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ABSTRACT: The wide-band limit is a commonly used
approximation to analyze transport through nanoscale devices.
In this work we investigate its applicability to the study of charge
and heat transport through molecular break junctions exposed
to voltage biases and temperature gradients. We find by
comparative simulations that while the wide-band-limit approx-
imation faithfully describes the long-time charge and heat
transport, it fails to characterize the short-time behavior of the
junction. In particular, we show that the charge current flowing
through the device shows a discontinuity when a temperature
gradient is applied, while the energy flow is discontinuous when
a voltage bias is switched on and even diverges when the junction is exposed to both a temperature gradient and a voltage bias.
We provide an explanation for this pathological behavior and propose two possible solutions to this problem.

1. INTRODUCTION

Over the last decades great effort has been spent to miniaturize
electric circuits. The goal is to realize the fundamental building
blocks of electronic circuits, such as transistors, on the scale of
single molecules. There has been great success in shrinking
electronic devices down experimentally. In order to understand
the properties of molecular break junctions, a quantum
mechanical description of the device is required. Perhaps the
most successful and widespread theory to describe how charge
flows through a nanoscale junction is the so-called Landauer−
Büttiker approach,1−3 which describes the charge transport as a
scattering problem. Essentially, the flow of charge through a
molecular junction is determined by the transmission function
of the devicedescribing how impinging electrons are
scatteredand the occupation function of the electrons in
the (metallic) leads connected to the junction.
In recent years there has been renewed interest in addressing

not only the charge flow but also the energy (or heat) flow
through nanoscale devices. Understanding how charge and
energy flow depend on voltage and temperature biases across
the device provides crucial insight for the development of
thermoelectric circuits, which could be used to convert waste
heat into useful electric energy.4,5 Furthermore, recent
experiments demonstrate that local temperatures in nanoscale
conductors can be measured with a spatial resolution of tens of
nanometers.6,7 A common path to address the effect of
temperature gradients across the nanoscale device is to allow
for different temperatures in the occupation functions
characterizing the leads in the Landauer−Büttiker formula.
Conceptually this can only be justified if the leads are

considered to be disconnected from the device initially
(partitioned approach). This artificial partitioning of the
system, however, is problematic, for it assumes that it is
possible to perfectly decouple the leads from the molecular
junctiona rather optimistic assumption if one considers
atomic-scale devices. For times much larger than the typical
time scale of molecular break junctions, which are on the order
of femtoseconds,8−11 the assumption of a decoupled initial state
does not play a crucial role. However, for transient dynamics
the initial state matters. As pump−probe experiments are now
able to investigate phenomena happening at this time scale12−15

it is important to properly describe the initial state.
An alternative to the partitioned approach is to couple the

device and leads at all times and trigger the charge flow by
switching a potential bias.16 This partition-f ree approach leads
to the same steady state as the partitioned approach, but the
transient dynamics of the device will, in general, be different.17

The advantage of the partition-free approach is that the
transient charge and energy/heat flows are not spoiled by the
dynamics induced by connecting leads and device, because the
electronic states in the device are allowed to hybridize with the
leads before any temperature or voltage bias is applied.
Importantly, it is also possible to take into account temperature
differences in the leads within the partition-free approach: We
consider a thermomechanical potential, which couples to the
local energy density of the systemmuch like the usual electric
potential couples to the charge density.18 This thermomechan-
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ical potential acts as mechanical “proxy”19 for local temperature
variations. An intuitive way to understand this is to consider the
occupation function, which is determined from the ratio of the
energy and the temperature. Accordingly, a change in
occupations due to a change in temperature can alternatively
be viewed as a change in energy keeping the temperature fixed.
The thermomechanical potential rescales the energy locally,
thereby mimicking a locally varying temperature. Applying this
idea in the context of transport means that different
temperatures in the leads are described by rescaling the
bandwidth of the leads.20

