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Abstract: Normal hematopoietic function is maintained by a well-controlled balance of
myelomonocytic, megaerythroid and lymphoid progenitor cell populations which may be skewed
during pathologic conditions. Using semisolid in vitro cultures supporting the growth of
myelomonocytic (CFU-GM) and erythroid (BFU-E) colonies, we investigated skewed differentiation
towards the myelomonocytic over erythroid commitment in 81 patients with myelofibrosis (MF). MF
patients had significantly increased numbers of circulating CFU-GM and BFU-E. Myelomonocytic
skewing as indicated by a CFU-GM/BFU-E ratio≥ 1 was found in 26/81 (32%) MF patients as compared
to 1/98 (1%) in normal individuals. Patients with myelomonocytic skewing as compared to patients
without skewing had higher white blood cell and blast cell counts, more frequent leukoerythroblastic
features, but lower hemoglobin levels and platelet counts. The presence of myelomonocytic skewing
was associated with a higher frequency of additional mutations, particularly in genes of the epigenetic
and/or splicing machinery, and a significantly shorter survival (46 vs. 138 mo, p < 0.001). The results of
this study show that the in vitro detection of myelomonocytic skewing can discriminate subgroups of
patients with MF with a different phenotype, a different mutational profile and a different prognosis.
Our findings may be important for the understanding and management of MF.
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1. Introduction

Normal hematopoietic function is maintained by a well-controlled balance of myelomonocytic,
megaerythroid and lymphoid progenitor cell populations. This balance may be skewed during
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pathologic conditions such as hematological malignancies, infections and autoimmunity [1–7].
Moreover, skewed hematopoiesis can be found in aged hematopoiesis [8]. Since semisolid in vitro
cultures from peripheral blood mononuclear cells (PBMNC) of normal individuals usually contain a
higher concentration of erythroid colonies (BFU-E), as compared to myelomonocytic colony-forming
units (CFU-GM), this test may be useful for investigating skewed differentiation towards the
myelomonocytic over erythroid commitment in patients [9]. In addition to genomic analyses, in vitro
cultures may provide functional information and may help to more comprehensively characterize
disturbed hematopoiesis in clonal hematologic disorders [9].

Patients with myelofibrosis (MF) have aberrant hematopoiesis due to molecular aberrations in a
number of genes, including JAK2, CALR and MPL [10]. Moreover, analysis of the mutational landscapes
of patients has shown that additional mutations can be found in a subset of patients and some of them,
such as ASXL1, SRSF2, EZH2, IDH1/2 or U2AF1, predicted an inferior outcome [11,12]. The role of
myelomonocytic skewing in patients with myelofibrosis has not been studied so far. Our aim was to
study the role of myelomonocytic skewing in patients with myelofibrosis.

2. Results

2.1. Progenitor Cells in Patients with MF

In 81 patients with MF in vitro cultures were performed. The median numbers of myeloid and
erythroid progenitor cells were significantly higher in the study patients than in the 98 healthy controls.
The median CFU-GM was 1734/mL blood (range 47–115,467) and the median BFU-E was 2145/mL
(11–34,776) (Figure 1, Table S1). The control group (n = 98) had a median CFU-GM of 202/mL blood
(range 34–1413) and BFU-E of 735/mL (135–2779). The difference between the numbers in MF patients
and in the control group was significant for both progenitor cell classes (CFU-GM, p < 0.001; BFU-E,
p = 0.014). In the 81 MF patients studied there was a subgroup of patients in whom the number of
CFU-GM exceeded the number of BFU-E. This myelomonocytic skewing as indicated by an inverse
ratio of BFU-E/CFU-GM was found in 26/81 (32%) of patients with MF, whereas this phenomenon
was rare in normal individuals (1/98, 1%). Figure 2a,b show the boxplots for circulating CFU-GM
and BFU-E, respectively, in both subgroups. In patients with myelomonocytic skewing, the median
CFU-GM was 8350/mL blood (range 1026–98,344) as compared to 910/mL (47–28,761) in patients
without skewing (p < 0.001). The opposite changes were found in circulating erythroid progenitor
cells, with a median number of 1234/mL (11–28,897) in patients with skewing, as compared to 2545/mL
(94–34,776) in patients without skewing (p = 0.005).
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Figure 1. Box plots showing the distribution of circulating colony-forming units- granulocyte/macrophage
(CFU-GM) (a) and burst-forming units-erythroid (BFU-E) (b) in patients with myelofibrosis and normal
controls including median values, minimum values, maximum values, as well as upper and lower
quartiles, respectively. Cultures were plated in duplicates at 100 × 103 peripheral blood mononuclear
cells (PBMNC)/mL. Aggregates with more than 40 translucent, dispersed cells were counted as CFU-GM.
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Bursts containing more than 100 red colored cells were scored as BFU-E. Progenitor cell data are
expressed as mean values from duplicate cultures.
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Figure 2. Box plots showing the distribution of circulating CFU-GM (a) and BFU-E (b) in patients with
myelofibrosis with and without myelomonocytic skewing, including median values, minimum values,
maximum values, as well as upper and lower quartiles, respectively.

