric procedures (e.g., Hochberg procedure) or parametric
procedures (e.g., methods similar to the Dunnett procedure). These approaches gain a power advantage
over non-parametric procedures by taking into account the correlation between the test statistics. Several
authors noted that for many settings the test statistics follow an approximate multivariate normal
distribution and computed critical values for single-step or stepwise parametric procedures (Song and
Chi, 2007; Alosh and Huque, 2009; Spiessens and Debois, 2010; Millen and Dmitrienko, 2011; Alosh and
Huque, 2013; Bretz et al., 2011). Zhao et al. (2010) considered a more general parametric test combining
the test statistics with combination functions.

In Designs F1 and F2 all patients are screened and their biomarker status is determined prior to
treatment. Therefore, these designs do not support the investigation of the impact of screening and
determination of a patient’s biomarker status on the outcome. For example, it may take time to
ascertain the biomarker status, which will lead to a delay of the treatment start and may negatively
impact the outcome. Design F3 is a trial design, known as the biomarker-strategy design, which
addresses Objective O4. This design facilitates the comparison of a biomarker-guided therapy, where
a patient’s biomarker status is determined and only biomarker-positive patients receive the experi-
mental treatment, to a treatment regimen without screening, where all patients are allocated to the
control. Patients are randomized to either the control (without screening) or the biomarker-guided
treatment strategy arm. Within the latter arm, the biomarker status is determined and all biomarker-
positive patients receive the experimental treatment T, whereas the biomarker-negative patients
receive the control C. Thus, Design F3 applies Strategy B2 for utilizing the biomarker information in
the trial. Note that this trial design may require a large sample size to achieve adequate statistical
power because biomarker-negative patients receive the control treatment in both arms (biomarker-
guided arm and control arm) which results in a diluted effect size.
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While Design F3 can demonstrate that the biomarker-guided treatment is superior to the strategy
which relies on treating all patients with the control, it does not address the goal of assessing whether
all patients (including biomarker-negative patients) would benefit from the experimental treatment.
In other words, this design does not address Objective O2. The latter can be addressed (in addition
to Objective O4) by the modified biomarker-strategy design (Design F4). It differs from Design F3 in
that patients randomized to the non-biomarker strategy arm are again randomized between the
experimental treatment and control. This design tests the impact of the biomarker-guided strategy
against a random allocation procedure which does not take the biomarker into account (Objective
O4). Furthermore, it allows the sponsor to test and estimate the treatment effect of the experimental
treatment without a biomarker-guided treatment strategy Objective (O2). However, similar to
Design F3, Design F4 may require a larger sample size because some of the biomarker-negative
patients in the randomization arm also receive the control treatment and some of the biomarker-
positive patients the experimental treatment. This leads to a diluted treatment effect and may result
in lower statistical power.

Recently, Eng (2014) proposed a fixed-sample design termed the reverse biomarker-based strategy.
This design was compared to Designs F3 and F4 in the case of binary outcomes. Specifically, patients
are randomly assigned to one of the two treatment strategies. In the first arm, biomarker-positive
patients receive the experimental treatment, whereas biomarker-negative patients are allocated to
receive the control. By contrast, in the second arm, biomarker-positive patients receive the control and
biomarker-negative patients receive the treatment. It is easy to see that the effect size for comparing the
treatment strategy arms will be typically larger than in Designs F3 and F4. Furthermore, with this
approach, the effect size of the experimental treatment compared to the control is easily estimated for
each subgroup separately. However, the reverse biomarker-based design cannot address the question if
a treatment strategy that does not require the determination of the biomarker status (which may, e.g.,
delay treatment) would be superior to the biomarker-guided treatment strategies.

Phase III trial designs are often based on the outcomes observed in Phase II trials. As an
example, Freidlin et al. (2012) proposed an ad-hoc method for the selection of a biomarker-driven
trial design, which utilizes a simplified version of the influence and interaction conditions (Millen
et al., 2012). Considering a Phase II trial with a time-to-event endpoint, begin with the treatment
effect test in the biomarker-positive subgroup S. If the null hypothesis of no effect is rejected in S
at α ¼ 0:1, there is some evidence that the experimental treatment is superior to the control in the
biomarker-positive subgroup. After that, an 80% confidence interval for the hazard ratio in the
biomarker-negative population is constructed. If the interval lies entirely below 1.3, Design F1 is
recommended for the subsequent Phase III trial since the treatment effect is unlikely to be
beneficial in biomarker-negative patients. If the confidence interval includes 1.3 or 1.5, Design
F2 should be used in the Phase III trial. If the confidence interval lies entirely above 1.5, a
standard design in the full population should be conducted. On the other hand, if the null
hypothesis of no effect is not rejected in S, the null hypothesis is tested in the full population
at α ¼ 0:05. If this null hypothesis is rejected, a standard Phase III trial should be conducted and
the development program should be terminated otherwise.