A widespread simplification used to describe transport
through nano junctions is the so-called wide-band limit
(WBL). The WBL assumes that the detailed structure of the
density of states in the leads is not important for the description
of transport, which substantially simplifies computations. The
WBL for charge transport is justified when the bandwidth is
large compared to the applied bias.21−27 An important
requirement for the WBL is that it should not induce any
spurious, unphysical dynamics. Its only purpose is to allow for
an efficient description of dynamics in large scale open
quantum systems.
In this work we investigate whether the WBL can be

employed in conjunction with the thermomechanical potential.
An immediate question that comes to mind is: What is the
meaning of rescaling an infinite band? In the following we will
show that the steady state is well described in the WBL,
provided the WBL is taken properly. The transient currents,
however, exhibit peculiarities at short times. Specifically, we see
that the charge current jumps at the initial time when the device
is exposed to a temperature gradient and, similarly, the heat
current behaves discontinuously when a voltage bias, but no
temperature bias, is switched on. Even more dramatically, the
heat current diverges as (t − t0)

−1, with t0 being the time at
which a temperature and charge bias are applied to the system.
By comparing the WBL transient charge and heat currents to
results obtained at finite bandwidth, we highlight that this
pathological behavior of the WBL can be attributed to the fact
thatat short timesthe natural cutoff, provided by the finite
bandwidth, plays a crucial role for the dynamics.

2. MODEL AND METHOD

We consider a simple tight-binding model Hamiltonian to
describe a molecular break junction. A single molecular level is
connected to two metallic leads (cf. sketch in Figure 1). The
Hamiltonian reads

∑

∑
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where ϵc is the energy of the molecular level, ϕ̂αk
† and ϕ̂αk are

the field operators of the leads, with α = L(eft),R(ight) and k
labels the basis functions in the leads, and ϕ̂c

†, ϕ̂c representing
the field operators associated with the molecular level. The
matrix elements V(αk)c = [Vc(αk)]

★ take the coupling between
the molecular level and the leads into account. In the following
we will drop the subscript “c” of V(αk)c, since we are only
considering a single site. The leads are modeled as non-
interacting one-dimensional tight-binding chains, i.e., the
dispersion of the electrons in the leads is given by

ϵ = − +α α αt k c2 cos( )k (2)

where tα is the nearest neighbor hopping in lead α, yielding a
bandwidth of 4tα. The energy cα corresponds to the center of
the band of the lead α; that is, it determines the alignment of
the band with respect to the chemical potential, which we take
to be at zero energy. Finally the hopping to the central site is
Vαk = Vα sin(k). This picture may be extended to more
complicated lead structures and couplings.28 The embedding
self-energy due to lead α is then given by
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with gαk
R/A(z) being the retarded/advanced Green’s function of

the isolated lead α. The function S(z) is given by

= − − +S z z z z( ) 1 1 (4)

where the character of the function S(z), i.e., whether it is the
advanced or retarded self-energy, is determined by the sign of
the imaginary part of z. The function S(z) has a branch cut on
the real axis from z = −1→ z = 1. The Green’s function for the
molecular level is then simply given by
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The inverse of the imaginary part of the self-energy yields a
finite lifetime for the quasi-particles in the molecular junction,
and the real part of the self-energy shifts the energy of the
quasi-particles.
The WBL is defined as the limit tα →∞ (infinite bandwidth)

while keeping the ratio |Vα|
2/tα, which corresponds to the decay

rate into lead α, constant. Expanding the expression of the self-
energy for large tα, we obtain

Σ = ∓
| |

= ∓
Γ

α
α

α
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V
t

i[ ( )]
2
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WBL

2

(6)

where the ∓ sign refers to the retarded/advanced self-energy,
respectively. As we can see from this expression, the only effect
of the leads is to provide a decay-mechanism for the quasi-
particles.

Figure 1. Molecular break junction: Schematic representation of the
system considered in this work. A single impurity site, representing a
molecular level with energy ϵc, is coupled via hopping amplitudes Vα to
metallic leads with a bandwidth 4tα (α = R,L). Charge and energy flow
is triggered by applying a potential bias Uα to the leads and/or
changing the temperature Tα in the leads.
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Expressing the field operators ϕ̂ in the Heisenberg picture
and using their equations of motion, the charge and heat
currents are given by20,29−31
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Note that we define the heat current Qα as the temporal change
in the energy within the leads plus half the coupling energy.32

Since we are working in the partition-free approach our initial
state is described by a grand canonical ensemble determined by
the global chemical potential μ and the (inverse) temperature
β. Without loss of generality we can assume that the chemical
potential defines the zero in energy, which implies that in
definition 7b the energy flow due to the convective motion of
the electrons is properly accounted for; that is, the shift Qα →
Qα − μIα does not change the heat current. All energy levels in
our model are measured with respect to the chemical potential.