2.2. Phenotype of MF Patients with and without Myelomonocytic Skewing

As shown in Table 1, there were pronounced differences in the phenotype of patients with
and without myelomonocytic skewing. Patients with myelomonocytic skewing had higher white
blood cells (WBC) and blast cell counts in PB, more frequent leukoerythroblastic features but lower
hemoglobin levels and platelet counts, respectively, as compared to patients without skewing. The
absolute monocyte count (AMC) was not statistically different in both groups, and the proportion of
patients with an AMC ≥ 109/L was 11% (6/55) in patients without skewing as compared to 23% (6/26)
in patients with skewing (p = 0.150). Figure 3 shows the survival curves of the 4 prognostic categories
that were shown to predict survival in primary myelofibrosis by the International Working Group for
Myeloproliferative Neoplasms Research and Treatment [13]. As one can see, the Dynamic International
Prognostic Scoring System significantly discriminated four risk categories in our study, suggesting that
the total patient cohort which was used in our study was representative regarding prognosis. When
the two subgroups were analyzed separately, the proportion of patients within intermediate-2 and
high-risk groups was significantly higher (58%) in patients with myelomonocytic skewing as compared
to patients without an CFU-GM/BFU-E ratio ≥ 1 (16%).

Table 1. Phenotypic characteristics of 81 patients with myelofibrosis stratified by whether or not they
had myelomonocytic skewing in semisolid cultures.

Variables All MF Patients
(n = 81)

MF Patients with
Myelomonocytic
Skewing (n = 26)

MF Patients
without

Myelomonocytic
Skewing (n = 55)

p-Value

Age in years; median
(range) 66.0 (25–88) 69 (42–86) 64 (25–88) 0.116

Sex (Male); n (%) 45/81 (56%) 18/26 (69%) 27/55 (49%) 0.089

WBC × 109/L; median
(range)

8.4 (2.4–96) 12.1 (3.1–96) 8.2 (2.4–44.7) 0.036

Hemoglobin g/dL,
median (range) 11.9 (6.6–16.3) 9.6 (6.6–14.3) 13.0 (8.3–16.3) <0.001

Platelets × 109/L; median
(range)

424 (15–1584) 244 (15–1450) 516 (18–1584) 0.002
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Table 1. Cont.

Variables All MF Patients
(n = 81)

MF Patients with
Myelomonocytic
Skewing (n = 26)

MF Patients
without

Myelomonocytic
Skewing (n = 55)

p-Value

PB blasts %; median
(range) 0 (0–10) 0.5 (0–10) 0 (0–2) 0.018

Leukoerythroblastic
change (%) 22/81 (27%) 11/26 (42%) 11/55 (20%) 0.035

Monocytes × 109/L;
median (range)

0.50 (0–16.3) 0.51 (0–16.3) 0.50 (0–1.6) 0.704

Intermediate-2 and
high-risk category

according to DIPSS (%)
24/81 (30%) 15/26 (58%) 9/55 (16%) <0.001

Post PV/ET MF (%) 6/81 (7%) 2/26 (8%) 4/55 (7%) 0.946

MF: myelofibrosis; WBC: white blood cell count; PB: peripheral blood; DIPPS: Dynamic International Prognostic
Scoring System.
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2.3. Mutational Profile of MF Patients with and without Myelomonocytic Skewing

Information on driver mutations determined by polymerase chain reaction (PCR) was available
in 81 patients (Table S1). There was no significant difference between MF patients with and without
myelomonocytic skewing, respectively, with regard to the distribution of MF driver mutations of JAK2
(58% vs. 58%), CALR (19% vs. 27%), and MPL (8% vs. 2%), respectively (Table S1). Moreover, we could
not find statistically significant differences in overall survival (OS) between different driver mutations
in the whole cohort and in patients with or without skewing, respectively. However, as shown in
Figure 4, the frequency of additional mutations determined by NGS was higher in patients with
myelomonocytic skewing (11/15, 73%) as compared to patients without skewing (6/26, 23%; p = 0.002).
In particular, genes of the splicing and/or epigenetic machinery were more frequently mutated in
patients with as compared to patients without myelomonocytic skewing.