Further, Mandrekar and Sargent (2011b) and Mandrekar et al. (2013) suggested to base the choice
of the trial design in a Phase III program on the preliminary evidence of efficacy in different
subgroups, assay performance, marker prevalence and turnaround times. Here assay performance
refers to how reliably the membership in a subgroup is defined in the presence of measurement
errors in the determination of a patient’s biomarker status. Turnaround time is defined as the time it
takes to determine a patient’s biomarker status.

3.2. Multi-stage designs

In multi-stage trials, patients are recruited in several stages and an interim analysis is performed after
each stage. Based on the results of each interim analysis, the trial may be continued as initially planned,
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stopped early, or the trial’s design may be adaptively modified. For example, based on results of an
interim analysis, patient recruitment in the second stage may be restricted to a predefined subgroup
(see Figure 3). Multi-stage designs enable the trial’s sponsor to change the biomarker’s role in a clinical
trial. In the first stage, the biomarker may be used as a stratification factor (as in Strategy B3) to test the
treatment effect in the full and biomarker-positive populations (addressing Objectives O1, O2, or O3).
In the second stage, an option to restrict the inclusion criteria to focus on patients with a certain
biomarker status may be introduced as in Strategy B1. As a result, the trial’s goal may be modified to
focus on Objective O1. In addition to adapting the patient recruitment, the analysis strategy at the final
analysis may be modified based on the outcome of an interim assessment. For example, a decision may
be made to continue recruiting patients from the full population, but irrelevant null hypotheses may be
dropped or the multiple testing strategy may be modified by updating the weights of the null
hypotheses in the full and biomarker-positive populations.

In contrast to approaches where population selection/enrichment and evaluation of the treatment
effect are addressed in separate trials, the data from different stages may be combined for the
statistical analysis of multi-stage designs. This can be implemented using the combination function
approach (Bauer and Koehne, 1994; Bauer and Kieser, 1999; Hommel, 2001; Wang et al., 2007;
Brannath et al., 2009; Wang et al., 2009; Jenkins et al., 2011) or conditional error rate approach
(Proschan and Hunsberger, 1995; Müller and Schäfer, 2004; Mehta and Gao, 2011; Friede et al.,
2012; Irle and Schäfer, 2012; Mehta et al., 2014).

With both approaches, strong FWER control is achieved by the closure principle. For example, to
test HF and H+ with FWER control at α, (local) level-α combination tests for the intersection
hypotheses, i.e., the elementary hypotheses HF and H+ and global null hypothesis HF \Hþ, need
to be defined. A closed testing procedure that rejects an elementary hypothesis Hi, i 2 F;þf g at
multiple level α if Hi and the global intersection hypotheses can be rejected by their respective local
level-α combination tests. If more than two hypotheses are tested, the closure principle requires to
consider all intersection hypotheses (Marcus et al., 1976), although in many settings the so-called
shortcuts can be identified that streamline the testing algorithm (Brannath and Bretz, 2010).

Testing procedures based on the combination function approach as well as conditional error rate
approach in principle do not require the prespecification of the adaptation rule (as, e.g., population
selection criteria or sample size adaptation algorithms) to guarantee FWER control in the strong
sense. However, the proposed procedures require that the set of initially considered subgroups (from
which subgroups may be selected at an interim analysis) is prespecified in advance rather than
defined based on the first-stage data. An exception is the statistical test used in Mehta and Gao
(2011) (see also Hommel (2001)). Even though the authors considered a setting with a small set of
prespecified subgroups, the statistical test used provides FWER control even if any subgroup was
defined based on the interim data. The additional flexibility comes at the price of having to use the
second-stage data only if the trial is enriched. Similar two-stage procedures in a more exploratory
context have been proposed in (Freidlin, 2005; Freidlin et al., 2010a) and are discussed in Section 4.1.
Even though in most publications on adaptive enrichment designs specific adaptation rules are
proposed, deviations from these adaptation rules in an actual trial do not lead to FWER inflation.
Furthermore, the adaptation rule may depend on unblinded interim data in any way. For example, in
addition to population selection, the second-stage sample size may be adapted at the interim

Figure 3. Adaptive multi-stage design.
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analysis. Special care, however, is required in trials with time-to-event endpoints, where some
patients recruited before the interim analysis may not have experienced an event at the time of
the interim analysis (Bauer and Posch, 2004). Several proposals have been made to guarantee FWER
control in this setting, namely, either adaptations may depend only on the interim test statistics (and
variables the analysis is stratified for) (Brannath et al., 2009) or it is guaranteed that the maximal
observation time of patients recruited at the first stage is not adapted (Jenkins et al., 2011; Irle and
Schäfer, 2012). See Magirr et al. (2014) for a detailed discussion.

