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Abstract

Klebsiella pneumoniae are opportunistic bacteria found in the gut. In recent years they have

been associated with nosocomial infections. The increased incidence of multiple drug-resis-

tant K. pneumoniae makes it necessary to find new alternatives to treat the disease. In this

study, phage UPM2146 was isolated from a polluted lake which can lyse its host K. pneumo-

niae ATCC BAA-2146. Observation from TEM shows that UPM2146 belongs to Caudovir-

iales (Order) based on morphological appearance. Whole genome analysis of UPM2146

showed that its genome comprises 160,795 bp encoding for 214 putative open reading

frames (ORFs). Phylogenetic analysis revealed that the phage belongs to Ackermannviri-

dae (Family) under the Caudoviriales. UPM2146 produces clear plaques with high titers of

1010 PFU/ml. The phage has an adsorption period of 4 min, latent period of 20 min, rise

period of 5 min, and releases approximately 20 PFU/ bacteria at Multiplicity of Infection

(MOI) of 0.001. UPM2146 has a narrow host-range and can lyse 5 out of 22 K. pneumoniae

isolates (22.72%) based on spot test and efficiency of plating (EOP). The zebrafish larvae

model was used to test the efficacy of UPM2146 in lysing its host. Based on colony forming

unit counts, UPM2146 was able to completely lyse its host at 10 hours onwards. Moreover,

we show that the phage is safe to be used in the treatment against K. pneumoniae infections

in the zebrafish model.

Introduction

Klebsiella pneumoniae is a Gram-negative bacterium which can colonize the gastrointestinal

tract, lungs, and leads to liver abscesses, pneumoniae, and bacteremia in human [1]. It belongs

to the ESKAPE group (Enterococcus faecium, Staphylococcus aureus, K. pneumoniae, Acineto-
bacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) which is responsible for

many nosocomial infections in hospitals [2]. The number of these drug-resistant bacteria is

on the rise due to the spread of plasmids expressing the β-lactamase enzyme which renders
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antibiotics that has lactam enzyme as a functional group useless (NDM-1) [3]. Furthermore,

the number of new antibiotic groups being discovered has dwindled down drastically com-

pared to the rates in which bacteria gain resistance towards the antibiotics [4]. Thus, it is neces-

sary to search for an alternative to treatments using antibiotics such as phage therapy. For

instance, phage cocktail (Kp152, Kp154, Kp155, Kp164, Kp6377, and HD001) with an inacti-

vated sulfamethoxazole-trimethoprim was able to protect a patient from K. pneumoniae Uri-

nary Tract Infection (UTI) [5].

Bacteriophages are highly selective in infecting and lysing their bacterial hosts [6]. In

addition, they exhibit far fewer side effects compared to the antibiotics [7]. At least 70 K. pneu-
moniae phages have been isolated and characterized to date [8]. However, very few K. pneumo-
niae phages have been studied in vivo using mouse, rat and pig models [9–13]. Apart from

these animals, the virulence of K. pneumoniae has also been evaluated in other non-conven-

tional models such as amoeba and zebrafish to mitigate limitations in the mouse, rat and pig

models such as high cost, specialized facilities and ethical concerns [8]. It has been shown

that only certain K. pneumoniae strains were able to infect zebrafish and cause mortality. In

another study, it was shown that a bioactive molecule from Streptomyces sp. was able to reduce

mortality of zebrafish infected with K. pneumoniae [14]. However, there are no publications

on phage therapy against K. pneumoniae using the zebrafish larvae model although this has

been studied for other pathogens such as Vibrio anguillarum [15] and Enterococcus faecalis
[16]. In the present study, UPM2146 was isolated, characterized, and tested for its efficacy

against K. pneumoniae 2146 in vivo using a zebrafish larvae model.

