
Animal Model Exp Med. 2020;3:1–8.	﻿�    |  1wileyonlinelibrary.com/journal/ame2

1  | INTRODUC TION

Colorectal cancer (CRC) is a major medical concern, being the third 
most common cancer type and the fourth most common cause of 
cancer-related death, accounting for 9% of the total cancer inci-
dence.1 In spite of the progress in clinical and biological knowledge, 
CRC remains a main public health issue,2 and despite the rapid devel-
opment of treatments in the last years, the mortality rate related to 
this type of cancer remains high,3 especially in the advanced stages 
of disease.4 About half of the patients with CRC will develop liver 
metastases, and from that subpopulation only 25% are eligible for 
surgery with curative intent.5

The staging of CRC is the most important prognostic factor for 
survival, and when patients are in an advanced stage (with the de-
velopment of metastasis), the prognosis is extremely poor and sur-
vival is estimated in months.6 Surgery and chemotherapy have been 
valuable allies in the treatment of CRC, and are able to treat 75% of 
patients, but more than 30% of these patients develop new neoplas-
tic lesions, and 10% evolve to second malignancy.7

Nowadays it is clear that CRC is a heterogeneous disease that 
is caused by changes in different complex pathogenic pathways8 
and molecular changes in a multistep carcinogenesis cascade that 
differ from tumor to tumor and reveal a wide range of clinical be-
haviors.9 At a molecular level, CRC is the tip of the iceberg of an in-
tricate and ample array of gene alterations, affecting supramolecular 
processes.2

Therefore, it is understandable that CRC is a composite and mul-
tistep process, and when it is put together with recent discoveries in 
the CRC carcinogenesis, like the influence of the tumor microenvi-
ronment in primary and secondary tumor development and possible 
applications in CRC treatment,10-15 together with the existence and 
influence of cancer stem cells in tumor progression, aggressiveness, 
and resistance to therapeutics,6,16 new data, possibilities, and major 
dilemmas in CRC carcinogenesis must be taken into consideration.

So, the expansion of new strategies of screening that allow early 
and higher rates of CRC detection and development and creation 
of new preclinical models for the study of the CRC carcinogenesis 
process with the discovery of sensitive and specific biomarkers, 
not only for initial detection, but also to identify patients who will 
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Abstract
Colorectal cancer is a worldwide health burden, with high incidence and mortality, 
especially in the advanced stages of the disease. Preclinical models are very impor-
tant and valuable to discover and validate early and specific biomarkers as well as 
new therapeutic targets. In order to accomplish that, the animal models must repli-
cate the clinical evolution of the disease in all of its phases. In this article, we review 
the existent mouse models, with their strengths and weaknesses in the replication of 
human cancer disease progression, with major focus on orthotopic models.
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have disease recurrence and patients who will probably progress de-
spite adjuvant therapy are critical and essentials steps in managing 
CRC.17,18

2  | WHY THE ANIMAL MODEL?

Despite differences in animals, their genomes are built on DNA, 
the chemical basis of life. By comparing the human genome with 
animal genome, it is possible to better understand the structure 
and function of human genes, and apply that knowledge to study 
human diseases in order to develop new strategies and mechanisms 
to prevent, detect, and treat CRC. In this context, several animals 
had their genome sequenced, such as the mouse (Mus musculus), the 
fruit fly (Drosophila melanogaster), and the malaria-carrying mosquito 
(Anopheles gambiae), among others.19

Of all those animals, the mouse is the most used animal model in 
the study of carcinogenesis, with its use as the main model in bio-
medical research dating back to the beginning of the human civiliza-
tion, when humans recorded coat-color mutations for millennia. In 
1700, in China and Japan, mice were domesticated as pets, and then 
imported by Europeans who bred them with their local varieties, cre-
ating hybrid progenitors of modern laboratory mice.20 Application 
of Mendel's law of inheritance to mice in an analogue way to the 
peas gave birth to new theories of inheritance, and with DNA re-
combinant technologies/DNA sequence-based polymorphisms, new 
models were created.20

Although yeasts and flies reveled themselves as excellent mod-
els for studying cell cycle, mice are better models for studying the 
immune, endocrine, nervous, and other physiological systems, be-
cause their genetic and physiology are closer to those of humans. 
Like humans, mice have the ability to develop several diseases, such 
as cancer. In recent times, the use of innovative genetic technologies 
enabled the production of transgenic mice, with gene insertion in 
the germinal line, and even more advanced changes with “knock out” 
and “knock in” genes (eg, p53 knockout with disabled TP53 tumor 
suppressor gene), allied with state of the art reproductive technolo-
gies, provided the necessary tools for a deep study of carcinogenesis 
mechanisms in mice.21