Cancers 2020, 12, 2291 5 of 11
Cancers 2020, 12, x 5 of 11 

 

 
Figure 4. Comprehensive mutation status of genes in myelofibrosis patients with and without 
myelomonocytic skewing. Each column corresponds to one patient. Colored squares indicate 
mutated, white squares indicate wild-type genes. The colors of mutant genes indicate the most 
affected functional categories. Red, green, blue, purple and yellow represent the driver mutations, 
epigenetic regulators, spliceosome, RAS-pathway and other components, respectively. 

2.4. Survival of MF Patients with and without Myelomonocytic Skewing 

As shown in Figure 5, the presence of myelomonocytic skewing was associated with a 
significantly shorter survival. The median survival of patients with a CFU-GM/BFU-E ratio >1 was 
46 months vs. 138 months in patients with a CFU-GM/BFU-E ratio <1 (p < 0.001). Table 2 shows the 
prognostic power of myelomonocytic skewing and established prognostic factors included in the 
DIPSS score. In a multivariate Cox regression analysis of overall survival, myelomonocytic skewing 
remained an independent prognostic factor (Table S2). Furthermore, an AMC >109/L was a significant 
predictor of unfavorable outcome (Figure S1a), whereas the proportion of CD14 positive cells (>5%) 
in bone marrow (BM) had no prognostic impact (Figure S1b). 

 
Figure 5. Overall survival of myelofibrosis patients stratified by the presence or absence of 
myelomonocytic skewing. 

Table 2. Univariate analysis of single prognostic parameters in patients with myelofibrosis. 

Factors Factor Present Factor Absent Hazard Ratio p-Value 
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2.4. Survival of MF Patients with and without Myelomonocytic Skewing

As shown in Figure 5, the presence of myelomonocytic skewing was associated with a significantly
shorter survival. The median survival of patients with a CFU-GM/BFU-E ratio ≥1 was 46 months
vs. 138 months in patients with a CFU-GM/BFU-E ratio <1 (p < 0.001). Table 2 shows the prognostic
power of myelomonocytic skewing and established prognostic factors included in the DIPSS score.
In a multivariate Cox regression analysis of overall survival, myelomonocytic skewing remained an
independent prognostic factor (Table S2). Furthermore, an AMC ≥109/L was a significant predictor
of unfavorable outcome (Figure S1a), whereas the proportion of CD14 positive cells (>5%) in bone
marrow (BM) had no prognostic impact (Figure S1b).

Cancers 2020, 12, x 5 of 11 

 

 
Figure 4. Comprehensive mutation status of genes in myelofibrosis patients with and without 
myelomonocytic skewing. Each column corresponds to one patient. Colored squares indicate 
mutated, white squares indicate wild-type genes. The colors of mutant genes indicate the most 
affected functional categories. Red, green, blue, purple and yellow represent the driver mutations, 
epigenetic regulators, spliceosome, RAS-pathway and other components, respectively. 

2.4. Survival of MF Patients with and without Myelomonocytic Skewing 

As shown in Figure 5, the presence of myelomonocytic skewing was associated with a 
significantly shorter survival. The median survival of patients with a CFU-GM/BFU-E ratio >1 was 
46 months vs. 138 months in patients with a CFU-GM/BFU-E ratio <1 (p < 0.001). Table 2 shows the 
prognostic power of myelomonocytic skewing and established prognostic factors included in the 
DIPSS score. In a multivariate Cox regression analysis of overall survival, myelomonocytic skewing 
remained an independent prognostic factor (Table S2). Furthermore, an AMC >109/L was a significant 
predictor of unfavorable outcome (Figure S1a), whereas the proportion of CD14 positive cells (>5%) 
in bone marrow (BM) had no prognostic impact (Figure S1b). 

 
Figure 5. Overall survival of myelofibrosis patients stratified by the presence or absence of 
myelomonocytic skewing. 

Table 2. Univariate analysis of single prognostic parameters in patients with myelofibrosis. 

Factors Factor Present Factor Absent Hazard Ratio p-Value 

Figure 5. Overall survival of myelofibrosis patients stratified by the presence or absence of
myelomonocytic skewing.



Cancers 2020, 12, 2291 6 of 11

Table 2. Univariate analysis of single prognostic parameters in patients with myelofibrosis.