Material and methods

Bacterial strains and experimental conditions

Multiple drug-resistant Klebsiella pneumoniae ATCC BAA-2146 was used as the host for

UPM2146. K. pneumoniae IMR-1 (non-drug resistant strain), multiple drug-resistant ATCC

BAA-1705 and clinical isolates A01 until A18, and A20 [17], multi-drug resistant Staphylococ-
cus aureus 10, and multi-drug resistant Escherichia coli ATCC 25922 and E. coli Top 10 (non-

drug resistant) were also used in this study. Dr Erin Lim of Perdana University generously

gifted K. pneumoniae IMR-1, ATCC BAA-2146, ATCC BAA-1705 and Escherichia coli ATCC

25922. Clinical isolates K. pneumoniae A01-A018 and A20 were gifted by Dr Siti Norbaya of

Faculty of Medicine and Health Sciences, Universiti Putra Malaysia. The following experimen-

tal condition has been applied for all bacteria throughout the experiments unless stated other-

wise. A purified single colony was taken from LB agar plate and re-grown overnight in LB

broth with shaking at 37˚C. On the next day, the bacteria were grown to log phase [5 × 108 col-

ony-forming unit (CFU)/ml] at an OD600nm = 0.6.

Isolation, enrichment and purification of phage

UPM2146 was isolated from a polluted lake using K. pneumoniae 2146 as host. Approximately

50 ml of the lake water was centrifuged for 10 min at 6000 × g, 4˚C. The supernatant was fil-

tered using a 0.45 μm membrane filter. In order to enrich the phages, 100 μl of K. pneumoniae
2146 (OD600nm = 0.6) in 0.1 M CaCl2 were added to 10 ml of the filtered supernatant before

being made up to 30 ml with 5 × LB broth (final concentration of 3.33× LB) (Merck, Germany)

and shaken overnight at 37˚C. The mixture was centrifuged for 10 min at 8000 × g at 4˚C. The

supernatant was filtered again. The presence of phage was confirmed through spotting onto a

soft overlay agar containing the bacteria. Phages resulting in a positive spot test were then sub-

jected to dilution and plated using the double-layer agar method [18]. Single plaques formed

on plates were cut from the double layer agar and placed back into SM buffer [100 mM NaCl,

PLOS ONE Effectiveness of bacteriophage UPM2146 in lysing Klebsiella pneumoniae in vivo

PLOS ONE | https://doi.org/10.1371/journal.pone.0245354 January 8, 2021 2 / 19

https://doi.org/10.1371/journal.pone.0245354


8 mM MgSO4� 7 H2O, 50 mM Tris-Cl (1 M, pH 7.5), and 0.01 g of gelatin)] overnight at 4˚C,

filtered and subjected to double-layer agar again the next day. The same process was repeated

three times to ensure purified phages were obtained which showed uniformed distribution of

plaques per plate. High-titered phage was prepared from plates flooded with SM buffer, which

was centrifuged and filtered. The filtrate was precipitated using 1.5 mM of NaCl and 12% of

PEG-8000 to phage lysate and left at 4˚C overnight. On the next day, the lysate was centrifuged

and the pellet was resuspended in 1 ml of sterile SM buffer with 1 ml of 1 M KCl. After being

left on ice for 1 h, the mixture was re-centrifuged at the same speed and temperature. The

supernatant which consisted of purified concentrated phage was stored at 4˚C.

Adsorption rate of isolated phages

Determination of the adsorption rate of phage was performed according to Hyman & Abedon

[19]. Mid log phase host bacteria (OD600nm = 0.6) were infected with a (1 × 1010 PFU/ml) of

UPM2146 at MOI of 0.01 at 37˚C. After infection, the phage titers at every 2 min for 10 min

were determined. The samples (30 ml) were centrifuged at 5 000 × g for 3 min at 4˚C to

remove the bacteria and adsorbed phage. The concentration of free phage was determined by

double-layer agar method.

Adsorption rate of phage was calculated as:

Initial titer of phage-titer of free phage
Initial titer of phage

� 100%

Host range and efficiency of plating (EOP)

The host range of UPM2146 was determined according to D’Andrea et al. [20]. The phage was

tested against multiple sub-species of K. pneumoniae (IMR-1 non-drug resistant strain, ATCC

BAA-2146, ATCC BAA-1705, A01 until A18, and A20), multi-drug resistant Staphylococcus
aureus 10, and Escherichia coli (ATCC 25922 and Top 10). Ten μl of the phage were spotted

onto an overlay agar containing the bacterial host. The agar plates were incubated overnight at

37˚C. EOP of bacteria strains which were positive for the spot test was determined against K.

pneumoniae 2146. One hundred μl of UPM2146 were mixed with 100 μl of bacteria, followed

by double-layer assay for plaque count at MOI of 1. The EOP of UPM2146 was calculated by

dividing the phage titers on the target bacterium (K. pneumoniae 2146, A5, A7, A13, and IMR-

1) by the phage titers on their original isolated host (K. pneumoniae 2146). EOP was classified

as ‘High’ when the ratio of target to original host was at least 50% (EOP�0.5), ‘Medium’ when

the EOP was in between 10% to 50% (0.1�EOP<0.5), ‘Low’ when less than 10%, and ‘Ineffi-

cient” when EOP was less than 0.1% (EOP�0.001) [21].