An ideal animal CRC model should allow the development of local 
tumors, it should replicate all stages of CRC evolution, permit the as-
sessment of the disease progression with radiology and endoscopic 
methods, (it should allow us to) understand the toxicities related with 
therapeutic procedures, and be largely adjustable to laboratories 
without surgical knowledge, enabling its replication.5,22 However, 
the development of animal models is an arduous work, depending 
majorly on the strain of animals and cancer cells that are used.23

Therefore, mice are very valuable in cancer investigation and 
many transgenic mice were created in order to provide models to 
study the development and behavior of different types of tumors 
(gastric, pancreatic, bone, colon, etc). In this article, mouse CRC 
models will be discussed in detail, with special focus on orthotopic 
models.

3  | WHAT T YPE OF CRC MODEL S E XIST?

3.1 | Sporadic CRC models/chemical-induced 
models

Several models of mouse CRC have been developed along the time. 
Perhaps the first model developed was one that demonstrated the 
relation between intestinal tumor genesis and the ingestion of poly-
cyclic aromatic hydrocarbon.24 At that time, the relation between 
CRC development and the ingestion of some types of food was 
under keen study, creating sporadic CRC models; more models were 
developed according to this idea: ingestion of radioactive yttrium25 
of 4-aminodephenyl and 3,2-dimethyl-4-aminodiphenyl26 and 
1,2-dimethylhydrazine azoxymethane.27-29 In time, other carcino-
gens that induced colon tumors were discovered, such as heterocy-
clic and aromatic amines, and alkylnitrosamide compounds. A recent 
and one of the most used sporadic CRC models promotes CRC by 
chronic use of dextran sodium sulfate, recreating the conditions of 
an inflammatory bowel disease.30,31

These models, despite their utility as pioneers in the first step of 
tumor carcinogenesis, are extremely limited, because they have low 
tumor development—only a fraction of the mice that experienced 
those conditions developed tumors, and when these develop, they 
reveal a widely variability in location, diffusion, and differentiation.32

The relation between exposure to carcinogens and tumor devel-
opment is well-know, and the above described models are still used, 
but it was necessary to create new and more “profitable” ones.

In order to overcome the low tumor development rate, a simple 
strategy was formulated. Instead of exposing the animals to carcino-
genic elements, why not expose them directly to cancer cells? Why 
not study the behavior of cancer cells? And why not expose them to 
carcinogenic elements with in situ application? This train of thought 
gave birth to new type of cancer models which require surgical skill 
and the application of cancer elements (tissue/cells) directly in the 
animal as well as in vitro studies.

Many models were then created, developed, and improved by the 
discoveries and comprehension of CRC pathways and progression.

3.2 | Cell culture models

One of the main and most used models is the human cancer cell lines 
model. Cell lines harvested from tumor tissue from patients with CRC 
are used to model the disease, and there are even cell lines established 
for this objective. Since the cells have origin in human tissue they pro-
vide high fidelity and allow various types of experiences relevant for 
human disease, and they are not very expensive—a major attractive 
quality. This model allows to mimic/to replicate tumor cells behavior in 
culture, providing further analysis of several aspects such as: aggrega-
tion, migration, colonies formation, responsiveness to therapeutics, and 
even to measure the production of intercellular messengers; it is also 
possible to evaluate parameters like oxidative stress, viability and ap-
optosis, cell cycle analysis, and determination of surface antigens.33-37
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A major disadvantage of this model is the fact that it does not 
reproduce the tumor cell/environment interaction. The environment 
in culture is artificial and does not simulate the host response to 
tumor presence—immune response and angiogenesis.34 Also, tumor 
cells are maintained over many passages lacking intra-tumoral het-
erogeneity and regularly showing few similarities, physiological and 
genetic, to the tumor from which they derive.38

Despite this drawback, the cell culture is a widely used model to 
study human carcinomas and a great complement to other models, 
but in order for the study to be accurate, the tumor must be prefer-
entially studied in vivo.

