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Currently, the aetiology and pathogenesis of idiopathic pulmonary fibrosis (IPF) are still
largely unclear. Moreover, patients with IPF exhibit a considerable difference in clinical
presentation, treatment, and prognosis. Optimal biomarkers or models for IPF prognosis
are lacking. Therefore, this study quantified the levels of various hallmarks using a single-
sample gene set enrichment analysis algorithm. The hazard ration was calculated using
Univariate Cox regression analysis based on the transcriptomic profile of bronchoalveolar
lavage cells and clinical survival information. Afterwards, weighted Gene Co-expression
Network Analysis was performed to construct a network between gene expression,
inflammation response, and hypoxia. Subsequently, univariate Cox, random forest, and
multivariate Cox regressions were applied to develop a robust inflammation and hypoxia-
related gene signature for predicting clinical outcomes in patients with IPF. Furthermore, a
nomogramwas constructed to calculate risk assessment. The inflammation response and
hypoxia were identified as latent risk factors for patients with IPF. Five genes, including
HS3ST1, WFDC2, SPP1, TFPI, and CDC42EP2, were identified that formed the
inflammation-hypoxia-related gene signature. Kaplan-Meier plotter showed that the
patients with high-risk scores had a worse prognosis than those with low-risk scores in
training and validation cohorts. The time-dependent concordance index and the receiver
operating characteristic analysis revealed that the risk model could accurately predict the
clinical outcome of patients with IPF. Therefore, this study contributes to elucidating the
role of inflammation and hypoxia in IPF, which can aid in assessing individual prognosis
and personalised treatment decisions.
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INTRODUCTION

Idiopathic pulmonary fibrosis (IPF) is the most common
interstitial lung disease of unknown cause, which is
characterized by diffused alveolitis and alveolar structure
disorder (1). IPF involves the progressive deterioration of lung
function, which is characterized by reduced volume of both lungs
and thickening of visceral pleura resulting in dyspnea and,
eventually, respiratory failure (2–4). The etiology of IPF is still
unclear; In addition, there is a lack of specific drugs for treatment
(5). Currently, the occurrence of disease is mainly related to
alveolar epithelial cells injury, cellular senescence, and chronic
inflammatory stimulation (6). Although two clinical drugs were
approved by Food and Drug Administration, none of them
reverse the lung injury caused by disease or reduces the
mortality of IPF (7). Consequently, patients with IPF have a
poor clinical outcome, and the average survival time has been
reported to be approximately 3~5 years from clinical symptoms
onset (8). Owing to an ageing population, the incidence rate of
IPF has been increasing (9). Although researchers have achieved
encouraging results in the diagnosis and treatment of IPF
recently, IPF patients remains incurable with remarkably
mortality (10). Thus, it is crucial to identify reliable biomarkers
of IPF for prognosis and targeted therapy.

Transcriptomics has been extensively used to study the
potential mechanisms of disease occurrence and progression
(11, 12). Significant insights into the complex pathological and
biological mechanisms of IPF, including the role of matrix
metalloproteases in IPF, have been reported (13, 14).
Furthermore, research has been conducted for screening
differentially expressed genes in IPF lung, which provided
important mechanistic insights (15). Importantly, FKBP10,
RXFP1, and PTPN11 were identified as novel regulators of IPF
(16–18). Single-cell RNA sequencing revealed that senescence-
associated genes and WNT signaling play crucial roles in
mediating IPF progression (19). Several studies in recent years
have reported potential prognostic biomarkers and explored the
disease-associated biological pathways using public databases
(20). However, no effective biomarkers have been identified so
far for evaluating the prognosis of IPF patients and providing
subsequent guidance for treatment selection.