Stallard et al. (2014) performed a simulation study comparing different adaptive designs with
population selection from a prespecified set of subpopulations. They considered designs based on
the combination function and conditional error rate approaches to account for adaptations as well
as a design with two separate trials where the first trial is used for population selection only and
the second stage is used for hypothesis testing. In the combination tests, multiplicity was
accounted for using the Simes test and Spiessens–Debois test (Spiessens and Debois, 2010).
Furthermore, they compared different adaptation rules to select the second-stage population
and hypotheses tested at the final analysis. This included a decision rule that is based on separate
thresholds for the treatment effect estimates in the full population and biomarker-positive
population as in Jenkins et al. (2011) and, in addition, a decision rule that is based on the
difference of treatment effects in the two populations proposed in Friede et al. (2012). The
simulation study suggested that, especially if the prevalence of biomarker-positive patients is
small, adaptive designs that support enrichment of the second-stage population are more powerful
than adaptive designs where the adaptations are restricted to the selection of the hypotheses to be
tested. Furthermore, as expected, adaptive designs that take into account the first-stage data for
hypotheses testing are more efficient compared to the designs that only utilize second-stage data
for hypothesis testing.

Wassmer and Dragalin (2014) generalized these designs and described adaptive population
enrichment designs based on combination functions for an arbitrary number of prespecified sub-
populations. Several possible intersection hypothesis tests as well as overall p-values and confidence
intervals were discussed. Simulation studies for adaptive designs, where populations were selected
based on the differences between the observed effect sizes in the different populations, were
presented.

Magnusson and Turnbull (2013) proposed a group-sequential approach to implement popula-
tion enrichment designs. These designs require that a set of subpopulations should be prespe-
cified and can have two or more stages. However, subpopulations may be dropped after the first
stage only. Two decision rules for subgroup selection were presented. With the first rule, all
subgroups with the observed treatment effect below a certain threshold are discontinued. For the
second selection rule, a hierarchy among the subgroups is predefined. If the treatment effect for
a certain subgroup exceeds a predefined threshold, all higher-ordered subgroups are selected for
the second stage. Stopping boundaries based on an α-spending approach for futility and efficacy
controlling the FWER in the strong sense were calculated. Point and interval estimates for the
treatment effect in the selected population as well as power and sample size calculations were
provided. Note that the approach based on group-sequential designs guarantees FWER control
only if the investigators follow the prespecified population selection rule. This holds because the
rejection region of the trial depends on the prespecified rule, and a deviation from this rule may
lead to FWER inflation. This is in contrast to adaptive designs based on combination functions
and conditional error rates discussed above that do not require a prespecification of population
selection rules.

Boessen et al. (2013) performed a simulation-based comparisons of fixed designs, group-sequen-
tial designs, and adaptive designs in trials with a prespecified subpopulation. In the fixed-design
setting, the null hypotheses in the full population and sub-population, HF and H+, were tested using
the Hochberg test. In the group-sequential design, an interim analysis was added with the option to
stop for efficacy (and reject both null hypotheses) or futility (retain both null hypotheses) or to
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continue to the second stage recruiting patients from the total population. For the adaptive design
with population enrichment, they considered adaptation rules that, in addition to the stopping rules
of the group-sequential design, support selection of the subgroup only for the second stage based on
a version of the selection rule introduced in Friede et al. (2012). It was shown via simulations that,
for a given overall significance level α and given power level, the group-sequential as well as adaptive
designs have a lower sample size compared to the fixed-sample design. In addition, the adaptive
designs can lead to a further reduction in the sample size compared to the group-sequential designs
if the difference between the treatment effects in the prespecified subpopulation and its complement
is large.

3.3. Multi-stage designs with Bayesian rules

Bayesian decision tools can be useful to guide subgroup selection as well as futility stopping decisions
in multi-stage trials. It is important to note that, while the adaptations are based on Bayesian
principles, the hypothesis tests at the final analysis are conducted using frequentist approaches to
control the FWER in the strong sense.

Song (2014) considered adaptive population enrichment designs in a trial with a time-to-event
endpoint that requires a long-term follow-up, which is common in oncology trials. Since a small
number of events of interest is expected to be accrued at an interim analysis, the interim effect size
is estimated using Bayesian tools that incorporate information from a short-term binary endpoint
(surrogate) that is already available at the time of the interim analysis (Huang et al., 2009). This
information synthesis can increase the precision of the interim estimates. It was pointed out that
the use of the surrogate leads to a substantial increase in precision only if it is strongly related to
the primary time-to-event endpoint. Moreover, the prior distribution reflecting the available
information on the surrogate endpoint should be carefully selected by taking into account
historical data. For the frequentist test of the respective null hypotheses, Song (2014) considered
the testing framework proposed in Wang et al. (2007). However, the specific complexities
associated with FWER control in adaptive survival trials discussed above (Bauer and Posch,
2004) were not addressed.

Brannath et al. (2009) also proposed to use Bayesian tools for interim decision-making in an
adaptive enrichment design with a time-to-event endpoint. Based on predictive probabilities for
rejecting certain null hypothesis, a decision tool was developed to determine which of the two
populations (full population or subpopulation) should be further investigated in the second stage.
Possible decisions included options to continue patient enrollment in the full population, subpopu-
lation only, or stop for futility.