One-step growth curve

One-step growth experiment was performed according to Kutter & Sulakvelidze [22] to deter-

mine the latency periods and burst sizes of UPM2146. Briefly, K. pneumoniae 2146 was grown

to a concentration of 1 × 1010 CFU/ml and mixed with phage lysate UPM2146 at MOI = 0.001

before incubation in a shaker at 37˚C and 180 rpm. Aliquots of the mixture were then assayed

using the double-layer agar method at every 5 min for 30 min.

The stability of the phage

The stability of the phage at different pH and temperatures was determined according to Taj

et al. [23] with some modifications. For thermal stability, UPM2146 (1010 PFU/ml) was
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incubated at 4˚C, 14˚C, 24˚C, 37˚C, 45˚C, 60˚C, and 70˚C for 1 h in SM buffer and then the

phage titer was measured. For pH stability, UPM2146 (1010 PFU/ml) was incubated at a pH

of 2–14 for 1 h at 37˚C in LB broth before the titer was measured using the double-layer agar

overlay method. Statistical analysis was performed using SPSS v.23 Chicago: SPSS Inc. One-

Way ANOVA was performed followed by post-hoc multiple comparison using Tukey HSD

test to determine differences in the phage titer between different treatments. Statistical signifi-

cance was assumed when p<0.05.

Turbidity assay

The effectiveness of the phage in clearing its host was tested through turbidity assay. Fifty μl of

the phage was mixed with K. pneumoniae 2146 at log phase at different MOI of 0.02, 0.2, and 2

and incubated by shaking at 37˚C, 180 rpm. The OD600 nm was measured at every 30 min. At

the peak of the growth curve of K. pneumoniae which was at OD600nm 0.8 for this analysis, a

plate count was also conducted to determine the total reduction of K. pneumoniae in CFU

[24].

Transmission electron microscopy

Sample preparation was done via 38% sucrose gradient for cushioning in Beckman Coulter

Class S ultracentrifuge using SW 40 Ti rotor at a speed of 288 000 × g for 4 h at 4˚C [25]. Then,

thin carbon support films were prepared by sublimation of a carbon thread onto a freshly

cleaved mica surface. Phage was adsorbed onto the carbon film and negatively stained with 2%

(w/v) aqueous uranyl acetate, pH 5.0. The sample was visualized using JEM-2100F field emis-

sion electron microscope, 200 kV FE (Field Emission). Morphological appearance of the phage

was determined based on Goodridge et al. [26] with some modifications. Capsid diameter,

tail length, and width were analyzed from electron micrographs with ImageJ software Ver1.48

(Rasband, Ver 1.48).

DNA sequencing and bioinformatics analysis of the phage genome

The DNA was isolated using modified conventional method [27]. The purity and concentra-

tion of the phage DNA were determined using Nanophotometer (Implen GmbH, Germany)

[28]. Next-generation sequencing was performed on UPM2146 using Illumina Hiseq sequenc-

ing by Shanghai Biozeron Biotechnology (PE150 mode), which provided 100× sequence cover-

age. Then, raw sequencing data were generated by Illumina base-calling software CASAVA

v1.8.2 (http://support.illumina.com/sequencing/sequencing_software/casava.ilmn). Adaptor

or primer sequences were trimmed using Trimmomatic (http://www.usadellab.org/cms/

uploads/supplementary/Trimmomatic) with default parameters. Low quality reads (Q<20)

were filtered using the same software. The Sequence’s quality was checked using FastQC. The

clean reads were assembled with multiple-Kmer parameters using ABySS (http://www.bcgsc.