3.3 | Carcinogens in situ

A way to overcome the limitation of the sporadic cancer models with 
ingestion of carcinogens was to bypass the digestive tract, eliminat-
ing enzymatic alterations, and introduce them directly into the desired 
place—commonly by intrarectal exposure.38 This model reveals greater 
efficiency than sporadic CRC models, but the income on tumor for-
mation is still far from the ideal. However, this model type had its ef-
ficiency greatly improved with the creation of genetic mouse models, 
but even so, in some cases, when the metastases are detected, the 
animals are too ill to expose them to therapeutic options.5

3.4 | Peritoneum models

The injection of tumor cells into the peritoneum and peritoneal cav-
ity was probably one of the first ideas in order to promote tumor 
development in mice and its study. It is still used nowadays leading 
to the development of tumor nodules on the peritoneum and dis-
semination through the peritoneal cavity.39

However, its biological behavior does not mimic/replicate the 
human CRC and other solid tumors, leaving the peritoneum models 
a tool for evaluating nonsolid tumors like leukemia's and to assess 
pharmacologic responses,40 since peritoneal metastatic carcinoma 
has worse prognosis compared with other metastasis and the treat-
ments available did not achieve/have not achieved a good rate of 
effectiveness yet.41

3.5 | Xenografts and orthotopic models

In the last decades, the xenograft model has been adopted as a way 
to bypass the limitations of the cell culture model. Tumor cell lines 
or suspensions are injected subcutaneously in mice, that in order to 
prevent tumor rejection usually are nude (unable to produce T cells) or 
have immune deficiency34—Figure 1. This type of model was a large 
success and nowadays it is widely used by researchers around the 
world to induce CRC in mice for carcinogenesis study and response 
to therapeutics.42-44 But like other models, the xenograft model has 
its limitations, one of them, the low metastatic capacity, reason that 

motivated some researchers to try new approaches like injection into 
the spleen, portal vein, and liver.45-51 The liver injection model does 
not represent a metastatic model but rather a heterotopic implan-
tation of colon cancer cells and the spleen and portal vein injection 
models result in highly infiltrative tumors that impair the possibility of 
radiological characterization and treatment approaches.5

Other limitation of subcutaneous xenografts is the lack of repro-
duction of the tumor/microenvironment interaction—a well-recog-
nized element of predisposal to tumor indolent/aggressive behavior 
and distant metastases.11,15,52-54 The xenograft model allows the de-
tection of cancer stem cells,3,55,56 but lacks the direct relation with 
local invasion and metastases. Despite its limitations, it is still amply 
used nowadays, especially in therapeutic studies.57

A way to overcome the lacunae in the previously described model 
was the development of a model where tumor cells are injected directly 
in the anatomical position of interest—thus giving birth to the orthot-
opic model, also in nude mice or with immune deficiency.34 Orthotopic 
models enhance the possibility of distant metastatic spread in a supe-
rior manner when compared with the subcutaneous models.58

In 1987 was created an orthotopic model of CRC in mice with injec-
tion of tumor cells in the ceacum, which enabled the study of local tumor 
invasion as well as metastatic dissemination—it was a more patient-like 
animal tumor model.59 The success of this model was very high, turning 
it into a valuable asset in the study of the CRC, and amply used, with 
even some adaptations as injection of tumor cells in the rectum,60-64 and 
even exploring microvascular patterns of the colon concerning the dif-
ferences between the mesenteric and antimesenteric side.32

The model was refined, with artificial selection of more aggres-
sive CRC cells and the use of genetic engineering in order to create 
mice that were adequate to the studies.65 Finally, in 2009, with the 
improvement of surgical approaches and techniques, it was possible 

F I G U R E  1   A mice exhibiting a subcutaneous heterotopic 
tumor—in this case, the cells were inoculated at the right side of 
dorsum
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to create an orthotopic model recurring to a cecostomy surgical skill. 
This kind of model represented a major income/breakthrough due to 
the possibility of more sensitive tumor monitoring, real-time visual-
ization, and repeated tumor sampling66—Figure 2.

It must be referred, though, that the use of surgical skills (ostomy 
creations) for cancer studying had already been tried in 1994 with 
a double colostomy in the transverse colon and application of the 
chemical-induced model principles.67

It seemed that the optimal mouse model for the study of CRC had 
been found. However, at the light of recent genomic studies of the 
colon and differences between proximal, transverse, distal, sigmoid, 
and rectosigmoid components,68-72 conjugated with the already 
known embryologic, anatomic, and physiological differences,73-76 
the high percentage of tumor in the left side of the colon77-80 and 
with the knowledge that only orthotopic models for the right colon 
were described, it is easily perceived the lack of a “left side orthot-
opic tumor” model and its detailed study.