3.4. Decision-theoretic approaches

Several authors have proposed decision-theoretic methods to derive optimized trial designs with
prespecified subpopulations. These are based on utility functions that assign a certain utility to
every trial outcome (e.g., rejection of the null hypothesis of no-treatment effect in the full
population). The utility may depend, e.g., on the trial outcome (which hypotheses are rejected),
sample size, treatment effect estimate, and, in addition, on the (typically unknown) true value of
the efficacy parameters in different subgroups. Because the true parameter values and the outcome
of the trial are unknown at the planning stage of a trial, the utility of a trial design is unknown
and cannot be calculated a priori. However, one can compute the expected utility by averaging
over the efficacy parameters based on a prior distribution and averaging over the data distribution
given the values of the efficacy parameters. Optimized trial designs can then be derived by
maximizing the expected utility. Instead of maximizing a utility function, one can equivalently
specify a loss function and minimize the expected loss, which is termed the Bayes risk. These
decision-theoretic approaches can be used to optimize single-stage as well as adaptive multi-stage
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designs. In the latter case, the decision-theoretic framework can be applied to optimally select
adaptation rules at interim looks.

Beckman et al. (2011) developed a Bayesian decision-analytic approach to decide if a subsequent
Phase III trial should be enriched, stratified in the full population, adaptive or not conducted at all
based on the available Phase II data.

Krisam and Kieser (2014) considered a decision-theoretic approach for single-stage designs
minimizing a quadratic loss function that assigns losses if the full population is selected, although
the treatment effect in the subgroup is substantially larger than in the complement as well as in the
opposite case if the subgroup is selected, while the treatment effect in the complement is similar to
(or smaller than) then the effect in the subgroup. They derived optimal decision functions to select
either a prespecified subpopulation or the overall population. In addition, they also investigated the
impact of errors in the determination of a patient’s biomarker status.

Using a similar approach, Götte et al. (2014) derived optimal rules for selecting a patient
population at an interim analysis or futility assessment. They aimed to maximize a utility function
defined as the expected probability of a correct selection and considered a simple three-point prior
over the three scenarios of no-treatment effect in the full population or subpopulation, treatment
effect in the subpopulation only, and a homogeneous treatment effect in the full population. The
adaptation rules were optimized by optimally selecting thresholds for three different classes of
adaptation strategies that are all based on the estimated effect sizes in the subpopulation and its
complement. Besides a decision rule, called the “simple rule”, which is based on the signs of the
estimated effect sizes in the population chosen in the second stage, they proposed more general rules
that take into account weighted averages of either the effect size or the conditional power in the
subpopulation and its complement. Optimal thresholds were derived to maximize the expected
probability of a correct selection for these rules.

Graf et al. (2015) used a decision-theoretic approach to evaluate fixed-sample and adaptive
population enrichment designs that control the FWER. The utility functions considered assign
utilities to the different outcomes of the hypothesis tests in the trial. Utility functions for different
objectives were defined, representing the sponsor’s as well as public health-policy maker’s views.
Considering adaptation strategies that depend on the interim treatment effect estimates in different
populations, adaptation rules and stage-wise sample sizes were optimally selected. Settings where
single-stage enrichment designs or trials in the full population are preferable to adaptive enrichment
designs were identified.

4. Exploratory methods

In this section, we discuss methods for the investigation of patient subgroups with a beneficial
treatment effect in an exploratory setting. Recall from Section 2 that the exploratory setting deals
either with large sets of subgroups and/or designs without formal frequentist error rate control. This
includes exploratory prospective trial designs based on adaptive Bayesian treatment allocation rules
and methods aimed at post-hoc identification of patient subgroups with desirable properties (e.g.,
improved benefit). In response-adaptive trials, treatment allocation for newly recruited patients
depends on biomarker status specific treatment effect estimates of the treatments investigated.
These treatment effect estimates are updated after every patient based on Bayesian posterior
distributions. The topic of subgroup identification/subgroup search has attracted much attention
in the literature and key subgroup search methods are presented in Section 4.1. A review of recent
developments in response-adaptive designs with applications to subgroup analysis is provided in
Section 4.2.
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4.1. Subgroup identification methods

A classification scheme for different approaches to investigation of treatment heterogeneity across
patients subgroups (subgroup search methods) that are defined by biomarker profiles was proposed
in Lipkovich and Dmitrienko (2014a) and Lipkovich et al. (2015). For a biomarker profile
x ¼ ðx1; . . . ; xkÞ 2 X, we denote the expected response (outcome) by