Currently, lung biopsy is considered to be an ideal method for
identifying molecular markers for the diagnosis and prognosis of
IPF. However, its use is limited owing to the invasive nature of
the procedure, with less than 30% of patients receive a biopsy, so
its utility is limited. Several studies have reported that
bronchoalveolar lavage (BAL) fluid (BALF), which is often
used in the diagnosis of lung diseases, can be used to evaluate
the stages of inflammatory response in interstitial lung disease
(21, 22). In this study, the mRNA microarray datasets of BAL
cells from Gene Expression Omnibus (GEO; http://www.ncbi.
nlm.nih.gov/geo/) was obtained. The various hallmarks of IPF as
risk factors for overall survival were analyzed and combined
multiple bioinformatics methods were used to screen for
biomarkers and develop a robust gene signature for the
prognosis of IPF. Additionally, the prognostic value of this
gene signature was verified using an independent external
Frontiers in Immunology | www.frontiersin.org 2
dataset. This study provided a novel perspective to understand
the mechanisms of IPF and presents a risk model for predicting
the overall survival of patients with IPF.
MATERIALS AND METHODS

Data Acquisition and Processing
A total of 196 patients with IPF, including their clinical
information, and 20 healthy donors were included in this
study. The gene expression of BAL cells (GSE70866) was
obtained from Gene Expression Omnibus (GEO) database
(23). Among them, RNA microarray chips from 20 healthy
donors and 112 patients with IPF (from Freiburg and Siena)
were performed using Agilent-028004 SurePrint G3 Human GE
8x60K Microarray, while RNA microarray chips from 64 IPF
patients (from Leuven) were evaluated by Agilent-039494
SurePrint G3 Human GE v2 8x60K Microarray. The basic
information of patients was shown in Table 1. In addition, the
“limma” and “sva” functions were performed to background-
correct, normalize and remove batch effects from raw expression
data (24, 25). The cohort of 112 patients with IPF was employed
as the training set, and the cohort of 64 patients with IPF was
used as a validation set. Ethical approval was not required in this
study since all data was available in the public domain.

Identification of Candidate Hallmarks
The “limma” package was applied to screen differentially
expressed genes (p value<0.05). The gene sets of hallmarks
were obtained from the Molecular Signatures Database
(MSigDB), and the Z-score of hallmarks was quantified using a
single-sample gene set enrichment analysis (ssGSEA) algorithm
(R package ‘gsva’) based on transcriptome profiling data.
Univariate Cox proportional-hazards (Cox-PH) regression was
applied to estimate the significance of different hallmarks in IPF
through the “survival” function.

Weighted Gene Co-Expression
Network Analysis
Weighted Gene Co-expression Network Analysis (WGCNA)
was carried to identify the module that was most correlated
with hypoxia based on transcriptome profiling data and ssGSEA
scores. Firstly, the gene expression matrix was transformed into a
similarity matrix by using the Pearson test between pairwise
genes. Secondly, the similarity matrix was transformed to an
adjacency matrix by Topological overlap measure (TOM). Gene
co‐expression networks were generated by theWGCNA package.
Module membership (MM) represented the correlation between
module eigengenes and gene expression profiles. 369 candidate
genes were identified with a threshold of correlation coefficient of
MM >0.5 and the p-value <0.001.

Construction of Risk Model
The univariate Cox regression was performed to assess the
prognostic value of candidate genes. Then, the importance of
the survival-related differential genes was calculated and ranked
March 2022 | Volume 13 | Article 730186
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using the random forest via the “randomForestSRC” package. A
risk model was built by multivariate Cox regression, and the risk
score was calculated as follows: Risk Score = b1x1 +b2x2+b3x3+
…+ bnxn.

Correlation Analysis of Immune Cells
Single-Sample GSEA (ssGSEA) and MCP counter algorithm
were applied to estimate the infiltration levels of immune cells
based on specific gene expression signatures of immune cells.
Subsequently, we explored the correlation between risk score and
immune cells. Furthermore, we also analyzed the relationship
between risk score and NLRP3.