3. TRANSPORT SETUP
In this work, we investigate the validity of the WBL in the case
of dynamical heat and charge transport in the junction
described in the previous section. Once a nonequilibrium
situation is created by applying a potential bias and/or
temperature gradient, transient dynamics will take place and
electrons will move, resulting in charge and heat currents
flowing across the junction. We focus on the specific cases of
quenches; that is, the electric and thermomechanical potentials
suddenly change at a certain time t0. Transient dynamics
induced by changing the potentialsoccur on the order of a
characteristic time scale τ given by the inverse of the decay rate
due to the leads, i.e.,

∑τ =
α

α

α

− V
t

1
2

(8)

For times t ≫ τ the junction will reach a steady state. We
choose the hopping VL = VR = V as our unit of energy: the
molecular energy level is taken to be at ϵc = 0.2V, the nearest
neighbor hopping of the leads tL = tR = 5V, the chemical
potential defines the zero of the energy, the centers of the band
of the leads are aligned with it (cα = μ = 0), and the (inverse)
temperature β = (kBT0)

−1 = 100V−1.
For t < t0 the system is taken to be in thermal equilibrium at

temperature T0. In order to induce a charge current, the left
lead is shifted up in energy by U = 2V for t ≥ t0; that is, the
energy dispersion of the left lead is given by
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In order to describe a temperature gradient across the
junctionin addition to the potential biaswe apply a

thermomechanical potential ψ = =−α 1T T
T

0

0
in the left lead,

which rescales the bandwidth for t ≥ t0. This thermomechanical
potential effectively doubles the temperature in the left lead:

ψ
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Figure 2 sketches of the molecular junction in the initial
equilibrium and in the steady-state limit, showing that in the

steady-state the energy dispersion of the left lead is broadened
by a factor of 2. In Figure 3 we depict the time-dependent

charge and heat currents through the molecular junction. In this
calculation, both a charge bias and a temperature gradient are
applied across the junction and we observe fast transient
oscillation of the currents on the time scale τ followed by a
saturation to a steady current.

4. RESULTS
In order to test the WBL we compute the time-dependent
charge and heat currents flowing from the leads into the
impurity in the WBL and compare the results to calculations
taking the full frequency dependence of the lead self-energy [cf.
eq 4 and Figure 3] into account. Specifically, we rescale the
bandwidth of the leads, making it effectively wider, while
keeping the ratio |Vα|

2/tα constant. Hence, we use

Figure 2. Comparison of initial and steady state: (A) Initial state of the
junction. The leads−molecule system is equilibrated at a unique
temperature T0 and chemical potential μ (represented by the dashed
horizontal line). (B) Graphical representation of the steady state. At t0
a thermomechanical potential and the potential bias is applied. This
results in a steady state in which the occupation function of the left
lead corresponds to a Fermi function with TL = 2T0 and μL = μ + UL.

Figure 3. Charge and heat currents: Transient charge (Iα) and heat
currents (Qα) flowing between the left lead (α = L) and the right lead
(α = R) and the molecular junction, respectively. The results are
obtained taking into account the full frequency dependence of the
embedding self-energy. The currents are triggered by a sudden change
in the temperature and potential in the left lead at t0 = 0.
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λ λ= =α
λ

α α
λ

αV V t t, (11)

with a rescaling factor λ, which allows us to approach the WBL
as λ → ∞. We focus on two different scenarios: (1) A situation
where only a potential bias is applied to the left lead [cf. eq 9],
(2) A situation where both a potential bias and a temperature
difference are applied across the junction [cf. eq 10]. The
numerical algorithm to compute the transient currentstaking
the full frequency dependence of the embedding self-energy
into accounthas already been discussed in ref 33. In the
following we refer to these results as the “full” calculation. Very
recently progress has been made in evaluating the time-
dependent currents in tight-binding models within the WBL
analytically.34,35 It turns out that this is also possible if a
thermomechanical potentialdescribing temperature gra-
dientsis present. Accordingly, all WBL results are obtained
analytically. The explicit derivation of the analytical expression
will be presented elsewhere.
Steady State Currents. For times much longer than the