ca/platform/bioinfo/software/abyss) [29]. GapCloser software (https://sourceforge.net/

projects/soapdenovo2/files/GapCloser/) was used to close the gaps between contigs and cor-

rect the single base polymorphism for the final assembly results. Gene structural and func-

tional annotation was performed through the RAST (Rapid Annotation using Subsystem

Technology) [30]. Determination of lytic or lysogenic lifecycle was predicted using PHACTS

[31]. Phylogenetic tree of UPM2146 was constructed to determine the evolutionary relation-

ship of UPM2146 with other existing phages using FASTME. The evolutionary intergenomic

distance was estimated using Genome BLAST Distance Phylogeny (GBDP) method [32] and

used to infer a balanced minimum evolution tree with branch support via FASTME, including

SPR postprocessing [33] for formula D6 respectively. Branch support was inferred from 100
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pseudo-bootstrap replicates each. Trees were rooted at the midpoint [34] and visualized with

FigTree [35]. A phylogenetic tree based on the amino acid sequence of UPM2146 putative pep-

tidoglycan-binding protein was also constructed using Molecular Evolutionary Genetics Anal-

ysis Version X (MEGA X) [36]. Multiple sequence alignment was conducted using ClustalW

using default parameters, followed by manual correction of the sequence alignment where nec-

essary. Initial tree(s) for the heuristic search were obtained automatically by applying Maxi-

mum Likelihood and BioNJ algorithms to a matrix of pairwise distances estimated using a JTT

model, and then selecting the topology with superior log likelihood value. Pairwise distance

was estimated using Poisson correction model. All nucleotide sequences of the phage genome

and peptidoglycan-binding protein used as reference sequences to create the dendrograms

were obtained from Genbank (https://www.ncbi.nlm.nih.gov/nucleotide). GenBank accession

number for each of the reference genomes and genes were denoted in the trees.

Comparison between UPM2146 with Klebsiella virus 0507KN21 was visualized using Easy-

fig. All pairwise comparisons of the nucleotide sequences were conducted using the Genome-

BLAST Distance Phylogeny (GBDP) method [37] under settings recommended for prokary-

otic viruses [38].

Taxon boundaries at the species, genus and family level were estimated with the OPTSIL

program [39], the recommended clustering thresholds [38] and an F value (fraction of links

required for cluster fusion) of 0.5 [40].

Effect of UPM2146 on K. pneumoniae using zebrafish larvae

Immersion assays for K. pneumoniae were adapted from similar methods performed previ-

ously to study S. typhimurium virulence [41]. Bacterial cultures were grown until exponential

phase (OD600nm = 0.4–0.6) and the cells were serially diluted until 106 CFU/ml. Zebrafish lar-

vae (Danio Assay Laboratories Sdn. Bhd., Malaysia) (3 days-post-fertilization) were washed

with DANIO media and groups of 10 larvae were placed per well in sterile 6-well plates for the

following treatments: (1) Larvae infected with K. pneumoniae 2146 (3.3 × 106 CFU/ml) (2) Lar-

vae infected with K. pneumoniae 2146 (3.3 × 106 CFU/ml) and treated with UPM2146 (1 × 106

PFU/ml) (MOI� 0.3), (3) Untreated larvae (DANIO buffer with LB broth) as the negative

control, (4) Untreated larvae (DANIO buffer with LB broth and SM buffer) as the negative

control. The zebrafish larvae were incubated into two sets at the following times, 30 min and

90 min respectively of each of the group followed by two times washing before adding them

into new 6-well plates filled with DANIO buffer, then phage (1 × 106 PFU/ml) was added

directly into the new 6-well plate for Group 2. Each group were performed in triplicates. To

evaluate the CFU count of K. pneumoniae 2146 in the infected larvae, 10 larvae from each

group were sampled at an interval of 2 h in each of the groups, euthanized via 0.015 M tricaine

(pH 7); thus immobilizing the zebrafish larvae. The bacterium on the surface of the larvae were

washed away by 2 × washings in DANIO buffer. The larvae were homogenized with 100 μl

using Triton X100, followed by adding 12.5 μl of Kanamycin (30 mg/ml) and then the homog-

enate was spread plated onto Simmons Citrate agar (Merck) before being incubated overnight

at 37˚C.