Eðyjx; tÞ ¼ f ðx; tÞ
where t 2 fC;Tg indicates that the patient received the control or experimental treatment, respec-
tively. The outcome function can be modeled as f x; tð Þ ¼ h xð Þ þ lft¼Tgg xð Þ, where h is the prognostic
and g the predictive component, and 1f�g denotes the indicator function. The prognostic component
helps evaluate a patient’s outcome regardless of the treatment received and the predictive component
helps investigate treatment-modification properties of a given biomarker. Depending on the goal of a
subgroup search method, Lipkovich and Dmitrienko (2014a) distinguished between GOM, GTEM,
and LM methods. GOM methods rely on modeling the outcome function f. By contrast, global
treatment effect modeling methods focus on the treatment contrast z(x), which is defined, for example,
as zðxÞ ¼ f ðx;TÞ � f ðx;CÞ. If it is assumed that f can be decomposed in an prognostic and a predictive
term, as shown above, it follows that zðxÞ ¼ gðxÞ and the goal is to model the predictive component of
the expected patient’s response. Note that the treatment contrast can be defined on other scales,
e.g., as the log odds ratio logðf ðx;TÞ=ð1� f ðx;TÞÞ � logðf ðx;CÞ=ð1� f ðx;CÞÞ.

For single-arm trials, outcome and treatment effect modeling are equivalent and we categorized
the respective papers to the treatment effect modeling group. Examples include oncology trials where
the interest lies in comparing the response rates in biomarker-positive and biomarker-negative
patients who are assigned the same treatment.

Finally, the LM approach aims at a direct identification of patient subgroups with an enhanced
treatment effect, considering each subgroup separately to estimate treatment effects. Methods in this
class do not model the outcome function over the entire covariate space but construct treatment
effect estimates for individual subsets of the covariate space.

Beginning with GOM approaches, Chen et al. (2012) considered a Bayesian approach to search
for qualitative interactions in a regression setting with adaptive decision rules. Qualitative interac-
tions correspond to settings with subgroups where the treatment effect is reversed. The authors
investigated several model selection algorithms addressing the multiplicity problem inherent in the
selection of subgroups and consider continuous, binary, and time-to-event endpoints.

For the analysis of randomized single-stage clinical trials with longitudinal measurements,
Moineddin et al. (2008) investigated multi-level models including random effects to identify sub-
populations with differential treatment effects and applied the approach in a case study of a
treatment of postmenopausal women experiencing hot flashes.

Cai et al. (2011) considered generalized linear models to estimate the mean outcome given a
biomarker configuration x and treatment t with a two-stage estimation procedure. In the first stage,
the model

Eðyjx; tÞ ¼ φtðβ`t uðxÞÞ; t 2 fC;Tg;
where y denotes the patient’s response, x the biomarker configuration, u(x) a prognostic component,
and φt a smooth, strictly increasing link function, was fitted to estimate the unknown parameter
vector βt . Based on these estimates, patients were grouped into subgroups x : zðxÞ¼ vgf , where

zðxÞ ¼ φT β̂`T uðxÞ
� �

� φC β̂`C uðxÞ
� �

denotes the estimated treatment effects (to obtain subgroups of

sufficient size, one can create strata by segmenting all possible values of z(x) in intervals instead). In
the second stage, the average treatment difference for each subgroup was estimated via a nonpara-
metric function estimation method based on a local likelihood approach. It was pointed out that, if
the parametric model fails to hold, inference based on the first stage of the method might be invalid.
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However, the estimator constructed in the second stage is always a consistent estimator of the
average treatment effect in the selected subgroups, regardless of the adequacy of the first-stage
model.

Altstein et al. (2011) considered a parametric accelerated failure-time model for latent subgroup
analysis of a right-censored time-to-event endpoint. Latent subgroup analysis can be used whenever
subgroup membership is only observable in one arm of the trial. This occurs, for example, in
oncology trials when a biopsy is performed only on patients allocated to the experimental treatment
arm. For this setting, a general framework to estimate treatment effects in the latent subgroup was
developed.

Foster et al. (2011) proposed a two-stage method for trials with binary outcomes, called Virtual
Twins. In the first stage, random forests were used to estimate the patient-specific probabilities
Pðy ¼ 1 x; tj Þ; t 2 C;Tf g, defined as the probabilities of response for the treatment-control “twins”
with the biomarker configuration x. In the second stage, two alternative methods based on regression
trees and classification techniques were considered to define the subpopulation S of patients who
experienced enhanced treatment benefit. The authors defined a measure Q to quantify an enhanced
treatment effect in the subgroup S as follows

QðSÞ ¼ ðPðy ¼ 1 t ¼ T; x 2 Sj Þ � Pðy ¼ 1 t ¼ C; x 2 SÞÞ � pj
where p ¼ Pðy ¼ 1 t ¼ Tj Þ � Pðy ¼ 1 t ¼ Cj Þ is a measure of the average treatment effect in the
overall population. Several methods to estimate Q(S) were proposed.

Kovalchik et al. (2013) derived a framework based on a proportional interactions model, where all
treatment–biomarker interaction terms were assumed to be proportional to the main effects. To
avoid model misspecification, a selection strategy taking all possible proportional interaction models
into account was investigated. A modified Bonferroni correction for multiple testing was introduced.
Zhao et al. (2013) proposed a parametric scoring system based on a patient’s biomarker profile to
estimate patient-specific treatment differences. Subgroups with an enhanced treatment effect con-
sisted of patients whose estimated scores exceed a clinically relevant threshold.