Factors Factor Present
Md OS (mo)

Factor Absent
Md OS (mo) Hazard Ratio p-Value

(Log-Rank)

Skewing present 46 138 3.98 <0.001
WBC > 25 × 109/L 5 83 3.66 0.025

Hb < 10 g/dL 46 139 5.39 <0.001
PLT < 100 × 109/L 21 83 2.95 0.007
PB Blasts present 47 123 1.95 0.103
Age > 65 years 53 139 3.66 0.001

OS, overall survival; WBC, white blood cell count; Hb, hemoglobin; PLT, platelet count, PB, peripheral blood. The
log-rank test was used to determine if individual parameters were associated with OS.

3. Discussion

It is well established in the literature that the number of hematopoietic progenitor cells is increased
in peripheral blood of patients with myeloproliferative neoplasms (MPN). Levels of circulating
hematopoietic progenitor cells are particular high in MF. In 1973, Paul Chervenick described the
increased numbers of myeloid colony-forming cells in the peripheral blood of MF patients [14].
Subsequently, this finding was extended by a number of studies including ours, which demonstrated
elevated numbers of circulating erythroid, megakaryocytic, and pluripotent progenitor cells in these
patients [15–18]. The levels of circulating colony-forming cells were also significantly higher in MF
than in normal controls in our study. Thus, the median CFU-GM levels were approximately eight times
higher, and the median BFU-E approximately three times higher among MF patients than in controls.
It is important to note that a subgroup of patients had rather low BFU-E numbers, but markedly
increased CFU-GM levels resulting in a CFU-GM/BFU-E ratio of equal or more than one. Since the
predominance of myelopoiesis over erythropoiesis may indicate some basic changes in the biology of
this hematologic disorder, this observation prompted us to consider if patients with myelomonocytic
skewing over the erythroid lineage were phenotypically, genotypically and prognostically different
from patients without skewing.

The phenomenon of skewed myelopoiesis over erythropoiesis has been described in malignant
and nonmalignant conditions in mice and man. Knockdown of TET2 in cord blood CD34 (+) cells
skews progenitor differentiation toward the granulomonocytic lineage, at the expense of lymphoid
and erythroid lineages [2]. Deletion of Tet2 in mice leads to an increased hematopoietic repopulating
capacity with an altered differentiation, skewing towards monocytic/granulocytic lineages [1]. Other
epigenetic regulators such as ASXL1 have also been demonstrated to affect skewing of hematopoiesis.
Asxl1(−/−) mice had a reduced hematopoietic stem cell (HSC) pool, and Asxl1(−/−) HSCs exhibited
decreased hematopoietic repopulating capacity, with skewed cell differentiation favoring granulocytic
lineage [3]. Furthermore, the splicing factors SRSF2 and U2AF1 seem to impact skewing. Mutations in
both SRSF2 and U2AF1 cause abnormal differentiation by skewing granulo-monocytic differentiation
towards monocytes [4]. On the other hand, nonmalignant conditions may also contribute to in vitro
myelomonocytic skewing. It is well established that deregulated NF-κB activation contributes to the
pathogenic processes of various inflammatory diseases. There is evidence from preclinical models
that deregulation of NF-κB signaling promotes skewing of myelopoiesis over erythropoiesis. In
mice, loss of IKKß skews differentiation towards myeloid over erythroid commitment and increases
myeloid progenitor self-renewal and functional long-term hematopoietic stem cells. [6]. Moreover,
Foxp3 deficiency in mice leads to exacerbated NF-kB activity and subsequent cytokine-mediated
hyperproliferation of myeloid precursors [5].