characteristic lifetime τ the system reaches a steady state. In
general we find that the steady state currents obtained in the
WBL coincide with the results of the full calculation when the
scaling factor λ is increased. However, there is a subtle point in
the evaluation of the heat current in the steady state: it turns
out to be crucial to take the WBL at the end of the calculation
and not inside the integral defining the steady state current. The
difference between taking the WBL inside the integral and
taking the WBL after performing the integral is only present if
two leads at different temperatures are connected to the same
state in the device. This is trivially the case for a molecular
junction modeled by a single site. We present a careful
derivation in Appendix B showing that the order of limits
matters.
Transient Charge Current. The transient charge induced

by a potential bias alone is nicely reproduced in the WBL [cf.
Appendix A for the corresponding plots]. This is consistent
with earlier studies of the transient charge dynamics in
nanoscale junctions.21,25 If a temperature gradientin addition
to the potential biasis applied, the charge current exhibits a
jump at the initial time but otherwise represents the full
calculation for times t ≳ τ. In Figure 4 we depict the charge
current for t ≪ τ (a plot of Iα for t ≳ τ is provided in Appendix
A). It can be shown analytically that the jump, ΔIα, at the initial
time is proportional to

Δ ∝ ̅ − ̅
̅α α

α

α

α

α

⎛
⎝⎜

⎞
⎠⎟I V

V
t

V
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where the hopping amplitude inside the leads for t < t0 is
denoted by tα and that for t ≥ t0 is denoted by tα̅. Similarly, we
could write the coupling between lead α and the molecular
region as Vα before t0 and V̅α afterward. In our setup the
couplings are held constant at all times, i.e., V̅α = Vα, and the
temperature gradient is mimicked by changing the hopping
inside the leads as discussed in section 3. Specifically, from eq
10 we have tL̅ = (1 + ψ)tL, which means that the charge current
has a finite jump when a temperature gradient is applied across
the molecular junction. Equation 12, however, suggests that the
jump can be avoided if the temperature bias is mimicked by
scaling the couplings Vα in the same way as the hopping inside
the leads. This would imply that V̅α/ tα̅ = Vα/ tα, which is
sufficient to make ΔIα vanish even in the presence of a
temperature gradient. We stress that this cannot be achieved in

the partitioned approach, because Vα is zero by definition for t
< t0 if the system is initially decoupled.

Transient Heat Current. Turning to the transient heat
current we find that if only a potential bias is applied, the heat
current of the full calculation is reproduced in the WBL for
times t ≳ τ but exhibits a jump at t0. The short time behavior t
≪ τ is depicted in Figure 5 (cf. Appendix A for t ≳ τ). Similar

to the case of the charge current induced by a temperature
gradient, we can see that the WBL approximates a discontinuity
at t0 in the limit λ → ∞ in the full calculation. Again, the heat
current in the full calculation always vanishes as t → t0, but the
WBL leads to a finite step in the heat current already in the
presence of only a potential bias. In contrast to the charge
current it is not possible to extract a simple expression as eq 12,
but instead the jump depends on the details of the molecular
junction, i.e., on the quasi-particle energy levels.
If a temperature gradient is applied across the junction the

heat current flowing from the left lead into the molecule
depends strongly on the bandwidth for short times, even in the
full calculation. In Figure 6 we can see that the heat current

Figure 4. Short-time dynamics of charge current: Time-dependent
charge current flowing from the left lead to the impurity under the
influence of a potential bias and a temperature gradient. The full
calculation approaches the WBL result as the scaling factor increases.
However, there is an apparent discontinuity developing at t = 0 for λ
→ ∞. While in the full calculation the charge current always vanishes
for t → 0, in the WBL a finite value is obtained.

Figure 5. Transient heat current driven by a potential bias: Similar to
the case of a charge current driven by a temperature gradient [cf.
Figure 4] in the limit of infinite bandwidth, λ → ∞, the heat current
develops a step at t0. This means that the heat currents in the WBL
tend to a finite value.
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oscillates strongly for t ≲ τ with a frequency proportional to the
bandwidth (which, in turn, is proportional to λ). These
oscillations correspond to transitions between the band edges
of the leads and have already been observed in ref 33. In the
WBL these oscillations are absent since there are no band
edges, but instead the heat current diverges as

∼ ̅ − ̅
̅ −α α

α

α

α

α

⎛
⎝⎜

⎞
⎠⎟Q V

V
t

V
t t t

1

0 (13)