Morita et al. (2014) compared two Bayesian trial designs, one based on subgroup analysis and the
other on regression models for analyzing progression-free survival time. Both methods estimate
Bayesian posterior probabilities of progression-free survival hazard ratios in the prespecified sub-
groups. For a setting where subgroups may be defined by several covariates, Varadhan and Wang
(2014) proposed standardized marginal interaction models. With this approach, separate regression
models for each covariate are fitted and, to account for confounding due to other covariates, the
observations are appropriately re-weighted.

Freidlin (2005) suggested a two-step approach including a subgroup identification procedure and
a subgroup evaluation step (adaptive signature design). Based on a logistic regression model, a
biomarker signature is identified to define a targeted subgroup to be investigated in the second step.
The design also allows for testing the treatment effect in the full population using data from both
stages; however, the subgroup constructed in the first step is only tested with data from the second
step. In Freidlin et al. (2010a) a cross-validated adaptive signature design was introduced as an
extension to the adaptive signature design. The extension optimizes the efficiency of both the
classifier development and the validation components of the design described above. The adaptive
signature design uses two non-overlapping subsamples and the cross validation procedure allows a
more efficient use of the trial population.

Several publications explored GTEM approaches in the context of subgroup identification. Jones
et al. (2011) investigated several proposals to apply Bayesian regression models and shrinkage
methods that directly estimate the treatment effect contrast. For a case study with eight subgroups
arising from three binary biomarkers, they compared a model with no subgroup effect, a fully
stratified model including all interaction terms, a simple regression model with first-order interac-
tions only, a simple regression model including shrinkage, as well as proposals of Dixon and Simon
(Dixon and Simon, 1991, 1992; Simon et al., 1996), where first-order interaction effects were
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assumed to be exchangeable (and no higher-order interaction terms exist) and an extension includ-
ing higher-order interaction terms.

Dusseldorp and Van Mechelen (2014) considered partitioning algorithms, termed qualitative
interaction trees, resulting in a binary tree to identify qualitative treatment-by-biomarker interac-
tions in the entire covariate space. At each partitioning step, a criterion which incorporates the
treatment effect difference between subgroups as well as the subgroup sizes was considered to refine
the subsets. A bootstrap algorithm was applied to prune the tree. Bonetti (2004) constructed
simultaneous confidence intervals for treatment effects in subgroups defined by a single continuous
covariate x 2 xmin; xmax½ �. The subgroups were defined by all patients for which the covariate
exceeded or fell below a certain subgroup-specific threshold, i.e., Si ¼ xi; xmax½ � or Si ¼ xmin; xi½ �,
where xi were pre-defined cutoffs. Alternatively, a “sliding window pattern” was proposed where the

subgroups were defined by intervals of the covariate. The treatment effect estimators θ̂i and
simultaneous confidence intervals were calculated within each subgroup. The authors developed

plots of the estimates θ̂i, termed subpopulation treatment effect pattern plots, together with their
confidence bands versus the mean of the covariate x in the subpopulation Si.

LM approaches were developed in Sivaganesan et al. (2011) who applied a Bayesian model
selection approach to investigate treatment-by-subgroup interactions. For each covariate, a separate
class of models was defined. Based on posterior probabilities computed for each model, inference on
subgroup effects was made. Frequentist Type I and Type II error rates were controlled by adjusting
the thresholds for the posterior probabilities.

Lipkovich et al. (2011) proposed a recursive partitioning algorithm called SIDES (Subgroup
Identification based on Differential Effect Search) to identify patient subgroups with a differential
treatment effect. The subgroups were defined using a step-wise procedure that started from the full
population and partitioned the subgroups into increasingly smaller sets. For each parent subgroup SP
and each covariate xi, two child subgroups, namely,

SLðxi; ciÞ ¼ x 2 SP : xi � cif g and SHðxi; ciÞ ¼ SPnSLðxi; ciÞ
were constructed and the cutoff ci was chosen by minimizing a prespecified splitting criterion.
Several types of splitting criteria were proposed, for example, a differential effect between the two
subgroups. The subgroup with the larger treatment effect was chosen as a candidate parent subgroup
in the subsequent step if it satisfied additional restrictions, including restrictions on the number of
child subgroups for a given parent, subgroup size, and magnitude of the treatment effect within the
subgroup (complexity control). Tuning parameters of the subgroup search procedure were selected
by cross-validation, and treatment effect p-values within the selected subgroups were adjusted to
control the probability of incorrect subgroup discovery. A two-stage version of the SIDES procedure,
known as the SIDEScreen procedure, was developed in Lipkovich and Dmitrienko (2014b). The first
stage of this procedure induced a biomarker screen which selected the most promising biomarkers
with high “variable importance”, defined as a summary measure of a biomarker’s predictive strength,
and the regular SIDES procedure was applied in the second stage to the restricted set of biomarkers.