Results

Morphological characterization and nomenclature of the phage

Phage UPM2146 was isolated from a polluted lake in Serdang, Malaysia. It formed clear uni-

form plaques after overnight incubation at 37˚C (Fig 1a), and the maximum size of plaques

ranged between 0.7–1 cm in diameter on K. pneumoniae 2146 with a halo zone (0.5 cm)

forming around the plaque after 36 h of incubation at 37˚C (Fig 1b). Transmission electron
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microscopy showed that UPM2146 had an icosahedral head of 51.3 ± 1.8 nm, with a long non-

contractile flexible tail of 173.4 ± 1.9 nm in length and a 10.8 ± 7.7 nm in width. Moreover,

the presence of the neck, but no collar was observed (Fig 2). Based on these observations,

UPM2146 belongs to Caudovirales order, according to ICTV [42] (Fig 2).

Host range and efficiency of plating (EOP) for UPM2146

UPM2146 was tested against a panel of K. pneumoniae that includes ATCC BAA-2146, ATCC

BAA-1705, clinical isolates A01 until A18, and A20. Besides K. pneumoniae, it was also tested

Fig 1. (a) Plaque morphology of UPM2146 was uniformly distributed after overnight incubation at 37˚C. (b) The maximum size of

plaques ranged from 0.7–1 cm with halo zone of 0.5 cm forming around it, at 36 hours incubation, 37˚C.

https://doi.org/10.1371/journal.pone.0245354.g001

Fig 2. TEM micrograph of UPM2146, indicating that it belongs to Caudovirales order. 100 nm scaled bar is shown.

https://doi.org/10.1371/journal.pone.0245354.g002
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on multi-drug resistant Staphylococcus aureus 10, and Escherichia coli strains ATCC 25922

and Top 10 using spot test assay. The EOP was used to distinguish the discrepancies that arise

between spot test assay and double-layer agar method [21]. Using the spot test, UPM2146 was

able to lyse 5 out of 22 K. pneumoniae tested (22.7%) and did not lyse any of the other bacteria

genera. However, based on the results as summarized in Table 1, only the EOP of UPM2146

against its original host which was K. pneumoniae 2146 showed High EOP while the other four

strains which were positive on spot test showed either Low or Inefficient EOP.

Phage characterization: One-step growth curve, the biological activity of

the phage, and turbidity assay

Adsorption is the first step in a phage life cycle that includes attachment of phage to the surface

of K. pneumoniae 2146. In the present study, 100% of UPM2146 was able to adhere onto the

surface of its host bacteria between 2 to 10 minutes. An MOI of 0.001 was used for the one-

step growth curve experiment. UPM2146 had a burst size of 20 PFU/bacteria cell, adsorption

period of 5 minutes, a latent period of 20 min, and a rise period of 5 min (Fig 3). UPM2146

was stable at all temperatures tested except that it lost its lytic activity at 65˚C.and within all

pHs tested except the extreme pH of 2, 13, and 14 (Fig 4a & 4b). This also indicates that

UPM2146 has the capability to survive at temperature of 37˚C and pH 7 making it suitable for

therapy purposes. The efficacy of the phage in clearing the bacteria was measured using turbid-

ity assay at OD600nm. After adding UPM2146 to K. pneumoniae 2146 host, the optical density

at 600 nm was measured for different MOIs (0.02, 0.2 and 2). At the peak of the K. pneumoniae
growth after 240 min and without phage treatment, the OD600nm was at 0.8 which was equiva-

lent to the bacterial count of 1.5±0.104 × 109 CFU/ml. With phage treatment at all tested

MOIs; the bacterial count was reduced to zero. UPM2146 was able to completely lyse the host

at 60 min for all different MOIs (Fig 5).

Genomic analysis and annotation

UPM2146 was found to have a linear double-stranded DNA with a genome size of 160,795 bp

and with a GC content of 46.31% (NCBI accession number MN478483). The genome contains

214 open reading frames (ORF) that can be transcribed to 81 proteins of known putative func-

tions, 133 hypothetical proteins and 5 tRNAs as summarized in Fig 6. In addition, UPM2146

appear to have 89% similarity with Klebsiella virus 0507KN21 (Fig 7), suggesting that it may

belong to Caudovirales, sub-family Ackermannviridae based on phylogenic tree analysis and

using OPTSIL clustering yielded 39 (D6) species clusters, respectively. At the genus level, there

Table 1. Phage lytic activity against bacterial strains used in this study.