Bearing this in mind, in 2012, an orthotopic model for distal 
colon carcinoma was created, able to develop a distal colon cancer in 
vivo, that on a histological level induced tumors remarkably similar 
with human colon cancer. It resorted on the implantation of CRC 
cells in the submucosa of the distal colon of animals previously sub-
mitted to a descending colostomy with mucosal-cutaneous fistula of 
the sigmoid colon, avoiding a fatal colon stenosis. However, it did not 
record the existence of metastatic disease.81 This model was further 
refined in 2016, with the use of different CRC cellular lines (different 
colonic origins—ascending, descending, rectosigmoid) in a murine 
model, which led to the development of distinct morphophysiolog-
ical characteristics of the primary tumor with neural invasion and 
cancer stem cells identification, also similar to those observed in 
human disease; it is a simple and reproducible model of distal colon 
cancer, that enables the study of genetic and molecular pathways of 
CRC, their interaction with the microenvironment, and the study of 
the metastatic process.82

Some groups bypassed surgical skills and perform injections of 
colon cancer cells in the rectum and used mechanical means, like me-
tallic stents, to overcome obstruction, with metastatic development; 
however, the results did not have statistical significance.83 The or-
thotopic model is a very interesting approach to CRC studies, since 
on a local level, it is very similar to what happens on human tissue, 
replicating human disease with high reliability; the need of surgical 
skills may be a lesser drawback, but many research on the literature 
resorts to this method.84-86

Still, the injection method has its limitations, with tumor devel-
oping rates that can go from 60% to 70%, which can be explained by 
incorrect parietal injection of tumor cells, low viability of tumor cells, 
and host reaction to the cells.32 Also, the metastases may not reach 
the metastatic site of interest, and when they do, sometimes they 
take a huge amount of time.87

In the last years, there has been application of different tech-
niques to orthotopic models, to improve the tumor development suc-
cess rate, such as electrocoagulation, with apparent maximization of 
tumor development, both locally and distant.88 Another approach was 
the development of patients' derived xenografts (PDX), which consist 
in the graft of tumor from human patients into an immune-deficient 
animal, replicating in this manner the human scenario.38 Several ap-
proaches were made with PDX subcutaneous and orthotopic engraft-
ments, reporting development of secondary disease in the orthotopic 
location, with nuclear medicine techniques and histological confirma-
tion.89-91 The PDX models allow a strong preservation of the tumoral 
and stromal architecture, with a high degree of fidelity to the donor 
tumor—microscopic, genetic, and functional.38,90

Despite all the favorable characteristics, the model presents 
some major limitations: samples are usually taken from patients with 
highly advanced tumors92 and from patients who had already un-
dergone cycles of chemotherapy90; there is also concern about the 
amount of viable tumor being engrafted and intra-tumoral heteroge-
neity93 and also the various strains of mouse and grafting techniques 
used.90 Recently, a new drawback has been raised with the demon-
stration that the human stroma is usually replaced by the murine 
stroma, regardless of the maintenance of histological characteristics 
of the tumor,94,95 and it occurs very rapidly in CRC PDX.96

A similar approach has been performed, but using syngraft/
isograft models, which consist of grafting tumor fragments or cells 
derived from 1 mouse into a genetically similar inbred and immune 
competent mouse.97 This method would allow bypassing the two 
major limitations of the xenograft models—species mismatch and the 
stroma issue, however the model is not human and it is highly time 
consuming and laborious.98

3.6 | Genetic engineered mouse models

The development of gene targeting provided the possibility of ge-
netic models of CRC, with many advantages because of the availabil-
ity of genetic information and easy gene manipulation,34 especially 
in those relevant for the carcinogenic process.58

F I G U R E  2   Colostomy with a nodular and submucosal lesion 
(black arrow), which on histological examination revealed an 
adenocarcinoma
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The evolution of genetic engineering and genetic manipulation 
techniques enabled the creation of models capable of replicating ge-
netic abnormalities that cause CRC, such as: hereditary nonpolyposis 
CRC,99-101 familial adenomatous polyposis102,103 and improvement of 
the APC heterozygous model101 and the modifier of Min model.104,105

For most tumor types, the genetic engineered mouse models 
(GEMM) can be used to study the human disease, and even to de-
velop therapeutics; however, the models only possess evidence in 
the early stages of disease, having little evidence in the advanced 
stages.106 GEMM models do not replicate the native process of me-
tastasis, showing lower grade of dissemination and thus, needing 
more time to metastasize, and when metastases occur, they have 
a high grade of variability and are less reproducible,107 and mostly 
depend on concomitant Kras and Pr3 mutations.108 Besides, some 
GEMM of CRC (with Apc mutations) usually develops small bowel 
and not colon tumors, and tumor burden usually diminishes the lifes-
pan of the animal limiting malignant progression with the majority of 
them not reporting secondary disease.22,98