A Bayesian tree-based approach was developed by Berger et al. (2014) to identify subgroup effects.
The subgroups were defined by the terminal nodes of the trees used to construct models for
treatment effects and baseline covariates (the latter used for modeling prognostic effects). The
model space consisted of all possible treatment and baseline regression models. Multiplicity adjust-
ment was implemented by selecting prior distributions for the models.

4.2. Response-adaptive designs

Several authors (Zhou et al., 2008; Lee et al., 2010; Eickhoff et al., 2010; Zhong et al., 2013)
investigated Bayesian adaptive designs where a global outcome model was applied to implement
adaptations of treatment allocation proportions based on each patient’s biomarker profiles. Zhou
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et al. (2008), for example, considered a sequential multi-arm trial where after each patient response
probabilities are estimated for each subgroup using a hierarchical Bayesian probit model. The
allocation ratios in the randomization procedure are continuously updated and set to be propor-
tional to the resulting current estimate of the response probabilities.

Berry et al. (2013) proposed a Bayesian hierarchical single-arm adaptive design for Phase II
oncology trials to identify subgroups with an enhanced treatment effect. For every prespecified
subgroup, they examined the hypothesis H0 : p � pl versus H1 : p � ph, where p denotes the rate of
tumor response and pl and ph are clinically relevant thresholds. They modelled the treatment effect
assuming the difference between the log-odds of response and log-odds of the targeted threshold rate
ph for each subgroup to be normally distributed with unknown mean μ and variance σ2. Following a
hierarchical model approach, the parameters μ and σ2 were assumed to be normally distributed. The
proposed adaptive design included frequent interim analyses and stops for futility in a specific
subgroup as soon as the posterior probability of a response rate larger than ðpl þ phÞ=2 fell below a
prespecified threshold. The design was compared to an adaptive design based on a (non-hierarch-
ical) Bayesian model that treats each subgroup separately and is similar to the Simon’s optimal two-
stage design.

Simon and Simon (2013) proposed statistical tests for response adaptive enrichment designs that
consist of the first stage where recruitment is not restricted and the second stage where the design
allows one to continuously adapt the subpopulation under investigation. The procedure controls the
Type I error rate for the test of the overall null hypothesis that no subpopulation benefits more from
treatment than control. Applications of the test procedure to adaptive threshold enrichment designs,
group sequential designs and several types of endpoints were discussed.

Gu et al. (2014) developed a Bayesian two-stage biomarker-based adaptive randomization design
in the setting of the BATTLE-2 trial in non-small cell lung cancer. Four treatment groups were
compared on the primary endpoint. In the first stage of the design, response adaptive randomization
based on available outcome data and the biomarker KRAS was performed. Then an interim analysis
with the option to stop treatment arms for futility was performed. Based on the first stage as well as
external data, a predictive model combining several biomarkers and other predictive variables was
derived. This model was then used in the second stage for a refined adaptive randomization
algorithm. Finally, treatment effects, marker effects and the interactions were estimated and tested
using data from both stages.

A further Bayesian approach for a subgroup based adaptive design, which utilized individual
biomarker profiles and clinical outcome as they become available, was described in Xu et al. (2014).
The main features of this design included the continuous re-classification of patient subgroups based
on a random partition model and the random allocation of patients to the best treatment arm based
on posterior predictive probabilities.

5. Clinical trial examples

In this section, we discuss selected case studies that were referred to in the methodological literature
reviewed above.

An example for an enrichment trial design (F1) is the ToGA trial (trastuzumab for gastric cancer)
(Bang et al., 2010), a multi–enter Phase III trial comparing trastuzumab (amonoclonal antibody
against human epidermal growth factor receptor) in combination with chemotherapy with che-
motherapy alone. Only patients with tumors showing overexpression of HER2 protein were con-
sidered for inclusion.

Examples for biomarker-stratified trials (F2) include the marker validation for erlotinib in the
lung cancer (MARVEL) trial and cancer and leukemia group B (CALGB)-30506 trial (Freidlin et al.,
2010b). In the MARVEL trial, patients were stratified by epidermal growth factor receptor gene
(EGFR) status as measured by fluorescent in situ hybridization (FISH). After stratification, patients
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were randomly assigned to erlotinib or pemetrexed. In the CALGB trial, patients were stratified by
the lung metagene score and randomly assigned to either chemotherapy or present standard of care.

The ERCC1 trial (Cobo et al., 2007) and TCA (Cree et al., 2007) ovarian cancer trial provide
examples for biomarker strategy trials (F3). In the ERCC1 trial, patients were randomized to control
or an biomarker strategy arm. Patients in the control arm received docetaxel and cisplatin (standard
of care). Participants in the biomarker strategy arm with low ERCC1 levels received docetaxel and
cisplatin, whereas patients with high ERCC1 levels received docetaxel and gemcitabine. In the TCA
(The Tumor Chemosensitivity Assay), ovarian cancer trial patients were randomized to a biomarker-
guided arm using a chemosensitivity assay that measured ATP levels in drug-treated cancer cells.