Bacteria Spot Test (%) High

(EOP�0.5)

Medium

(EOP>0.1<0.5)

Low (EOP�0.1) No Activity

(EOP<0.001)

Klebsiella pneumoniae Clinical isolate (n = 19) 3 (15.59%) 0 0 1 2

Klebsiella pneumoniae ATTC strain (n = 2) 1 (50%) 1 0 0 0

Klebsiella pneumoniae non-drug resistant strain (n = 1) 1 (100%) 0 0 1 0

Multi-drug resistance Staphylococcus aureus clinical isolate

(n = 1)

0 (0%) 0 0 0 0

Escherichia coli ATTC strain (n = 1) 0 (0%) 0 0 0 0

Escherichia coli non-drug resistant strain (n = 1) 0 (0%) 0 0 0 0

EOP was calculated using double-layer method. EOP is classified as ‘High’ only when the ratio of compared bacterium to their host is at minimum or higher than 50%

(EOP�0.5), ‘Medium’ when the EOP is in between 10% and 50% (0.1�EOP<0.5), ‘Low’ when less than 10%, and ‘Inefficient’ when EOP is less than 0.1% (EOP�0.001).

https://doi.org/10.1371/journal.pone.0245354.t001
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were 12 (D6) clusters determined at the family level (Fig 8a). In addition, the presence of GP5

in the tail of the phage was predicted.

Furthermore, a phylogenic tree drawn by using Mega X software [36] based on UPM2146

putative phage-encoded peptidoglycan binding protein places UPM2146 within the newly

proposed family of Ackermannviridae [43] in Fig 8b. UPM2146 was shown to be a lytic phage

since it lacks integrase and toxin gene (PHASTER and PHACTS).

Effectiveness of UPM2146 to kill K. pneumoniae 2146-infected zebrafish

larvae

The efficiency and safety of using UPM2146 in the treatment of K. pneumoniae infection in
vivo were tested in a zebrafish larvae model. Based on morphological appearance, that is deter-

mined on whether the larvae exhibit hook shape tail which indicates that the larvae had died

[44], the mortality rate was less, and the zebrafish larvae were able to survive up to 24 hours

when infected for 30 min. On the other hand, the zebrafish larvae reached a mortality rate

100% at 10 hours when infected for 1 hour and thirty-minute; therefore, 30 min of infection

was used for the CFU count experiment in zebrafish larvae (Fig 9a and 9b). The CFU count

was conducted at an interval of 2 hours post-treatment with UPM2146 showing the presence

of 1.17 x 105 of colonies within zebrafish larvae in the group containing K. pneumoniae 2146

alone at the beginning and continuously increasing until reaching 2.53 × 107 colonies com-

pared to starting with 6.3 x 104 colonies but reaching zero at 10 hours and remaining zero

until 20 hours in the treated group (Fig 10).

Discussion

In this study, UPM2146 was isolated from a polluted lake and was able to form halo-zones

when plated on a K. pneumoniae lawn. This phenomenon was probably due to the release of

Fig 3. Growth curve of phage UPM2146. One step growth curve of UPM2146 taking 20 min of latent period, 5 min of

rise period, and exponential phase of 10 min. Total time required to lyse its host was 25 min that is characteristic of

lytic phages. The experiment was done in triplicates.

https://doi.org/10.1371/journal.pone.0245354.g003
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soluble polysaccharide-degrading enzymes such as capsule depolymerase that was able to

degrade the capsules of K. pneumoniae [45]. Interestingly, UPM2146 had shown to be a slight

broad range but still limited to Klebsiella species as shown by host range and EOP. In addition,

spot tests (for host range determination) may sometimes result in an overestimation of the

capability of the phage to lyse the host bacteria due to other lysis effects not due to phage

Fig 4. (a) UPM 2146 optimum temperature was at 37˚C but was stable at all temperatures tested except at 65 ˚C and (b)

UPM 2146 was stable from pH 3 to 12; thus indicating the potential for it to be used in phage therapy. Bars with

different letters indicate significant difference at p<0.05 (Tukey HSD post-hoc test). Error bars are standard deviations

(n = 3).