The fact that the myeloid and erythroid progenitor cell compartment can be directly compared using
in vitro culture of PBMNC makes this method particularly attractive to investigate this phenomenon.
In our hands, we rarely find myelomonocytic skewing in PB from healthy individuals, but more
frequently in patients with myeloid disorders. Particularly in myelodysplastic syndromes and chronic
myelomonocytic leukemia, this phenomenon can be found in a high percentage of patients [19,20].
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Both entities are disorders in which molecular aberrations of the epigenetic machinery, including
ASXL1 and TET2, seem to play a major pathophysiological role [21,22]. Interestingly, functional
knockdown of TET2 in CD34+/CD38− caused a granulomonocytic expansion in vitro that was not
observed in CD34+/CD38+ cells, suggesting that early dominance of the TET2-mutated clone in the
immature CD34+/CD38− compartment may participate in the granulomonocytic skewing that defines
CMML [23]. Aging is characterized by clonal expansion of myeloid-biased hematopoietic stem cells,
and recurrent somatic TET2 mutations have been detected in normal elderly individuals with clonal
hematopoiesis [24]. Additional mutations in MF including ASXL1, SRSF2, EZH2, IDH1/2 and U2AF1
have been shown to shorten the survival of patients with MF [11]. All these mutations were found in
our MF patients with in vitro myelomonocytic skewing but were rare in patients without skewing;
however, we are aware of the fact that NGS data were available only in a limited number of patients
and that these data have to be confirmed in a larger cohort of MF patients. On the other hand, chronic
inflammation seems to be an important trigger and driver of clonal evolution in MF [25]. One of the
phenotypic differences between MF patients with and without skewing was the higher proportion of
intermediate-2 and high-risk patients according to the DIPSS score in the group with a CFU-GM/BFU-E
≥1 [13]. It is intriguing to realize that the features of age, leukocytosis, anemia and constitutional
symptoms which are included in DIPSS may be considered as either hematological consequences
and/or promoting factors of myelomonocytic skewing over erythropoiesis.

Comparing the hematologic phenotype of our patients, we found that patients with
myelomonocytic skewing had higher WBC and blast cell counts, but lower hemoglobin levels
and platelet counts. The absolute monocyte count which may indicate myelomonocytic skewing in the
blood was not statistically different in both groups, but the proportion of patients with an AMC ≥109/L
was twice (23% vs. 11%) in patients with skewing as compared to patients without skewing. The
absolute monocyte count in MF patients has been shown to predict outcome [26,27]. Therefore, we also
analyzed the prognostic role of the monocytic compartment in our patients. We could confirm that an
AMC ≥109/L in PB was associated with an inferior survival, however, the percentage of CD14 positive
cells in BM did not predict an unfavorable outcome. This finding suggests that, similar to findings in
CMML, aberrations of the monocytopoiesis may be more easily detected in PB as compared to BM.

The clinical relevance of our findings is clearly supported by our observation that myelomonocytic
skewing was associated with an inferior outcome. Moreover, the prognostic impact of myelomonocytic
skewing was independent of other established prognostic factors, since the effect retained significance in
a multivariate Cox regression analysis. Considering the fact that additional mutations were significantly
more frequent in MF patients with myelomonocytic skewing in this study, and the fact that additional
mutations have been demonstrated to have an adverse impact on prognosis by others, one may
speculate that myelomonocytic skewing detected by in vitro cultures may at a functional level reflect
aberrations of hematopoiesis at the molecular level. Whatever the exact basis for myelomonocytic
skewing may be, in vitro cultures may help to more comprehensively study hematopoiesis in patients
with complex disturbances of blood formation.

4. Patients and Methods

4.1. Patients

This study is based on an Austrian clinicopathological registry, including patients diagnosed for
MPN according to the 2008 WHO diagnostic criteria [28] between 1997 and 2020, which was created by
clinicians and hematopathologists in the Departments of Hematology and Clinical Pathology at the
Medical University of Vienna, Austria. The main eligibility criteria for entry into this study was the
availability of representative, treatment-naïve BM biopsies (hematoxylin-eosin or Giemsa staining and
silver impregnation after Gomori), confirming the diagnosis of myelofibrosis and the determination of
circulating hematopoietic progenitor cells, which has been an integral part of the diagnostic work at our
department in patients with suspected myeloid malignancies for many years, and which was in most
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cases performed at the time of diagnosis [9]. All the differential counts used for this study were manual
differential counts. In total, 81 patients were included in this study, in 6/81 patients secondary MF
was diagnosed. Diagnosis of secondary post PV/ET myelofibrosis required the demonstration of ≥2+

marrow fibrosis and/or clinical and morphological features according to International Working Group
for Myeloproliferative Neoplasms Research and Treatment (IWG-MRT) criteria, including worsening
of anemia, increase in splenomegaly either of newly palpable splenomegaly or more than 5 cm from
baseline, overt leukoerythroblastosis or anisopoikilocytosis with tear-drop erythrocytes consistent
with advanced PMF/myelofibrosis with myeloid metaplasia [29]. Leukoerythroblastosis was defined
as the presence of immature cells of the myeloid series and nucleated red cells in the circulating blood.
Samples were collected from MF patients after written informed consent according to the regulations
of the ethics committee of the Medical University of Vienna (ethic code: 2115/2013). Clinical and
laboratory routine parameters were obtained from patient records. This research has been approved
by the ethic committee of the Medical University of Vienna on 20.04.2013 (ethic code: 2115/2013).