Additional Bioinformatic and
Statistical Analyses
R software (version 3.6.3, http://www.r-project.org) was used to
analyze data and plot graphs. Kaplan-Meier (K-M) curve plotted
the relationship between score and clinical outcome, and the log-
rank test was used to evaluate differences using “survival” and
“survminer” packages. Univariate and multivariate Cox
regressions were performed with the “survival” package.
Subsequently, the Wilcox test was used to calculate the
differences between the groups, and p<0.05 was considered
significant. WGCNA was used to describe the correlation
patterns among gene by following the protocol of WGCNA
package. Time-dependent concordance index (C-index) and the
receiver operating characteristic (ROC) analysis were applied to
assess the predictive capacity of survival among different
variables using R packages ’ survConcordance ’ and
‘survivalROC’. Then, gene set enrichment analysis (GSEA) was
performed using GSEA software (http://software.broadinstitute.
org/gsea). Finally, the calibration of the nomogram was plotted
by the “rms” package.
RESULTS

Identification of Risk Factors for Overall
Survival in IPF
The z-scores of various hallmarks were calculated based on the
transcriptome profiling of the training set and gene sets of
MSigDB using ssGSEA. In addition, the hazard ratios (HR) of
various hallmarks were calculated and ranked based on the
survival information. The results indicated that the
inflammatory response, angiogenesis, epithelial-mesenchymal
transition, hypoxia, immune response, and other signaling
pathways impacted the overall survival of patients with IPF
Frontiers in Immunology | www.frontiersin.org 3
from the training cohort (Figure 1A). Among these hallmarks,
inflammatory response and hypoxia exhibited more powerful
effects on survival compared to others. Then, a co-expression
network of the survival-related hallmarks was generated based
on their ssGSEA z-scores. The result revealed that compared to
other hallmarks, inflammatory response and hypoxia showed a
higher correlation (Figure 1B). Additionally, multivariate Cox
analysis demonstrated that both inflammatory response and
hypoxia were prognostic factors of IPF independent from other
clinical features (including age and sex) (Figure 1C). Based on
the median value of ssGSEA score of inflammatory response and
hypoxia, the training cohort was divided into the high- and low-
score groups, with inflammatory response and hypoxia
presenting worse clinical outcomes as indicated by their high
z-score (Figures 1D, E).

Construction of Inflammatory Response
and Hypoxia-Related Gene Signature
In total, 4072 genes were identified as differentially expressed
genes between IPF and healthy donors. Then, WGCNA was used
to construct a scale-free co-expression network based on the
average linkage method, and 20 modules were generated
(Figure 2A). Among them, both green-yellow and light green
modules showed a strong positive correlation with inflammatory
response and hypoxia (r>0.6, p<0.0001) (Figure 2B).
Subsequently, univariate Cox regression was performed to
examine the prognostic value of the 369 candidate genes from
the green-yellow and light green modules, which revealed 42 and
174 genes to be negatively and positively associated with
prognosis, respectively (Figure 2C). Furthermore, the random
forest analysis was applied to rank and screen relative important
genes based on their impact on overall survival. Consequently,
TFPI, CTSE, TLR2, CDC42EP2, CCL2, CECR6, SPP1, WFDC2,
HS3ST1, and HAMP were identified as the top 10 genes
(Figure 2D). Approximately 1023 risk models were calculated
for the different combinations of the 10 genes and K-M analysis
was performed to screen for the best risk model. The Log-rank p-
value of all risk models was calculated and ranked, and the top 20
was selected for further study (Figure 2E). The five-gene signature
was identified as the final risk model, as it exhibited the smallest p-
value and fewer risk genes, with the risk score = 0.44× HS3ST1+
0.27× WFDC2 + 0.16 × SPP1 + 1.12 × TFPI + 1.06 × CDC42EP2.

Five-Gene Signature Serves as a Risk
Factor for Patients With IPF
In the training set, the 112 patients were divided into high and
low-risk groups based on the median of risk scores. The Bar plots
TABLE 1 | The basic information of IPF patients.