https://doi.org/10.1371/journal.pone.0245354.g004
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infection such as the effect of endolysin or bacteriocins from residual phage, bacteria or media

components [19,46]. Categorizing host range is a challenge as the term “broad host range” has

been used to describe phages which lyse multiple strains of the same species as in UPM2146

but also phages which lyse multiple species of bacteria. In the case where phages lyse multiple

bacterial genera, the term “polyvalent” is used to describe the phage [46]. However, in reality,

Fig 5. Turbidity assay of UPM21646 against K. pneumonia 2146. UPM2146 was able to lyse its host and clear the turbidity at 60 min for MOI of 0.02,

0.2 and 2. The bacterial count of control was 1.5±0.104 × 109 CFU/ml at an OD600nm of 0.8. The experiment was done in triplicates.

https://doi.org/10.1371/journal.pone.0245354.g005

Fig 6. Whole genomic sequence of UPM2146 showing the absence of lysogenic genes such as integrase and toxin

genes. This indicates the potential of UPM2416 in phage therapy. The circular genome map was constructed using

SnapGene.

https://doi.org/10.1371/journal.pone.0245354.g006
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as shown with UPM2146, the phage while showing its ability to lyse several strains of Klebsi-
ella, may only be efficient on one specific bacterial strain which is usually the host used to iso-

late the phage. This is due to the standard isolation procedure which involved enrichment with

only one bacterial host. However, there are recent indications where using multiple hosts dur-

ing isolation increases chances of isolating phages with broader host ranges [19]. In addition,

the host range activity of bacteriophages can evolve and change with time [46–48].

UPM2146 has the requirements for therapeutic purposes since its optimum temperature

and pH are 37˚C and pH of 7 and it has the capability to lyse its host at a fast rate as shown by

the one-step growth curve in Fig 3 [19]. Furthermore, UPM2146 was proven to be lytic based

on turbidity assay due to its fast activity in lysing its host. This further confirms that K. pneu-
moniae 2146 has a low chance to develop resistance against UPM2146 [49] as well as any genes

encoding integrase based on PHASTER [50]. The absence of integrase which is vital for the

lysogenic life cycle further confirms that UPM2146 is a lytic phage. Moreover, this is supported

by the prediction of being lytic based on PHACTS database (S1 and S2 Tables, S1 and S2 Figs)

[31]. Furthermore, the presence of a putative phage-encoded peptidoglycan binding protein at

ORF 19 shared 99.62% similarity with that belonging to Klebsiella virus 0507KN21 DNA [51].

Interestingly, UPM2146 belongs to the newly established Ackermannviridae family within the

Caudovirales order based on the phylogenic tree analysis (Fig 8). UPM2146 is similar to Klebsi-
ella virus 0507KN2 in which the pairwise distance between them was 0.0038 estimated using

Poisson correction model (S2 Table). The genome size of UPM2146 which is over 155 kbp fur-

ther supports that the phage belongs to Ackermannviridae [52] which is different from the

other families (Myoviridae, Siphoviridae, and Podoviridae) within the Caudovirales order [53].

Moreover, UPM2146 is capable of encoding the muramidase endolysin which catalyzes the

hydrolysis of the peptidoglycan in the K. pneumoniae cell wall, rupturing it at the end of the

virulence cycle resulting in lysis from within [54]. In addition, the presence of the GP5 protein

at the tail of the phage probably enables the mechanism of lysis from without leading to the

breakdown of the bacterial cell wall [55]. Moreover, the genome seemed to encode for 133

hypothetical proteins with unknown functionality but they may have the potential to be used

as new biologics after bioinformatics and proteomic analysis of hypothetical protein [56].

Turbidity assay (A600nm) of K. pneumoniae infected with UPM2146 showed that the phage

was able to lyse the host bacteria and clear the turbidity within 1 hour at MOI of 0.02, 0.2 and

Fig 7. Genomic comparison between UPM2146 and Klebsiella virus 0507KN21 analysed using Easyfig. Genomes of each phage is

represented by linear visualization of their coding sequences (CDS) represented by arrows. The direction of the arrows indicates the

direction of transcription of each CDS. The black vertical lines between the two genomic sequences indicate regions of shared

similarities (89%) according to BLASTn. The intensity of these lines indicates the degree of similarity. This confirms that UPM2146

belongs to Ackermannviridae.