In the partition-free approach this divergence can be tamed by
rescaling the couplings Vα in the same way as tα, i.e., by
applying the thermomechanical potential not only inside the
leads but also on the boundary of the junction. It turns out,
however, that the subleading order for the heat current exhibits
a logarithmic divergence as t → t0. This is shown in Figure 7,
where we compare the transient charge and heat currents in the
WBL scaling only the hopping inside the leads (I) and scaling
also the coupling to the impurity (II). We can see that the
charge current starts from zero for both leads if also the
coupling VL is rescaled with the temperature, but it exhibits a
finite jump in the lead where the temperature is changed if the
temperature only rescales the hopping inside the lead. For the

heat current we see that currents in all leads exhibit a
logarithmic divergence as t → t0 if both tα and Vα are rescaled
due to the change in temperature. If only tα is rescaled, we see
the aforementioned (t − t0)

−1 divergence.

5. DISCUSSION AND CONCLUSION
In this work we have carefully examined the WBL for the
transient and steady-state charge and heat currents through a
molecular break junction. While we find that the long-time
dynamics are faithfully captured in the WBL, at short times the
WBL deviates considerably from a calculation taking the full
frequency dependence of the embedding self-energy into
account. This can be understood intuitively by considering
that short times imply a wide spread in energy, and therefore,
the dynamics will be sensitive to whether the self-energies have
a high frequency cutoff (or decay) or whether they are constant
for all frequencies. Specifically we have shown that the charge
current induced by a temperature gradient and the heat current
induced by a potential bias exhibit an unphysical jump at the
initial time, when the system is suddenly quenched. Even more
dramatically, the heat current diverges shortly after the quench
if in addition to the potential bias also a temperature gradient is
applied to the system. We have shown that these unphysical

Figure 6. Heat current induced by temperature gradient: (A) Transient heat current for time comparable to the quasi-particle lifetime driven by a
potential bias and a temperature gradient. For t ≳ τ the WBL reproduces the full calculations. (B) Transient heat current for t≪ τ. The heat current
in the full calculation exhibits a sharp spike which increases in height and gets closer to t0 as the bandwidth, which is proportional to λ, increases. The
WBL results diverge as (t − t0)

−1.

Figure 7. Fixing the short-time behavior of the currents: (A) Transient charge current for times comparable to the quasi-particle lifetime driven by a
potential bias and a temperature gradient. (B) Transient heat current. In both panels we compare the WBL results obtained by applying the
thermomechanical potential only inside the leads (I) to the WBL currents obtained by applying the thermomechanical potential also to the coupling
between the leads and the device (II). The currents are normalized by their respective steady-state limit.
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behaviors of the charge and heat current due to a temperature
quench can be mitigated by considering that the temperature
change affects not only the metallic leads but also the boundary
between the leads and the molecular junction. Since, in
practice, this boundary is not sharply defined, we consider this a
legitimate fix for the WBL. We stress that this fix can only be
applied in the partition-free approach to the transport problem,
i.e., when the coupling between the metallic lead and the
molecular junction is already taken into account in the initial
state of the system (before the quench). While this fix renders
the charge current physical, in the sense that the initial current
vanishes, the divergence in the heat current remains but is only
logarithmic.
In order to address this, we see two possible solutions:

(1) In an actual experiment temperature gradients and
potential biases will never be switched on infinitely fast,
so a description as a sudden quench is questionableto
say the leastconsidering short time transient dynamics.
It seems plausible that a sufficiently smooth continuous
switching will lead to a physical result (zero initial charge
and heat currents). However, from a mathematical point
of view any kind of switch-on process should be
representable in terms of a sequence of quenches.36 In
fact, the (t − t0)

−1 divergence implies that making the
intervals of the quenches shorter and shorter will not
lead to a continuous heat current. Furthermore, we
emphasize that even if experimentally realizable switching
times are longer than the time scale at which we see the
pathological behavior of the heat current, the typical time
scale for transient dynamics is given by the (inverse) of
maximal spread of energy levels in the nanoscale
junction. The length of the required time steps to
resolve such dynamics in a numerical propagation
scheme is indeed comparable to the time interval of
the problematic behavior observed in our simulations.