Characteristic Training set Validation set

Status Alive 36 (32.14%) 40 (62.50%)
Dead 76 (67.86%) 24 (37.50%)

Age <=65 40 (35.71%) 25 (39.06%)
>65 72 (64.29%) 39 (60.94%)

Sex Female 19 (16.96%) 13 (20.31%)
Male 93 (83.04%) 51 (79.69%)
March 2022 | Volume 13 |
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demonstrated that the proportion of deaths in the high-risk
group was 87%, significantly higher than the low-risk group
(Figure 3A). Meanwhile, the risk score was significantly higher
in patients who died during follow-up compared to survivors
(Figure 3B). Furthermore, the K-M analysis indicated that the
Frontiers in Immunology | www.frontiersin.org 4
high-risk group had worse clinical outcomes than the low-risk
group (HR=4.56, P<0.001, Figure 3C). Area under the ROC
curve (AUC) analysis revealed the reliable predictive ability of
the model for the overall survival of IPF, with the 0.5-, 1-, 2-, 3-,
and 5-years AUC values of 0.83, 0.82, 0.80, 0.81, and 0.94,
A B

D E

C

FIGURE 1 | Inflammatory response and hypoxia are dominant risk factors for patients with idiopathic pulmonary fibrosis (IPF) in the training cohort. (A) Univariate
Cox regression analysis for the prognostic value of various hallmarks. Red, p < 0.05; grey, p > 0.05. (B) Spearman correlation analysis was performed to construct a
correlation network for prognosis-related hallmarks. (C) Multivariate Cox regression analyses of clinical factors and the inflammatory response and hypoxia-related
signature. (D) Kaplan–Meier survival analysis of the single-sample gene set enrichment analysis (ssGSEA) score of hypoxias for overall survival. (E) Kaplan–Meier
survival analysis of the ssGSEA score of inflammatory response for overall survival.
A B

D EC

FIGURE 2 | Development of inflammation response and hypoxia-related gene signature. (A) Cluster dendrogram and co-expression modules were identified using
Weighted Gene Co-expression Network Analysis. Each colour represents one module. (B) Correlation analysis between the gene module and inflammatory response and
hypoxia-related gene signature. (C) The prognosis-related genes in the green-yellow and light-green modules were screened using univariate Cox regression. (D) The top
10 genes were identified using random survival forest algorithms. (E) The top 20 gene signatures were ranked by -log10 p-value on a Kaplan–Meier plotter.
March 2022 | Volume 13 | Article 730186
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respectively (Figure 3D). Furthermore, univariate and
multivariate Cox analyses indicated that the five-gene signature
was an independent risk factor (HR=2.78, P<0.0001, Figure 3E).
In addition, the C-index of the five-gene signature was
significantly higher than that of age and sex, and was
approximately 0.8 for 1-5 years (Figure 3F).

Validation of Five-Gene Signature
Similar to the training cohort, the high-risk group in the
validation cohort had a higher mortality rate than the low-risk
group, with a significant elevation of the risk score in patients
who died (Figures 4A, B). The K-M plotter showed that patients
with IPF in the high-risk group exhibited poorer overall survival
than the low-risk group (HR=3.11, P=0.004, Figure 4C). The
ROC analyses indicated that the five-gene signature had a good
prediction accuracy, with the AUC for 1-, 2-, 3-, and 5-years
being 0.78, 0.79, 0.80, and 0.91, respectively (Figure 4D). The
multivariate Cox regression analysis demonstrated that the five-
gene signature served as an independent prognostic factor
(HR=2.38, P<0.0001, Figure 4E), which was further verified by
the C-index that showed that the five-gene signature to have
excellent prediction value in the validation cohort (Figure 4F).