https://doi.org/10.1371/journal.pone.0245354.g007
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Fig 8. a. Phylogenic tree of UPM2146 show that the phylogenomic GBDP trees inferred using D6 formula and yielding average support of 58%, The

numbers above branches are GBDP pseudo-bootstrap support values from 100 replications. The branch lengths of the resulting VICTOR tree are scaled

in terms of D6 formula used. b. The evolution of UPM2146 of putative phage-encoded peptidoglycan binding protein had been drawn using

phylogenic tree analysis using 1000 bootstrap, using the maximum likelihood (ML) method based on the Jones-Taylor-Thornton (JTT) model, the tree

with the highest log likelihood (-1805.44) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the

branches. Initial tree(s) for the heuristic search were obtained by applying the Neighbor-Joining method to a matrix of pairwise distances estimated

using a JTT model. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. This analysis involved 22 amino

acid sequences. All positions containing gaps and missing data were eliminated (complete deletion option). There were a total of 261 positions in the

final dataset. Evolutionary analyses were conducted in MEGA X [36].

https://doi.org/10.1371/journal.pone.0245354.g008
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Fig 9. Survivability of zebrafish larvae based on morphological appearance. (a.) zebrafish larvae were able to survive up to 24 h when infected with

K. pneumoniae 2146 for 30 min. while (b.) upon increasing the infection to 90 min the zebrafish larvae was able to survive up to 9 h. The experiment

was done in triplicates.

https://doi.org/10.1371/journal.pone.0245354.g009
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Fig 10. CFU count in zebrafish larvae. The phage UPM2146 managed to completely lyse K. pneumoniae 2146 at 10 h and remains zero until 20

h while the zebrafish larvae infected with bacteria (K. pneumoniae 2146) continue to increase till reaching 25.3 x 106 CFU/ml. The experiment

was done in triplicates.

https://doi.org/10.1371/journal.pone.0245354.g010
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2. Thus, UPM2146 appears to have all of the requirements to be used for phage therapy [19,57]

except for the ability to lyse a broad range of K. pneumoniae which can be overcome by using a

phage cocktail [58]. In earlier studies, infected mice were used to prove the efficiency of phage

in treating against K. pneumoniae [10–12]. However, in the present study, the zebrafish larvae

model was used instead. It is important to note that as far as we know; testing the efficiency of

phage using zebrafish larvae against K. pneumoniae has never been reported before. In a study

by Marcoleta et al. [9], three types of K. pneumoniae were used to infect zebrafish larvae, but

only one (Kp RYC492) was found to be highly virulent and caused 75% mortality after 72

hours post-infection (h.p.i.). In another study by Cheepurupalli et al. [14], clinical MDR K.

pneumoniae at 107 CFU/ml was used to infect the zebrafish resulting in 100% mortality at 24

h.p.i. In comparison with the current study, K. pneumoniae 2146 was extremely virulent to the

zebrafish larvae; causing 100% mortality at 10 h.p.i. after 1 hour and 30 minutes infection at

103 CFU/ml. However, 100% mortality of the zebrafish larvae was observed at 24 h.p.i. when

the larvae was exposed to the bacteria for only 30 minutes. Furthermore, the c.f.u. count

dropped to 0 at 10 hours onwards when UPM2146 was used to treat the infected zebrafish lar-

vae at an MOI 0.3. This indicates that UPM2146 has the potential to be used for therapeutic

purposes. On a side note, the zebrafish infection model is commonly used to test cytotoxicity

[16] which in this study has proven UPM2146 is safe to be used.

Conclusion

The continuous increase in drug-resistant bacteria had led scientists to search for alternative

treatments to antibiotics such as phage therapy. In this study, UPM2146 had the ability to lyse

multiple drug-resistant K. pneumoniae 2146 efficiently in vitro as well as four other K. pneumo-
niae strains with lesser efficacy. It had a short latent period, and its genome appears to be free

from toxin and integrase genes. In addition, UPM2146 belongs to novel family (Ackermann-
viridae) within the Caudovirales order along with the presence of phage-encoded peptidogly-

can binding protein (endolysin) that has the potential to be used for therapeutic purposes.

UPM2146 was highly efficient in clearing the K. pneumoniae infection and can be considered

as safe with the potential to be used as phage therapy against the bacteria although it is likely to

be practically effective only when used in a phage cocktail due to its narrow host range.
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