4.2. Colony Assay

The number of circulating CFU-GM and BFU-E, respectively, was assessed in semisolid cultures as
previously described [30]. MNCs were isolated from PB of patients by Ficoll-Hypaque density gradient
centrifugation (density 1.077 g/mL, 400 g for 40 min). The low-density cells were collected from the
interface between density solution and plasma, washed twice, and resuspended in Iscove‘s modified
Dulbecco’s medium (GIBCO, Paisley, Scotland). PBMNCs were cultured in 0.9% methylcellulose, 30%
fetal calf serum (FCS; INLIFE, Wiener Neudorf, Austria), 10% bovine serum albumin (Behring, Marburg,
Germany), α-thioglycerol (10−4 mol/L) and Iscove’s modified Dulbecco’s medium. For stimulation
of progenitor cells, cultures were supplemented with recombinant human granulocyte-macrophage
colony-stimulating factor (GM-CSF) (10 ng/mL; R&D Systems, Minneapolis, MN, USA), rh-interleukin-3
(10 U/mL; Novartis, Basel, Switzerland) and erythropoietin (EPO, 2 U/mL; Roche, Basel, Switzerland).
Cultures were plated in duplicates at 100 × 103 PBMNC/mL. Plates were incubated at 37 ◦C, 5% CO2,
and full humidity. After a culture period of 14 days, cultures were examined under an inverted
microscope. Aggregates with more than 40 translucent, dispersed cells were counted as CFU-GM.
Bursts containing more than 100 red colored cells were scored as BFU-E. Progenitor cell data are
expressed as mean values from cultures.

4.3. Molecular Analysis

Mutation analysis for MPN driver mutations included allele-specific polymerase chain reaction
techniques to screen for Janus kinase 2 (JAK2), calreticulin exon 9 (CALR) and myeloproliferative
leukemia virus oncogene (MPL) mutations [31]. Comprehensive mutational profiles in MF patients were
determined by targeted re-sequencing as previously described [32]. DNA isolated from granulocytes
or PBMCNs was processed using the TruSight Myeloid Panel kit (Illumina, San Diego, CA, USA)
to generate indexed amplicon-based libraries. Equimolar amounts of libraries were pooled into
multiplexes which were then sequenced 150bp paired-end on an Illumina HiSeq3000 instrument. Read
alignment and variant calling was performed using the BaseSpace software (Illumina, San Diego,
CA, USA). Variants called in transcribed regions or at splice sites were selected and further filtered
for common variation. Other filters were adjusted for TruSight targeted sequencing and included
insufficient sequencing read depth (<200) and low variant allele frequency (VAF < 0.05).

4.4. Statistical Analysis

The log-rank test was used to determine if individual parameters were associated with overall
survival (OS). OS was defined as the time from sampling to death (uncensored) or last follow up
(censored). A multivariate Cox regression analysis of overall survival was used to describe the
relation between the event incidence, as expressed by the hazard function and a set of covariates.
Dichotomous variables were compared between different groups with the use of the chi-square test.



Cancers 2020, 12, 2291 9 of 11

The Mann–Whitney U test was used to compare unmatched groups when continuous variables
were not normally distributed. Results were considered significant at p < 0.05. Statistical analyses
were performed with the SPSS version 19.0.0 (SPSS Inc., Chicago, IL, USA); the reported p values
were 2-sided.

5. Conclusions

In conclusion, we report for the first time a study which investigates the phenomenon of
myelomonocytic skewing as determined by semisolid in vitro cultures in patients with MF. We can
show that the presence or absence of myelomonocytic skewing can discriminate these patients regarding
clinical, phenotypic and molecular characteristics. Moreover, the clinical relevance of our findings is
further supported by the different outcome of both groups, stratified by whether or not patients showed
myelomonocytic skewing. More generally, we think that myelomonocytic skewing as determined
by semisolid in vitro cultures may still be an important functional method to complement molecular
analyses and to comprehensively study disturbed hematopoiesis in various conditions.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/8/2291/s1,
Table S1: Circulating CFU-GM and BFU-E numbers, CFU-GM/BFU-E ratio and driver mutation status in patients
with myelofibrosis, Table S2: Multivariate Cox regression analysis of overall survival, Figure S1: Overall survival of
myelofibrosis patients stratified by the presence or absence of absolute monocytosis ≥ 109/L (a) and the proportion
of CD14 positive bone marrow cells > 5% (b).
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