(2) The second possible “solution” concerns the very
definition of the energy or heat current between the
leads and the device.29−31 In this work, the heat current
Qα has been defined as the change in time of the internal
energy of the leads plus half of the coupling energy.
Alternatively, the energy current Jα from a certain lead α
could be defined excluding the energy associated with the
coupling to the device. The divergence at small times is
due to the internal energy of the leads, which occurs in

both the energy (Jα) and the heat current (Qα).
However, there is yet another possible definition of the
energy flowing between the leads and the device; that is,
we can define an energy current, Eα, via the change of the
energy stored in the device itself excluding the coupling.
This leads to an expression ∂t⟨H⟩ = ∑αEα, where ⟨H⟩ is
the expectation value of the energy inside the junction
excluding the coupling energy due to the attached leads.
For a simple one-site model we have trivially Eα = ϵcIα;
that is, the new energy current is proportional to the
charge current. However, for a multistate device region,
this is not necessarily the case. From the perspective of
the leads we could alternatively say that the energy of the
leads, whose rate of change defines the energy current
associated with each lead [cf. eq 7b], is defined as the
internal energy of the leads plus the entire energy
associated with the coupling between the lead and the
device.

We point out that from a numerical point of view it would be
highly desirable to employ the WBL to compute transient
charge and heat currents, because it affords an analytical
solution in terms of the quasi-particle states and energies in the
molecular device. Harnessing this analytical solution would
allow for an efficient simulation of mesoscopic devices. An
approach somewhat intermediate between taking the full
frequency dependence of the self-energy into account and the
WBL could be to approximate the self-energies by Lorentzians,
which provide a self-energy with the proper decay at high
frequencies while allowing also for a (semi)analytic solution of
the transport problem.22,24

In this work we only consider the noninteracting case.
Through the Keldysh formalism37−39 a generalization of the
Landauer−Büttiker formula for interacting electrons is also
possible.40 There is a very interesting alternative approach for
tackling the interacting transport problem using time-depend-
ent density-functional theory (TD-DFT),41,42 where the
interacting problem is mapped onto a fictitious noninteracting
problem. This implies that the Landauer−Büttiker formula
applies. The effect of the electron−electron interaction is taken
into account via an effective potential, which renormalizes the
effective bias driving the charge flow.43−45 Furthermore, the
coupling to a thermomechanical potential can be used to
generalize TD-DFT to allow for a direct description of charge
and energy flow.46,47 We are confident that the combination of

Figure 8. Time-dependent charge current flowing from the left lead to the impurity when only a potential bias is applied. The left panel shows the
current for times comparable to τ, while the right panel depicts the transient current at t ≪ τ.
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these approaches holds promise for studying the transient
charge and energy flow in large molecular junctions for
interacting systems.

■ APPENDIX A: ADDITIONAL PLOTS FOR THE
TRANSIENT CURRENTS

In this appendix we provide additional plots comparing the full
results to the WBL. Figure 8 shows the transient charge
currents for times comparable to the quasi-particle lifetime τ
(left panel) and for very short times (right panel). It clearly
shows that the WBL represents the λ → ∞ limit of the full
calculation.
Figure 9 shows the charge and heat current for times

comparable to the quasi-particle lifetime. The charge current is
shown for the second scenario, i.e., when a potential bias and a
temperature gradient is applied. The heat current is shown for
the first scenario, i.e., when only a potential bias is applied at t0.
We see that in both cases the WBL currents correspond to the
λ → ∞ currents obtained in the full calculation for times t ≥ t0.
However, in the WBL both currents approach a finite value for
t → 0 as discussed in section 4.

■ APPENDIX B: DERIVATION OF THE STEADY-STATE
ENERGY CURRENT

Here we present the analytical evaluation for the steady-state
energy current discussed in section 4. In our derivation we
consider a generic Hamiltonian of the form

∑

∑

ϕ ϕ

ϕ ϕ

Φ Φ

Φ Φ

̂ = ̂ · ̲ · ̂ + ϵ ̂ ̂

+ ̂ · ̂ + ̂ · ̂
α

α α α

α
α α α α

† †

† † †

H

V V

H

( )

k
k k k

k
k k k k

(14)

which is the generalization of the Hamiltonian introduced in
section 2, eq 1 to multiple states in the molecular junction. We
denote vectors in the single-particle state space of the impurity
by bold symbols, e.g., Φ or Vαk, and matrices by underlined
bold symbols, e.g., H. In the WBL the retarded (R) and
advanced (A) Green’s function are given by