Additional limitations to the GEMM models include more 
heterogeneity in human tumors, which may be explained by a 
more varied diet and different microbiome in humans and conse-
quently more exposition to toxins,109 different time of exposition 
to toxins (chronic exposition in humans and more time limited 
in mouse), lack of population genetic heterogeneity in mouse 
due to inbred ,and the fact that in GEMM tumor arise by the 
same genetic mutation which limits the number of genetic tumor 
pathways.98

Genetic engineered mouse models are particularly effective 
for the study of initial phases of disease but have not replaced the 
xenograft models as research tools for treatment methodologies in 
metastatic disease.58

The addition of new methodologies such as CRISPR-Cas9 tech-
nology has provided plasticity to genomic editing and is appointed 
as a very successfully tool to achieve metastatic disease, especially 
when associated with CRC organoids;108 however, it is not a tool 
available in the majority of the laboratories.

TA B L E  1   Comparison between the different mouse models, with advantages and drawbacks

Animal model Advantages Drawbacks

Sporadic/chemical induced ✓	 Easy to perform
✓	 Similar to the carcinogenic process in human

✓	 Low tumor development
✓	 Wide variability in location, diffusion and 

differentiation
✓	 Long time for tumor development

Carcinogens in situ ✓	 Similar to the carcinogenic process in human
✓	 Bypasses enzymatic alterations

✓	 Low tumor development
✓	 Long time for tumor development

Peritoneum models ✓	 Easy to perform
✓	 Quick results
✓	 Good for antitumoral drugs tests

✓	 Biological behavior does not mimic/replicate 
human tumors

✓	 Biological behavior difficult to predict, usually 
with disseminated and advanced disease

Subcutaneous xenografts ✓	 Use of human cancer cells
✓	 Quick and easy to use

✓	 Heterotopic inoculation of the tumor is not a 
physiologic process

✓	 Low immune system activity
✓	 Tumoral cancer cells and stromal cells are from 

different species
✓	 Nonmetastatic
✓	 Difficult to predict the response to antitumoral 

drugs

Orthotopic xenografts ✓	 Use of human cancer cells
✓	 Histology is similar to the human tumors
✓	 Metastatic potential
✓	 Replicates the local invasion process by the tumor, 

with lymphovascular invasion
✓	 Allows genetic manipulation

✓	 Low immune system activity
✓	 Tumoral cancer cells and stromal cells are from 

different species
✓	 Unable to replicate the initial steps of disease
✓	 Less tumor formation than subcutaneous 

xenografts
✓	 Difficult to predict the response to antitumoral 

drugs

Syngenic ✓	 Tumor cells and stroma are from the same specie
✓	 Intact immune system

✓	 Endogenic animals does not allow the study of 
genetic modifiers

✓	 Low number of metastases

Genetic engineered mouse 
models

✓	 Genetic event is known
✓	 In situ tumor development
✓	 Reproduces early stages of oncogenesis
✓	 Modified gene is expressed on physiologic level
✓	 Tumor cells and stroma are from the same specie
✓	 Intact immune system
✓	 Used for chemoprevention studies

✓	 Only partial replication of the human tumoral 
morphology and physiology

✓	 Secondary mutations are different from the 
human tumors

✓	 Rarely metastatic
✓	 Response capacity to antitumoral drugs still 

unknown
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4  | CONCLUSION/FINAL 
CONSIDER ATIONS

For the last years, many types of mouse models have been developed 
in order to study CRC. In the age of the genetic information and genetic 
manipulation techniques, it would seem that the GEMM models would 
be the most suitable for the task, but they have major limitations in the 
study of the later stages of the disease and in the metastatic process.

Of all the available models, the orthotopic model seems to have 
the “leading position” in cancer study because it allows the study of 
the tumoral microenvironment in vivo and the metastatic process. 
Because of the different characteristics of the colon segments, the 
creation of a model to study the carcinogenesis of the left colon is of 
major importance and presents a solution to the technical limitations 
of the other CRC models.

Each animal model has its pros and cons—Table 1, and in some 
cases, association of more than one form in CRC induction is neces-
sary.110 The model should be chosen accordingly to the study expec-
tations and aim, maximizing its potential.111

Translational investigation for CRC is increasing, due to the high 
demand of proper models to study the complexity of in vivo biologi-
cal behaviors. The application of the “left colon model” and its deep 
study will definitely bring new considerations about the carcinogen-
esis of rectosigmoid tumors, helping to unveil the pathways of metas-
tization of CRC, the main cause of death in humans with the disease.
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