The BATTLE trial is an example for a Bayesian response adaptive trial (Zhou et al., 2008).
BATTLE is an umbrella trial consisting of four parallel Phase II studies. After a run-in phase,
patients were adaptively randomized based on their biomarker status to one of the investigated
treatments (Mandrekar and Sargent, 2011a).

Beckman et al. (2011) pointed out the importance of integrating biomarkers into clinical trials by,
among others, the following two examples. Gefitinib is an example of a treatment that initially failed
in the full population but was later shown to have a strong beneficial effect in patients with certain
mutations. An example where the target population was chosen too small is cetuximab, an antibody
directed against EGFR, which was expected to be effective only in patients with a certain biomarker
profile. It was later discovered that the eligibility criteria were too restrictive and cetuximab was
actually effective in a larger population. If however biomarkers are not predictive, including them in
clinical trials might increase the costs, complexity and duration of trials (Beckman et al., 2011). To
guarantee an efficient use of resources, exploratory clinical trials with analysis controlling false-
positive rates may be useful to choose promising candidate biomarkers which are then further
investigated in confirmatory clinical trials.

6. Discussion

In this review, we survey methodological papers investigating novel procedures to analyze the
heterogeneity of treatment effects across patient subgroups in clinical trials. The systematic search
was performed using medical statistics journals and, more generally, journals on clinical trial
methodology indexed in PubMed. While PubMed has only partial coverage of some of the statistical
journals considered, the choice of the PubMed database focused the search on methodological
literature relevant for medical applications. Since some relevant papers of interest may not be listed
in PubMed, we augmented the automated database search by including manuscripts from the list of
references in the identified manuscripts as well as papers discovered via manual searches in the
review.

Overall, we note that a broad range of methods have been developed for exploratory as well as
confirmatory subgroup analysis methods. Many different statistical tools and approaches have
demonstrated their utility, including multiple testing procedures, group-sequential and adaptive
clinical trial designs, regression models, Bayesian hierarchical models, decision-theoretic models,
machine learning algorithms (as, e.g., recursive partitioning), model selection algorithms, and
shrinkage estimation.

In the confirmatory setting, the requirement of FWER control gives a clear frame work and
facilitates the meaningful comparison of different approaches to trial design and analysis. However,
there is a diversity of objectives that may be addressed in confirmatory trials with respect to the
evaluation of treatment effects in relevant patient subgroups. There are several open issues where no
agreement on the required level of evidence has been reached. Consider, for example, the setting
where a treatment effect is claimed in the full population. Even though there is a broad consensus
that the influence condition needs to be addressed to ensure that the overall treatment effect is not
driven by a highly significant effect in a small subgroup, it is not clear how much evidence is
required to claim efficacy in the full population.
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In the exploratory setting, comparisons of available subgroup analysis/identification procedures
are quite challenging, since the general goals of subgroup search vary from one class of methods to
another. As an example, when considering a large number of potential subgroups in a typical
subgroup search problem, tackling the multiplicity problem is important to improve the reprodu-
cibility of the results. However, strong FWER control may not be a useful concept in subgroup
exploration as it leads to overly conservative procedures. Bayesian adjustments based on the concept
of shrinkage present a viable alternative to traditional multiple testing procedures and have proved
to be efficient tools in the subgroup identification setting, see Jones et al. (2011).

In this review, we focused on subgroups identified by biomarkers. Notably, the term enrichment
designs has been used also for similar types of designs applied in chronic pain studies. Recently,
Moore et al. (2015) identified 25 trials with such a design in chronic non-cancer pain. In these
studies, subgroups are not identified based on a baseline biomarker but based on a pain rating (a
surrogate variable) obtained during an initial open-label treatment with the drug under investiga-
tion. Because this surrogate variable is believed to be predictive for the treatment effect, only patients
responding to drug (and tolerating it) are included in the second part of the study and randomized
to the experimental drug or control. Strictly speaking, these so-called enriched enrollment rando-
mized withdrawal designs (McQuay et al., 2008; Straube et al., 2008) test the effect of withdrawal of
treatment. Alternatively, it has been proposed to treat all patients in an enrollment period with the
intended control treatment (placebo or active control). Non-responders to control treatment are
then identified, and this subpopulation is selected for randomization to new treatment or control, see
e.g. FDA (2012). Here the non-responsiveness to control is used as surrogate variable that defines the
study population of the randomized part of the study. An extension of this approach is provided by
Sequential Multiple Assignment Randomized Trials (SMART) that investigate adaptive intervention
schemes where treatment allocations at different treatment periods for an individual patient depend
on outcome variables measured during previous periods of the same patient, see e.g. Almirall et al.
(2012). Optimal treatment regimes and individualized treatment rules were developed in Zhang et al.
(2012) and Zhao et al. (2012).
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