∑
ω

̲ =
−

†
G

R A
z

z
( )

n

n n

n

R

(15a)

∑
ω

̲ =
−

†

★G
A R

z
z

( )
m

m m

m

A

(15b)

The vectors Rn are the right eigenvectors of the retarded
eigenproblem and the vectors Am are the right eigenvectors to
the corresponding advanced eigenproblem, i.e.,

ωΓ̲ − ̲ · =⎜ ⎟
⎛
⎝

⎞
⎠H R Ri

1
2 n n n (16a)

ωΓ̲ + ̲ · = ★⎜ ⎟
⎛
⎝

⎞
⎠H A Ai

1
2 n m m (16b)

They are normalized by requiring Am
† ·Rn = δnm. The Landauer−

Büttiker formula for the energy current explicitly reads

∫∑ ∑
π

ω ω

Γ Γ= · ̲ · · ̲ · × ϵ ϵ

ϵ − ϵ
ϵ − ϵ −

α
α

α α

α α

′

† †
′

−∞

∞

′ ★

R R A AJ i
i

f f

d
2

[ ( ) ( )]
1 1

nm
m n n m

n m (17)

where we introduced the short hand ϵ = ϵ −α
β
β α
α U( ), with βα

being the (inverse) temperature, and Uα the potential in lead α
(note that βα/β = [1 + ψα]

−1). Using the representation of the
Fermi function in terms of a Matsubara summation, i.e.,

∑
β

= −
−

f z
z iz

( )
1
2

1 1

f f (18)

with the Matsubara poles zf = (2f + 1)π/β, we arrive at

∑ ∑ Γ Γ= − · ̲ · · ̲ · × −α
α

α α
α α

′

† †
′

′R R A AJ i C C[ ]
nm
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with

∫∑
β π ω ω

= ϵ ϵ
ϵ − ϵ − ϵ −

α
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i iz

1 d
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ω
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Figure 9. (left panel) Time-dependent charge current flowing from the left lead to the impurity when a potential bias and temperature gradient are
applied across the junction. (right panel) Heat current induced by applying a potential bias only.
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we can further decompose

ω ω
=

−
+α α α

★
★C F F

1
[ ( ) ]nm

n m
n m

(22a)

∫∑ω
β π ω
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i iz
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2
1 1

n n
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The integral can be evaluated by closing the integration contour
in the upper half of the complex plane, leading to

∑ω
β ω

=
−

α

α>

F
iz

1 1
n n

f f n0 (23)

The sum (eq 23) does not converge, but it can be combined
with the corresponding sum from Cnm

α′ , i.e.,

∑
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Expression 24 can be summed explicitly using

∑
β − −

=
− − −

−> iz x iz y
D x D y
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where we defined
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in terms of the Digamma function ψ0(z). This leads to the final
result
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where we used that [D(z)]★ = −D(−z★), which follows from
[ψ0(z)]

★ = ψ0(z
★), we can see that the expression for the

energy current is a real number.
In the derivation presented above we have replaced the

frequency dependent self-energies by the frequency independ-
ent WBL approximation inside the integrand. In the following
we will repeat the calculation keeping a “minimal” frequency
dependence, i.e.,

λ
λ

Σ Γ̲ ϵ ≈ ̲
ϵ ±α α i

( )
1
2

R/A

(28)

which reduces to the WBL as λ → ∞. Only at the end of the
calculation, the limit λ → ∞ is taken. Equation 28 implies that
in the integral for Fn

α we have an additional factor of
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Accordingly, we have
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Now we use
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to arrive at
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From the asymptotic expansion of the Digamma function,
ψ0(z) ∼ log(z), it follows that
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which, in turn, leads to the asymptotic expansion
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Combining the terms due to the different leads yields

ω ω ω
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Equation 35 does not depend on λ anymore, and we can safely
take the limit λ → ∞, because the neglected terms in the
asymptotic expansion are of order λ−1. Plugging eq 35 into eqs
22a and 19 finally gives
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The first term corresponds to the result when taking the WBL
inside the integral. The second term is the correction if, instead,
the WBL is taken after the integration. This correction term
vanishes if there is no temperature gradient between the leads.
Furthermore, it vanishes if the coupling matrices do not overlap
in the single-particle state space of the molecular Hamiltonian.
In the results presented in this work this correction is crucial in
order to reproduce the steady-state heat currents in the WBL.
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