Association of Inflammatory Response
and Hypoxia With Risk Score
Previous results have suggested that the ssGSEA score of
inflammatory response and hypoxia was associated with the
clinical outcome of patients with IPF in the training set.
Frontiers in Immunology | www.frontiersin.org 5
Following this, the analysis of the relationship between
inflammatory response and hypoxia with the five-gene signature,
demonstrated that the high-risk group had a higher ssGSEA score
of inflammatory response and hypoxia than that of the low-risk
group (Figure 5A). Meanwhile, the expression of inflammatory
response and hypoxia-related genes, including HIF1A, CCR2,
CCR5, TLR6, TLR2, IL1B, and IL6, was higher in the high-risk
group than low-risk group (Figure 5B). In order to further explore
the potential relationship of inflammatory response, hypoxia and
related genes with the risk score, the correlation of risk score
associated inflammatory response and hypoxia and related genes
with clinical performance was analyzed, which showed that the
patients with IPF having a high-risk score and high ssGSEA scores
of hypoxias or inflammatory response presented worse clinical
outcomes (Figures 5C, D). In addition, the patients with IPF
showing a high expression of related-genes, including HIF1A,
CCR2, CCR5, TLR2, IL1B, and IL6, and high risk-scores had a
poorer prognosis (Figures 5E–K). Subsequent investigation of the
five-gene signature on clinical outcome in different subgroups
revealed that patients with IPF in the high-risk group had a poor
prognosis in both male and female patients (Figures 6A, B). In
both subgroups of patients ages ≥ 70 years and those aged < 70
years, the risk model retained its prognostic capacity to
discriminate high-risk subset (Figures 6C, D). The GSEA
analyses, which investigated the significantly altered KEGG
pathway between the high- and low-risk groups, demonstrated
that the chemokine signalling pathway, cytokine receptor
interaction, JAK-STAT signalling pathway, leukocyte
A B

D E F

C

FIGURE 3 | The predictive ability of the signature in the training cohort. (A) Distribution of survival status in the high- and low-risk groups of the training cohort.
(B) The distribution of the gene signature risk scores between the patients who have died and patients who are alive. (C) Kaplan-Meier method was performed to
plot the survival curves based on risk scores, which were compared using log-rank test. (D) The area under the receiver operating characteristic curve value of the
risk model for 0.5-, 1-, 2-, 3- and 5-years is 0.83, 0.82, 0.80, 0.81 and 0.94 respectively. (E) Univariate and multivariate Cox regression analyses suggested that this
risk model was an independent prognostic factor. (F) Time-dependent concordance index exhibits the excellent predictive ability of the model.
March 2022 | Volume 13 | Article 730186
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transendothelial migration, NOD-like receptor signalling pathway
and VEGF signalling pathway were enriched in the high-risk group
(Figures 7A–F). This further confirmed that the high-risk group
was association with inflammation response and hypoxia status.

Comprehensive Analysis of Immune Cells
Between High- and Low-Risk Groups
Although previous results indicated that the hallmarks of
hypoxia and inflammatory response and five-gene signature
heavily influences the prognosis of IPF patients, its potential
function warranted additional explored. As reported, the BAL
contains a large number of white blood cells, and they play
crucial roles in the development and deterioration of organ
fibrosis (26, 27). It is unclear whether there are differences in
immune cell infiltration and inflammatory factors between high-
and low- risk groups. Here, we analyzed the correlation between
the infiltration level of immune cell and risk score, based on
ssGSEA and MCP counter algorithm. Then, the results from
ssGSEA analysis demonstrated that the high-risk group exhibited
higher immune cell infiltration, including CD4+ T cell, natural
killer cell, eosinophil, MDSC, Macrophage, neutrophil, dendritic
cell, regulatory T cell, and follicular helper cell, compared to low-
risk group (Figure 8A). Meanwhile, the results from MCP
counter indicated that monocytic lineage and neutrophils
abundance in the high-risk group was significantly higher that
the low-risk group (Figure 8B). Furthermore, we also found that
high-risk group had higher NLRP3 expression, which is known
Frontiers in Immunology | www.frontiersin.org 6
NLRP3 inflammasome drive chronic inflammation, compared to
low-risk group (Figure 8C).

Construction of a Nomogram
In order to quantify the risk assessment of individual patients
with IPF and enhance the clinical applicability, a nomogram with
five genes was constructed to predict the probability of 1-, 3-, and
5-years overall survival (Figure 9A). Calibration plots assessing
the performance of the nomogram demonstrated its excellent
prediction accuracy for 1-, 3- and 5-year survival probability (45°
line, Figure 9B).
DISCUSSION

Early-stage symptoms of IPF involve the lung tissue showing a
strong inflammatory response, including large inflammatory cell
infiltration, macrophage activation and inflammatory mediator
release, which damages the capillary endothelial cells and alveolar
epithelial cells (28). Furthermore, macrophages are activated along
with the neutrophils and monocytes being recruited when the
injury persists, producing more inflammatory factors and reactive
oxygen species, which further aggravates the epithelial cell injury
(29). Hypoxia, a prominent characteristic of IPF, has been
reported to activate multiple pathways in IPF, including HIF1A
and VEGF pathways, which can promote fibroblast proliferation
and lead to the IPF process deterioration (30, 31). Nintedanib and
A B

D E F

C

FIGURE 4 | The predictive ability of the gene signature in the validation cohort. (A) The distribution of survival status in the high- and low-risk groups. (B) The
distribution of the gene signature risk scores between patients who have died and patients who are alive. (C) Survival curves were plotted using the Kaplan–Meier
method and compared using the log-rank test. (D) The area under the receiver operating characteristic curve value of the risk model for 1-, 2-, 3- and 5-years is
0.78, 0.79, 0.80 and 0.91 respectively. (E) Univariate and multivariate Cox regression analyses of the risk model. (F) Time-dependent concordance index exhibits the
excellent predictive ability of the risk model.
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pirfenidone are approved medications for the treatment of IPF,
and they inhibit the proliferation of vascular cells and anti-
inflammation respectively (2, 32–34). Therefore, inflammation
and hypoxia play an important role in the pathogenesis and
prognosis of IPF. However, the role of inflammation and
hypoxia in IPF remains to be completely elucidated.

This study identified the inflammation response and hypoxia
as risk factors for overall survival in patients with IPF from
different hallmarks using ssGSEA and Cox regression models. As
inflammation response and hypoxia are complex regulatory
processes involving multiple genes (35–37). Therefore, we used
the WGCNA to identify the inflammation response and
hypoxia-related expression module. Then, univariate, random
Frontiers in Immunology | www.frontiersin.org 7
forest, and multivariate Cox regression were performed to screen
the relative importance of genes and build an inflammation
response and hypoxia-related signature. At the same time, the K-
M analyses and ROC were employed to assess the prediction
accuracy. Subsequently, we verified the reliability of the risk
model in an independent external dataset. These results
indicated that the developed risk model could directly
distinguish the high-risk patients from low-risk patients, and
high-risk patients presented worse overall survival in both
training and validation cohorts. As the risk model successfully
used the inflammation response and hypoxia network, it
provides a novel perspective for risk assessment before
nintedanib and pirfenidone treatment in patients with IPF.
A B
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FIGURE 5 | Correlation analysis between risk score and inflammatory response and hypoxia. (A) The single-sample gene set enrichment analysis score of hypoxia
and inflammatory response in the high- and low-risk groups. (B) The expression of inflammation response and hypoxia-related genes in the high- and low-risk
groups. Survival analysis of the combination of risk score with hypoxia (C), inflammatory response (D), HIF1A (E), CCR2 (F), CCR5 (G), TLR6 (H), TLR2 (I), IL1B (J)
and IL6 (K). *P < 0.05, **P < 0.01, ***P < 0.001, NS, no significance.
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GSEA analysis suggested that the pathways of immune and
inflammation response were enriched in the high-risk group.
Meanwhile, a deeper analysis of immune correlates also
confirmed that the high-risk group had more extensive
infiltrations of inflammatory cells compared to low-risk group.
These results are consistent with that inflammatory response
promote fibrosis process of IPF patients (38). The NLRP3
inflammasome play a crucial role in regulation of inflammatory
response (39). Our result also revealed that high-risk group had
higher expression levels of NLRP3 than low-risk group.

The application of prognostic markers in IPF is lacking
despite several studies reporting that clinical, radiological and
demographic factors can be used to construct mortality risk
models for patients with IPF (40, 41). In this study, five genes
(HS3ST1, WFDC2, SPP1, TFPI, and CDC42EP2) were identified
as important prognostic biomarkers. HS3ST1, heparan sulphate-
glucosamine 3-sulfotransferase 1, is a member of the heparan
sulphate biosynthetic enzyme family, which is involved in the
anti-inflammatory activity of diverse diseases (42, 43).
Additionally, HS3ST1 has been reported to play a major role
in the development of colorectal cancer. Moreover, HS3ST1 and
PD1 could be promising antigen-specific immunotherapy targets
for colorectal cancer (44). Notably, the overexpression of
Frontiers in Immunology | www.frontiersin.org 8
HS3ST1 was associated with poor prognosis while acting as a
hypoxia-related biomarker in bladder cancer (45, 46). Previous
studies suggest that HS3ST1 was significantly correlated with
inflammation and hypoxia, which is consistent with our results
and thereby indicates that HS3ST1 could be a promising target
for IPF. WFDC2, also called HE4, was identified as a prognostic
biomarker for various cancer types and is involved in the
regulation of multiple pathways, including EGFR and STAT3
(47–49). A recent clinical study shows that aberrant HE4
expression of patients with IPF was associated with a poor
clinical outcome; however, this aspect requires further
investigation (50). WFDC2 was also identified as a prognostic
biomarker based on the transcriptome profile of BALF,
providing new insights into understanding the role of WFDC2
in IPF development. Pardo et al. reported that SPP1 was
overexpressed in IPF alveolar epithelial cells and significantly
enhanced in BALF, indicating its potential as a therapeutic target
for IPF (51). Christina Morse et al. found that SPP1 expression
was significantly increased in IPF macrophages by single-cell
transcriptomes analyses and indicated that macrophages with
high SPP1 expression further promote epithelial fibrosis and
enhance inflammation response (52). These are in agreement
with our findings, suggesting that SPP1 could be an ideal
A B

DC

FIGURE 6 | Survival analysis of patients with idiopathic pulmonary fibrosis in different subgroups. Kaplan–Meier survival analysis of the risk model in different
subgroups, including male (A), female (B), age > = 70 years (C) and age < 70 years (D).
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A B

D E F
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FIGURE 7 | Gene set enrichment analysis. Enrichment pathway between the high- and low-risk groups, including chemokine signalling pathway (A), cytokine
receptor interaction (B), JAK-STAT signalling pathway (C), leukocyte transendothelial migration (D), Nod-like receptor signalling pathway (E) and VEGF signalling
pathway (F).
A

B C

FIGURE 8 | Correlation analysis of immune and inflammation. Differentially composition of infiltrated immune cells between high- and low-risk group via ssGSEA
(A) and MCP counter (B)analysis. (C) The expression levels of NLRP3 between high-and low-risk groups. *p < 0.05, **p < 0.01, ***p < 0.001, ns, no significance.
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prognostic biomarker for IPF. Another study has shown that
TFPI levels were remarkedly increased in BALF of IPF patients
(53). CDC42EP2 was reported to be involved in the formation of
the organization of the actin cytoskeleton (54). However, the role
of CDC42EP2 in IPF has not been explored. Thus, the biological
functions associated with inflammation response and hypoxia of
the five-gene signature in IPF still require further exploration.

Since our research was a retrospective cohort study, there were
inevitably some limitations. Firstly, although the training and
validation sets were included, validation using more clinical
datasets is required. Secondly, microarray panel has a limitation
to identify novel gene models. Thirdly, the potential inflammation
response and hypoxia-related biological role of the five-gene
signature requires further in vivo and in vitro verifications.
CONCLUSION

This study reports the construction of a novel inflammation- and
hypoxia-related five-gene signature for patients with IPF based on
Frontiers in Immunology | www.frontiersin.org 10
BAL cells. Based on the expression profiles of these five genes, a
nomogramwas constructed to quantify risk assessment for individual
patients. This gene signature could prove beneficial to the treatment
monitoring and follow-up management of patients with IPF.
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FIGURE 9 | Development and evaluation of the nomogram. (A) A combination of five genes’ expression was used to construct a nomogram for predicting the 1-, 3-
and 5-year overall survival. (B) Calibration curves demonstrate that the nomogram-predicted overall survival probabilities correspond closely to the observed probabilities
for 1-, 3- and 5-years in patients with idiopathic pulmonary fibrosis.
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